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Abstract—This paper considers the partial information rewrit-
ing problem for flash memories. In this problem, the state of in-
formation can only be updated to a limited number of new states,
and errors may occur in memory cells between two adjacent up-
dates. We propose two coding schemes based on the models of
trajectory codes. The bounds on achievable code rates are shown
using polar WOM coding. Our schemes generalize the existing
rewriting codes in multiple ways, and can be applied to various
practical scenarios such as file editing, log-based file systems and
file synchronization systems.

I. INTRODUCTION

Flash memories are asymmetric in the sense that program-
ming a cell from 0 to 1 is efficient while bringing a cell from 1
to 0 needs to erase a whole block of cells, which is costly and
degrades the quality of cells. Moreover, to achieve higher stor-
age density, the geometry of flash chips continuously shrink,
making data more prone to noise. This paper studies codes
that combine error correction and rewriting for mitigating the
endurance and the reliability issues in flash memories.

A basic way to model flash memories is through write-once
memory (WOM), where a cell level can be increased from
low to high but not vice versa. The design of WOM codes
has been extensively studied in literature. This includes lin-
ear codes, tabular codes, codes based on projective geometry,
coset coding etc. High-rate codes have been developed [9],
and codes that achieve capacity were proposed very re-
cently [1] [8]. To make the WOM model more practical, the
study on error correcting WOM (EC-WOM) codes has been
initiated. Codes that correct a few errors (e.g. 1, 2, or 3) have
been proposed [10] [11]. More recently, WOM codes that
correct an arbitrary number of errors were developed [3] [6].

This paper follows the partial information rewriting model
of trajectory codes [5], where the current information can be
changed to a limited number of new states during each update.

Definition 1. (Partial Rewriting) Let G(V,E) be a directed
general rewriting graph that is strongly connected. Let each
vertex v ∈ V denote a message M ∈ {0, 1}log2 |V | and let
π : {0, 1}log2 |V | → V be a one-to-one mapping defined by
π(M) , v. Let each edge e ∈ E denote the change between
the messages allowed by each update. Let D be the maxi-
mum out degree of each vertex, where D > 1. Partial rewriting
stores a sequence of N messages (M0, · · · ,MN−1) such that
(a) π(Mj) ∈ V for j ∈ {0, 1, · · · , N − 1}.
(b) (π(Mj)→ π(Mj+1)) ∈ E for j ∈ {0, 1, · · · , N − 2}.
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The model of partial rewriting can be found in many practical
storage applications such as file editing, log-based file systems
and file synchronization systems. In such applications, data
tend to be frequently updated while each update only makes
small changes on the data. Partial rewriting increases the num-
ber of block erasures in flash memories and degrades memory
performance. Note that a noiseless channel is assumed in the
study of trajectory code for partial rewriting [5].

The contributions of this paper are general coding schemes
for partial rewriting with noise, where errors from a binary
symmetric channel may occur in cells between two adjacent
updates. We propose two specific constructions based on tra-
jectory codes. We show the bounds on achievable code rates
based on our previous work on polar EC-WOM codes [6]. Our
work generalize the existing rewriting codes in multiple ways.

II. PRELIMINARY CONCEPTS

This section introduces the noisy WOM model, which is an
instance of the noisy partial rewriting model in this paper. It
then revisits the polar EC-WOM codes [6] and the trajectory
codes [5], which the codes of this paper are mainly based on.

A. The Model of Rewriting with Noise
A code for rewriting and error correction consists of

t encoding functions E1, E2, · · · , Et and t decoding func-
tions D1,D2, · · · ,Dt. Let there be N binary cells. Let
[z] , {1, 2, · · · , z} for integer z. For i ∈ [N ] and j ∈ [t],
let si,j , s′i,j ∈ {0, 1} denote the level of the i-th cell im-
mediately before and after the j-th write, respectively. The
WOM constraint requires for all i and j, s′i,j > si,j . Let
ci,j ∈ {0, 1} denote the level of the i-th cell at any time after
the j-th write and before the (j + 1)-th write, when reading
of the message Mj can happen. The error ci,j ⊕ s′i,j ∈ {0, 1}
is the error in the i-th cell caused by the binary symmetric
channel denoted by BSC(pe) with error probability pe. (Here
⊕ is an XOR function.) For j ∈ [t], the encoding function
Ej changes the cell levels from sj = (s1,j , s2,j , · · · , sN,j)
to s′j = (s′1,j , s

′
2,j , · · · , s′N,j) given the initial cell state sj

and the message to store Mj . (Namely, Ej(sj ,Mj) = s′j .)
When the reading of Mj happens, the decoding function
Dj recovers the message Mj given the noisy cell state
cj = (c1,j , c2,j , · · · , cN,j). (Namely, Dj(cj) = Mj .)

For j ∈ [t], define instantaneous rate of the j-th write as
Rj ,

Mj

N , where Mj is the number of bits in Mj . The sum-
rate is defined as Rsum ,

∑
j∈[t]Rj . When there is no noise,

the maximum sum-rate (i.e. capacity) of WOM is known to
be log2(t+ 1) bits per cell. However, for the noisy WOM de-
scribed above, the exact capacity is still largely unknown [4].
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B. Polar EC-WOM Codes

Polar EC-WOM codes combine rewriting and error cor-
rection with efficient encoding and decoding algorithms [6].
The scheme extends the constructions by Burshtein and Stru-
gatski [1], which is based on polar codes and achieves the
capacity of noiseless WOM with techniques related to lossy
source coding [7]. In [1], a WOM channel is designed for
each write such that the WOM constraint is satisfied and the
capacity of the channel can match the instantaneous rate. A
polar code is then constructed for each WOM channel and
used for encoding. The polar WOM code was extended to
correct errors [6]. The code in [6] is shown to have good
performance when the frozen sets of the polar codes respec-
tively constructed for the encoding channel and the decoding
channel have substantial overlapping, the existence of which
is analyzed both analytically and experimentally.

C. Trajectory Codes

Trajectory codes are rewriting codes that are asymptotically
optimal for noiseless partial rewriting [5]. Given the rewriting
graph G(V,E), let L = |V |, divide a group of n binary cells
into C subgroups. For i ∈ {0, 1, · · · , C − 1}, let the i-th sub-
group have ni cells and be referred to as register ri, namely,
n =

∑C−1
i=0 ni. A register stores a t-write WOM code. Let

sj = (s1,j , s1,j , · · · , sn,j) and s′j = (s′1,j , s
′
1,j , · · · , s′n,j)

be the cell states immediately before and after storing Mj .
A trajectory code has Ct encoders E0,E1, · · · ,ECt−1 and
decoders D0,D1, · · · ,DCt−1, supporting N = Ct message
updates. For j ∈ {0, 1, · · · , Ct− 1}, the encoder

Ej : {0, 1}n × {0, 1}log2 L × G(V,E)→ {0, 1}n

computes the new cell states from the message, the current
state and G(V,E) (namely, Ej(sj ,Mj ,G(V,E)) = s′j) and
the decoder

Dj : {0, 1}n × G(V,E)→ {0, 1}log2 L

reads the message Mj from the current cell state at any
time between the j-th and the (j + 1)-th updates. (Namely,
Dj(s

′
j ,G(V,E)) = Mj .)

The Ct updates are performed using a differential scheme:
the first message M0 is stored in r0. To write message M1,
we compute the label ∆1 ∈ {0, 1}log2D of the edge π(M0)→
π(M1) in G(V,E), and store in r1. (Instead of labeling edges
globally, each outgoing edge of a vertex is given a local label
that costs log2D bits, where D is the maximum out degree.)
The next C−2 updates can be written in the same way. After
rC−1 is used, an update cycle is completed, and the register
r0 will be rewritten with the new logL-bit message for the
next update. The iteration continues until the last update is
finished. The construction implies the constraint that for all
j, and for all i such that the i-th cell belongs to rjmodC , we
have s′i,j > si,j . The code rate of trajectory codes is

R ,
Ct log2 L

n
bits/cell. (1)

III. ERROR CORRECTING TRAJECTORY CODES

We study the coding problem for joint partial rewriting and
error correction, where the partial rewriting model is extended
by allowing cell states to be changed by noise between two
adjacent updates. In flash memories, the noise is from various
sources such as interference and charge leakage [2].

A. Error Model and WOM Parameters

Before we present the code construction, we first introduce
the related model and parameters. Let the noise channel for
the errors received by a register between two adjacent up-
dates (e.g. the time period after storing M3 and before storing
M4) be a binary symmetric channel BSC(p) with p ∈ (0, 1

2 ).
We assume that errors start occurring in a register after the
register is written for the first time. The assumption is moti-
vated by practical flash memories, where the major errors for
rewriting are introduced by cell-to-cell interference that hap-
pens mainly when cells are being programmed [2]. Following
the model of trajectory codes, the noise channel that a register
goes through at the time immediately before its next WOM
rewrite is BSC(p∗C), where p∗C is the overall error probabil-
ity of C cascaded BSC(p) computed using p∗i , 1−(1−2p)i

2 .
In WOM, it is common to use some parameters to control

the amount of information that is written in each write. For
j ∈ [t], let the parameter αi,j−1 be the fraction of cells that are
at state 0 immediately before the j-th write of the register ri’s
WOM code. We have αi,0 = 1. Let the parameter εi,j 6 1

2 be
the fraction of cells at state 0 that will be raised to 1 by the
j-th rewrite. We have εi,t = 1

2 . The parameters of the WOM
codes used in our setting of partial rewriting also depends on
the error probability p. When ni → ∞, the values of αi,1,
αi,2, · · · , αi,t−1 are computed by αi,j = [αi,j−1(1 − εi,j)] ∗
p∗C , where a ∗ b , a(1 − b) + (1 − a)b, and the parameters
εi,1, εi,2, · · · , εi,t are specified by users.

B. Code Construction

Our first construction is a natural extension of trajectory
codes, where each register independently corrects the errors
in it. The recovered messages are used by the next update.
We formally present the construction by defining the encoder
and the decoder in the following.

Construction 2. For i ∈ {0, 1, · · · , C − 1}, let register ri
use a t-write EC-WOM code, correcting the errors from
BSC(p∗(C−i)). Let l = jmodC, and let sj be the states of the
n cells right before the j-th update, and let s′j denote the cell
states at any time between the j-th and the (j + 1)-th update.
(Therefore, sj is the value of s′j−1 at a particular moment.)
For j = 0, 1, · · · , Ct− 1, we have

Encoder Ej(sj ,Mj ,G(V,E)) = s′j
If l = 0, rewrite r0 with Mj . Otherwise, do;
(1) Recover message M̂j−1 = Dj−1(sj ,G(V,E)).

(2) Compute the label ∆j s.t. (π(M̂j−1)
∆j−→ π(Mj)) ∈ E.

(Here π is specified in Definition 1.)
(3) Store the label ∆j in register rl using rewriting (i.e. using

the EC-WOM code for rl).
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Decoder Dj(s
′
j ,G(V,E)) = M̂j

(1) Decode r0 and obtain the estimated message M̂j−l. Let
v̂j−l = π(M̂j−l).

(2) For k from 1 to l, decode rk and obtain the estimated edge
label ∆̂j−l+k. (Note that in the rewriting graph G(V,E),
the edge from message Mj−l+k−1 to message Mj−l+k−1

has the label ∆j−l+k).
(3) Compute M̂j . Start from the vertex v̂j−l, traverse G(V,E)

along the path marked by ∆̂j−l+1, ∆̂j−l+2, · · · , ∆̂j , which
leads to v̂j . Output M̂j = π−1(v̂j).

Example 3. We now show a simple example for n = 6
cells. (In practice, the code usually has thousands of cells.)
Let the cells be divided into C = 2 registers with n0 = 4,
n1 = 2, and let t = 2, L = 4 and D = 2. Assume
that between two adjacent updates, an error occurs in each
register. Let the WOM codes of r0 and r1 correct 2 and
1 errors, respectively. Let the rewriting graph G whose
vertex and edge sets be defined as V = {v0, v1, v2, v3},

E =

{
v0

(0)

�
(0)
v1, v1

(1)

�
(0)
v2, v2

(1)

�
(0)
v3, v3

(1)

�
(1)
v0

}
, where the

vertex vi representing the symbol i and having two outgo-
ing edges locally labeled with (0) and (1). Let the sequence
of messages be (0, 3, 2, 1), which corresponds to the path

v0
(1)→ v3

(0)→ v2
(0)→ v1 in the graph. Assume that the changes on

the states of r0 and r1 during the updates are the ones shown
in the table below. Here j− and j+ denote the moments im-
mediately before and after the j-th update, respectively. A bit
marked with underlines indicates an error. Note that at the mo-
ment j = 2, although performing the update does not require
recovery of the messages written at moments j = 0 and j = 1,
those messages can still be recovered until the moment j = 2−

if needed.

j r0 r1 Comments
0− (0, 0, 0, 0) (0, 0) Initialization
0+ (0, 1, 0, 0) (0, 0) Wrote data “0” in r0
1− (0, 1, 1, 0) (0, 0) An error occurs in r0
1+ (0, 1, 1, 0) (1, 0) Decoded r0, wrote “(1)” in r1
2− (0, 0, 1, 0) (0, 0) Errors occur in r0 and r1
2+ (1, 0, 1, 0) (0, 0) Rewrote r0 to store “2”
3− (1, 0, 0, 0) (0, 1) Errors occur in r0 and r1.
3+ (1, 0, 0, 0) (0, 1) Decoded r0, wrote “(0)” in r1

C. Analysis of the Correctness of the Construction

To see the correctness of the coding scheme, we use induc-
tion. (Here we assume the number of cells goes to infinity.)
Let us assume that the first j messages have been stored suc-
cessfully, and we show that Mj−1 can be recovered reliably
at any time between the (j − 1)-th and the j-th update, and
the j-th message can be stored successfully. Let the index of
the register be written as l = jmodC. If l = 0, we are at the
first write of a new cycle, and do not need to recover Mj−1

to store Mj ; if l > 0, we perform the update by storing the
difference ∆j between Mj−1 and Mj in rl. To do so, we
first recover the value of Mj−1 by decoding the registers r0,
r1, · · · , rl−1 which have respectively received errors from the
channels BSC(p∗l), BSC(p∗(l−1)), · · · , BSC(p) at the time of

the decoding. As their WOM codes respectively correct errors
from BSC(p∗C), BSC(p∗(C−1)), · · · , BSC(p∗(C−l+1)) which
are degraded versions of their current noise channels, these
registers can be decoded, outputting the messages written by
the last l updates (which include M̂j−l stored in r0, and the
labels ∆̂j−l+1, ∆̂j−l+2, · · · , ∆̂j−1 from r1, · · · , rl−1). Given
G(V,E) we can determine the value of M̂j−1, and further
compute the label ∆j of the edge from π(Mj−1) to π(Mj).
By storing the label ∆j into rl, the j-th update succeeds.

D. Code Analysis

We analyze the code performance for Construction 2. Let
L = |V |. For j ∈ [t], let Ri,j > 0 be the achievable instanta-
neous rate of the j-th write of the EC-WOM code in ri. As
each register uses a constant-rate WOM code (here register r0

stores log2 L bits per write, and the other registers each stores
log2D bits per write), for i ∈ [C − 1] we have

n0 =
log2 L

minj∈[t]R0,j
, ni =

log2D

minj∈[t]Ri,j
. (2)

Substituting Eq. (2) in Eq. (1) gives the rate of the code

R =
t · C

1
minj∈[t] R0,j

+ log2D
log2 L

∑C−1
i=1

1
minj∈[t] Ri,j

.

Note that the EC-WOM in Construction 2 is general. To be
specific, we can use the polar EC-WOM code in [6] for each
register, and derived the bounds on R. We first revisit some
results from [6] that are needed to derive the bounds to the
instantaneous rates for the polar EC-WOM code.

Let the WOM channel used for performing the j-th
write/encoding of the polar EC-WOM be WOM(αj−1, εj)
with the parameters αj−1 and εj , and let the channel of noise
in cell states between two adjacent writes be BSC(pe). Let
FWOM(αj−1,εj) ⊆ [N ] be the frozen set of the polar code
constructed for WOM(αj−1, εj), and let FBSC(pe) ⊆ [N ] be
the frozen set of the code constructed for BSC(pe). When
N →∞, let xj , |FWOM(αj−1,εj) ∩ FBSC(pe)|/|FBSC(pe)| 6
1. For j ∈ [t], the number of bits written in the j-th rewrite
is Mj = |FWOM(αj−1,εj)| − |FWOM(αj−1,εj) ∩ FBSC(pe)| =
Nαj−1 H(εj) − xj |FBSC(pe)| = N(αj−1 H(εj) − xj H(pe))
and the number of additional cells we use to store the bits
in FBSC(p) −FWOM(αj−1,εj) is Nadditional,j =

N H(pe)(1−xj)
1−H(pe) .

Therefore, we get the instantaneous rate for the j-th write

Rj ,
Mj

N +
∑t
k=1Nadditional,j

=
αj−1 H(εj)−H(pe)xj

1 + H(pe)
1−H(pe)

∑t
k=1(1− xk)

.

Lemma 4. [6, Lemma 5] Let 0 < pe 6 αj−1εj . Then xj > γj ,
where

γj , max

{
αj−1 H( pe

αj−1
)

H(pe)
,
αj−1 H(εj) + H(pe)−H(αj−1εj)

H(pe)

}
.

Lemma 5. Let 0 < pe 6 αj−1εj . Then Rj ∈ [R−j , R
+
j ], where

R−j =
αj−1 H(εj)−H(pe)

1 + H(pe)
1−H(pe)

∑t
k=1(1− γk)

, (3)

R+
j = αj−1 H(εj)−H(pe)γj . (4)
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Fig. 1. The lower and upper bounds (marked by LB and UB) on the achiev-
able code rates for different t and D. Here log2 L = 213, C = 8 and
p = 10−3.

The results above can be directly applied to the codes in Con-
struction 2. For i ∈ {0, 1, · · · , C−1}, let 0 < p∗(C−i) 6
αi,j−1εi,j , then Ri,j ∈ [R−i,j , R

+
i,j ] where R−i,j and R+

i,j are
computed with the right hand sides of Eq. (3) and (4) by re-
placing αj−1, εj and pe with αi,j−1, εj and p∗(C−i).

Theorem 6. For i∈{0, 1, · · · , C−1}, j ∈ [t], let 0 < p∗(C−i) 6
αi,j−1εi,j . Then R ∈ {R−, R+} where

R− =
t · C

1
minj∈[t] R

−
0,j

+ log2D
log2 L

∑C−1
i=1

1
minj∈[t] R

−
i,j

.

and the upper bound R+ can be computed by replacing R−0,j
and R−i,j in the above equation with R+

0,j and R+
i,j , respectively.

Figure 1 shows some numerical results for the bounds of
our code, where for all i, j we let εi,j = 1/(2 + t − j). To
show the benefit obtained by taking advantage of the partial
rewriting constraints, we compare the bounds of our scheme
to those of the basic scheme, which is simply a Ct-write po-
lar EC-WOM code correcting errors from BSC(p). In each
rewrite, the basic scheme stores each updated message using
rewriting. The results suggest our code performs significantly
better than the basic scheme (Note that the WOM codes con-
sidered in this paper are constant rate codes. Given such codes,
the bounds in Figure 1 decreases when t becomes sufficiently
large due to the drop in the instantaneous rates.)

IV. A MORE GENERALIZED CODING SCHEME

We now discuss a more generalized coding scheme. In this
scheme, the trajectory codes not only use registers to store the
changes in the messages, but can also store part of the errors
found in previous registers. When the error probability of the
channel is small, only a small number of additional cells are
needed to store such error information. We focus on a specific
construction in the following.

A. Code Construction

Let the error-free cell states of register ri (immediately af-
ter it is written) be c0

i ∈ {0, 1}ni . Let the cell states im-
mediately before each of the next C updates of messages be
c1
i , c

2
i , · · · , cCi . According to the error model in Section III,

the error vector cki ⊕ ck+1
i contains the errors introduced by

BSC(p). When ni → ∞, the vector cki ⊕ ck+1
i can be com-

pressed into ni H(p) bits using lossless source coding. The
encoder and the decoder for the j-th update in the new con-
struction are defined below.
Construction 7. For i ∈ {0, 1, · · · , C−1}, let register ri use
a t-write EC-WOM code, correcting the errors from BSC(p).
For j = 0, 1, · · · , Ct− 1, we have

Encoder Ej(sj ,Mj ,G(V,E)) = s′j
If l = 0, rewrite r0 with Mj . Otherwise, do;
(1) Recover message M̂j−1 = Dj−1(sj ,G(V,E)).
(2) Compute the label ∆j s.t. (π(M̂j−1)

∆j−→ π(Mj)) ∈ E.
(3) Rewrite register rj to store ∆j and the compressed version

of the error vectors c0
l−1⊕c1

l−1, c1
l−2⊕c2

l−2, · · · , cl−1
0 ⊕cl0.

Decoder Dj(s
′
j ,G(V,E)) = M̂j

(1) For k from 0 to l, let the state of register rl−k be
ck+1
l−k . Using it and the error vectors obtained previ-

ously from decoding rl−k+1, rl−k+2, · · · , rl, we get
ck+1
l−k ⊕

∑k−1
x=0(cxl−k ⊕ cx+1

l−k ) = c0
l−k ⊕ (ckl−k ⊕ ck+1

l−k ).
(Note that when k = 0, the above equals c1

l .) Decode
the right hand side of the above equation, and obtain the
recorded error vectors about the first (l − k) registers—
cl−k0 ⊕ cl+1−k

0 , cl−k−1
1 ⊕ cl−k1 , · · · , c0

l−k ⊕ c1
l−k—the

estimated message M̂j−l (when k = l) or the estimated
edge label ∆̂j−k (when k < l).

(2) We now compute M̂j ; we traverse the graph G(V,E) along
the path marked by the labels ∆̂j−l+1, ∆̂j−l+2, · · · , ∆̂j ,
which leads to vertex v̂j . Output M̂j = π−1(v̂j).

Example 8. Let n = 10, t > 1, C = 3, L = 4 and D = 2.
Assume n0 = 3, n1 = 3, n2 = 4, and that the WOM code of
each register corrects 1 error. Assume that between two ad-
jacent updates, an error occurs in each register. We assume
the same rewriting graph as in Example 3, and let (0, 3, 2)
be the first three messages to be stored. We only illustrate the
update for the message “2” due to space limitation. Assume
the changes in the cell states during the updates are as in the
table below. At time 2−, errors occur in r0 and r1. To per-
form the update, we first decode r1, and obtain the label “(1)”
and the decompressed error vector c0

0 ⊕ c1
0 = (0, 0, 1) for

r0. Given the error vector and the current state c2
0, compute

c2
0 ⊕ (c0

0 ⊕ c1
0) = (0, 0, 0) where the middle bit still contains

error. Decoding c2
0 ⊕ (c0

0 ⊕ c1
0) gives the message “0”. Given

the new message “2′′ and the recovered label “(1)” and the
message “0′′ in r0, the label “(0)” is determined and stored by
writing “(0)” in r2, which completes the update.

j r0 r1 r2
0− (0, 0, 0) (0, 0, 0) (0, 0, 0, 0)
0+ (0, 1, 0) (0, 0, 0) (0, 0, 0, 0)
1− (0, 1, 1) (0, 0, 0) (0, 0, 0, 0)
1+ (0, 1, 1) (1, 0, 0) (0, 0, 0, 0)
2− (0, 0, 1) (1, 1, 0) (0, 0, 0, 0)
2+ (0, 0, 1) (1, 1, 0) (1, 0, 1, 0)

B. Analysis of the Correctness of the Code
The correctness of Construction 7 can be shown by induc-

tion. (We again assume the number of cells in each regis-
ter goes to infinity.) Assume the first j messages have been
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stored successfully, and we elaborate on the j-th update with
l > 0. To perform the update, we need to recover the mes-
sage Mj−1 so that the label of the edge from Mj−1 to Mj

can be computed and stored in rl. We first decode rl−1 with
state c1

l−1 which received the errors from BSC(p). Since each
register tolerates errors from BSC(p), rl−1 can be decoded to
obtain the edge label ∆j−1 (that specifies the edge connect-
ing Mj−2 to Mj−1) as well as the error vectors c0

l−2 ⊕ c1
l−2,

c1
l−3 ⊕ c2

l−3, · · · , cl−2
0 ⊕ cl−1

0 with each error vector being
for one of the first l− 1 registers. Next, we decode rl−2 with
state c2

l−2. To do so, we first use the error vector obtained
previously on rl−2 to correct part of the errors by computing
c2
l−2 ⊕ (c0

l−2 ⊕ c1
l−2). The remaining errors can be equiva-

lently seen as coming from BSC(p), and are thus correctable.
Decoding them gives the edge label ∆j−2 as well as the er-
ror vectors regarding the previous registers. We continue the
joint decoding in the same fashion towards r0. Thanks to the
error vectors from the previous decoding, each register needs
to correct errors from BSC(p) (instead of BSC(p∗(C−i)) for
i = 0, 1, · · · , C−1). After r0 is decoded, we obtain the message
Mj−l and the labels ∆j−l+1,∆j−l+2, · · · ,∆l−1. By travers-
ing G(V,E) along the path marked by the labels, we recover
M̂j−1. The label ∆j is then determined and written into rl.

C. Code Analysis

We analyze the code performance of Construction 7. The
analysis is different from Construction 2 mainly for two rea-
sons. The EC-WOM code of each register for the codes
of this section corrects the errors from BSC(p) while each
WOM code tolerates different amount of noise in the previ-
ous construction. Moreover, since each register (besides r0)
stores both error vectors as well as an edge label, the value
of ni also depends on n0, n1, · · · , ni−1.

We first derive ni for each ri. As r0 is used in the same way
as the previous codes, and ri stores i error vectors and one
edge label in each write, we have n0 = log2 L/minj∈[t]R0,j

and ni = (log2D + H(p)
∑i−1
k=0 nk)/minj∈[t]Ri,j for i ∈

[C−1]. Here the term H(p)
∑i−1
k=0 nk is the length of the com-

pressed error vectors c0
i−1⊕c1

i−1, c1
i−2⊕c2

i−2, · · · , ci−1
0 ⊕ci0.

In practice, each register can choose to use the WOM code
with the same parameters to simplify the implementation. In
such cases, (n1, n2, · · · , nC−1) form a geometric sequence.

Proposition 9. For i ∈ {1, 2, · · · , C−1}, let minj∈[t]Ri,j be
some constant A. Then we have ni = (n0 H(p) + log2D)(A+
H(p))i−1/Ai.

Therefore, the rate of the code in this section can be computed
using Eq. (1). To derive the bounds for Construction 7, we
apply the same techniques used in Section III. Assume each
WOM code in is a polar EC-WOM code which corrects errors
from BSC(p). By applying Lemma 5, we show the bounds to
the instantaneous rates Ri,j in the next lemma.

Lemma 10. For i ∈ {0, 1, · · · , C − 1} and j ∈ [t], let
0 < p 6 αi,j−1εi,j . Then we have Ri,j ∈ [R−i,j , R

+
i,j ], where

R−i,j = [αi,j−1 H(εi,j)− H(p)]/
[
1 + H(p)

1−H(p)

∑t
j=1(1− γi,j)

]
and R+

i,j = αi,j−1 H(εi,j)−H(p)γi,j .

Theorem 11. For all i and j, let 0 < p 6 αi,j−1εi,j . Then we
have R ∈ [R−, R+], where R− = Ct log2 L/

[
log2 L

minj∈[t] R
−
0,j

+∑
i∈[C−1]

log2D+H(p)
∑i−1

k=0 nk

minj∈[t] R
−
i,j

]
, and R+ can be computed by

replacing R−(0, j) and R−(i, j) in R− above with R+(0, j)
and R+(i, j), respectively.

Figure 2 shows the numerical results that compare the
bounds of Construction 2 and Construction 7 on parameters
that are common for flash memories (e.g. message length
> 1000 bits). The bounds for the codes in this section are
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Fig. 2. The bounds to the achievable rates of the two constructions on dif-
ferent t and C. Here log2 L = 213, p = 10−3, and εi,j = 1

2+t−j .

tighter than those of the previous construction. When t is suf-
ficiently large, all bounds will decrease due to the decrease
of the minimum instantaneous rates. However, the bounds of
the codes in this section decrease more slowly. This is be-
cause in the first construction, the WOM code of ri needs to
tolerate the errors from BSC(p∗(C−i)). Its error rates become
much higher than what the codes in this section needs to tol-
erate (which is BSC(p)) when C becomes large. Therefore,
the minimum instantaneous rates of the WOM codes in the
previous scheme decrease faster when t increases than those
of the codes in this section do.
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