2014 |IEEE International Symposium on Information Theory

Coding for Noisy Write-Efficient Memories

Qing Li
Computer Sci. & Eng. Dept.
Texas A & M University
College Station, TX 77843
gingli @cse.tamu.edu

Abstract—For nonvolatile memories such as flash memo-
ries and phase-change memories, endurance and reliability
are both important challenges. Write-Efficient Memory
(WEM) is an important rewriting model to solve the
endurance problem. An optimal rewriting code has been
proposed to approach the rewriting capacity of WEM.

Aiming at jointly solving the endurance and the data
reliability problem, this work focuses on a combined error
correction and rewriting code for WEM. To that end, a
new coding model, noisy WEM, is proposed here. Its noisy
rewriting capacity is explored. An efficient coding scheme is
constructed for a special case of noisy WEM. Its decoding
and rewriting operations can be done in time O(N log N),
with N as the length of the codeword, and it provides a
lower bound to the noisy WEM’s capacity.

I. INTRODUCTION

Nonvolatile memories (such as flash memories and
phase-change memories (PCM)) are becoming ubiqui-
tous nowadays. Besides the well-known endurance [8]
problem, another serious challenge is the data reliability
issue, e.g., retention error in NAND flash memories and
resistance drift in PCM.

Write-efficient memory (WEM) [1] is a coding model
that can be used to solve the endurance problem for non-
volatile memories. In WEM, codewords are partitioned
into several disjointed sets, where codewords of the same
set represent the same data. A cost constraint has to be
satisfied during the rewriting (namely, updating the data
stored in WEM).

WEM is a natural model for PCM [11], and can also
be applied to flash memory when data representation
scheme such as rank modulation [13] is used. In WEM,
there is a cost associated with changing the level of a
cell. For nonvolatile memories such as PCM, this cost is
important because cells age with programming and have
the endurance problem. An optimal code [14] has been
proposed to achieve the rewriting capacity of WEM.
However, rewriting codes combined with error correction
are still limited [9], especially for WEM [6].

In this paper, we propose a joint error correction and
rewriting scheme for WEM. While previous results are
mainly for Write-Once Memories [3], our work focuses
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on WEM. We propose a new coding model, noisy
WEM, and provide a characterization for its capacity.
We present an efficient coding scheme based on polar
codes [2] for a special case of noisy WEM. The scheme
is related to the coding schemes in [10], [3] and [9]. We
also provide a lower bound to noisy WEM’s capacity,
and experimentally verify the code construction’s per-
formance.

The rest of this paper is organized as follows. In
Section II, we introduce noisy write-efficient memory
model. In Section III, we present characterization of
noisy rewriting capacity of noisy WEM. In Section IV,
we present an efficient code construction for a special
case of binary noisy WEM, and verify its performance
experimentally. We conclude this paper in Section V.

II. No1SY WRITE-EFFICIENT MEMORY MODEL

In this section, we first introduce terms and notations
used throughout the paper, and then formally present the
definitions of noisy WEM and related parameters.

A. Terms and notations

Let X = {0,1,---,g—1} be the alphabet of a symbol
stored in a cell. (For example, for PCM, it denotes the
q levels of a cell.) Vx,y € X, let the rewriting cost of
changing a cell’s level from z to y be ¢(z,y). Given
N cells and z) ' y) ™t € AN, et p(xy Ly Y =

N-1
L3 ¢(x4,y;) be the rewriting cost of changing the N
i=0

cell levels from ) ! to y)' '

Let M € Nand D ={0,1,--- ,M —1}. We use D to
denote the M possible values of the data stored in the N
cells. Let the decoding function be D : XN — D, which
maps the IV cells’ levels to the data they represent. Let
the rewriting function be R : & N x D — XN, which
changes the IV cells’ levels to represent the new input
data. Naturally, we require D(R.(z{ ~*,4)) = i for any
)"t € XN and i € D.

Assume the sequence of data written to the
storage medium is {Mj,---,M;}, where we as-
sume M; for 1 < ¢ < t is uniformly dis-
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tributed over D, and the average rewriting cost

. = def . t 1. 1y
s D= lim § 30 e (D), DMt (),
where z)'"!(i) is the current cell states before

the " update. By assuming the stationary distri-

bution of cell levels x) L) s 7( Nh D =

S ow(z) ™ Y Dj(z7h), where Dj(x) 1) is the
jED

N-1
To

average rewriting cost of updating cell level states xév -1
to a codeword representing j € D.

Let P(X x X) be the set of joint probability distri-
butions over X x X. For a pair of random variables
(S,X) € (X,X), let Psx, Ps, Px|g denote the joint
probability distribution, the marginal distribution, and the
conditional probability distribution, respectively. FE(-)
denotes the expectation operator. If X is uniformly dis-
tributed over {0,1,---,¢— 1}, denote it by X ~ U(q).

B. Noisy WEM with an average rewriting cost constraint

We formally present the definition of noisy WEM with
an average rewriting cost constraint as follows:

Definition 1. An (N, M, g, d)qy. noisy WEM code for
the storage channel P = (X, X, Py x(y|x)) consists
of D and C = {J,cpCi, where C; € XV is the set
of codewords representing data i. We require Vi # j,
CiNC;j = 0. (Here Py x (y|x) represents the transition
probability of the noisy channel, which changes a cell’s
level from x to y.) It also consists of a rewriting function
R(s)'',i) and a decoding function D(y{ ~1). Let d €
R* be an upper bound to the average rewriting cost;
namely, we require D < d.

The noisy WEM model is illustrated in Fig. 1. Here
the N-dimensional vector s) ' € AN is the current
cell states, and the message M is the new information
to write, which is independent of sév ~1. The rewriter
uses both s ™' and M to choose a new codeword
)™t € XN, which will be programmed as the N
cells’ new states, such that the average rewriting cost
satisfies the predefined cost constraint. The codeword
a:g_l passes a noisy channel, and the noisy codeword
yo ' € AN is its output. The decoder can reliably
decode yév ~1 to recover the message M. The cell states
sév ~1 are drawn independently and identically from
the probability distribution Ps(s). The noisy channel
is memoryless, and is characterized by the transition
probabilities Py |x (y|z).

Let \; = Pr(D(y) ) # |z =t = R(s) ',i)) be
the decoding error probability given data i. Let A(N) be
I}éagc N;. Let R = % be the code rate, and we say

R is achievable if there exists a (N,2VR ¢, d)qpe code
such that A(™) — 0 as N — oco. The noisy rewriting

N-t

Sﬁ
M XN -1 N-1 ﬁ
‘ Rewriter }—ﬂ—{ Channel }i—‘ Decoder }—

Fig. 1. The noisy WEM model. M, sév_l, :pév_l, yév_l and M are s
respectively, the message, the current cell states, rewritten codeword,
the noisy channel’s output, and the estimated message.

capacity C(q,d)qve is the supremum of all achievable
rates.

The noisy WEM problem is: given the average rewrit-
ing cost constraint d, find the maximal rate R of reliable
rewriting supported by the rewriter and the decoder de-
spite the noisy channel. Let P(g,d) be {Psx € P(X x
X) : Ps = Px,E(p(S,X)) < d}. When there is no

ise, C 7d ave 18 R ad ave — H(X|S
noise, C(q,d)ave is R(q,d) ponax (X1]9)
[1].

C. Noisy WEM with a maximal rewriting cost constraint

The WEM code in definition 1 puts a constraint on
the average rewriting cost. We now define a code with
a maximal rewriting cost constraint.

Definition 2. An (N, M, q,d) noisy WEM code for
the storage channel P = (X, X, Py|x(y|x)) consists
of D and C = [J;cpCi, where C; C XN is the set
of codewords representing data i. We require Vi # j,
CiNC; = 0. It also consists of a rewriting function
R(s) ',i) and a decoding function D(y) ~'). Let
d € R* be an upper bound to the maximal rewriting
cost; namely, we require @(s) ', R(s) ~*,i)) < Nd
for any s)' "' € C and i € D.

The rate R and noisy rewriting capacity C(g,d) can
be defined similarly as before. When there is no noise,
C(Q7 d) is R(qa d) = R(q7 d)ave [1]

III. CHARACTERIZING NOISY REWRITING CAPACITY

In this section, we present the characterization of noisy
rewriting capacity of C(q, d) and C(q, d)ave, respectively.

The characterization of C(q,d) is presented below. It
is effectively the generalization of that of Gel’fand and
Pinsker [7], which considers the problem without cost
constraint. Due to the space constraint, we skip details
of its proof and present its sketch below. A complete
proof is provided in the full version of this paper [12].

The direct part proof is based on random coding
and typical sequences; the converse part is based on
techniques of Fano’s inequality [4] and Csiszar sum iden-
tity [5], and auxiliary random variables identification.

Lemma 3. For a given rewriting cost function ¢(-, ),
Clg,d)= max {I(Y;U)—1(U;S)}, where U is

Pyis:-Px|u,s
Pgx €P(q,d)

an auxiliary random variable, and U — (X,S) — Y is
a Markov chain.
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The next lemma presents us the characterization of
Cave(q,d), which is the same as C(g,d). We omit
its proof as any code for (N, M, q,d) is a code for
(N, M, q,d)qye, therefore Rqye > C(gq, d). The converse
part is the same as previous one.

Lemma 4. For a given rewriting cost function
the(‘]v d) = C(q, d) = 5 m}EDlX

v|s:Px|u,s
Pgx €P(q,d)

where U — (X, S) — Y is a Markov chain.

("')7
{(y;0)-1(U; 9)},

IV. A CODE CONSTRUCTION FOR BINARY DEGRADED
AND SYMMETRIC Noisy WEM

Let Ps(q,d) = {PSX S P(X X X) Ps =
Px,S ~ U(q),E(p(S, X)) < d} be the set
of joint probabilities with uniform marginal distri-
butions. Let symmetric rewriting capacity be defined

as R°(¢q,d) = max  H(X|S). Let Wgx be
Psx €Ps(q,d)
arg  max H(X|S). We call W = (X, X, Wx|g)

Pxs€Ps(q,d)
the WEM channel.

We say Q = (X, Z,Qz|x) is degraded with respect
to W = (X,),Wy|x) (which we denote by Q < W)
if there exists a channel P = (), Z, Py|z) such that
for all z € Z and x € &, we have Qzx(z|lr) =
> Wy x(ylz) - Pzy (2]y).
yey

In this section, we consider symmetric rewriting ca-
pacity, and present a code construction for noisy WEM
when the WEM channel W is degraded with respect to
the symmetric storage channel P. We focus on binary
cells, namely, |X| = 2. We call such WEM a binary
degraded and symmetric noisy WEM. (Note that when
the flipping rates meet Wx s > Py |x, the degradation
condition is naturally satisfied.)

A. A nested polar code construction for binary degraded
and symmetric noisy WEM with an average rewriting
cost constraint

1) A brief introduction to binary polar codes [2]:
Let W : X — ) be a binary-input discrete memoryless
(DMC) channel. Let G5™ be n-th Kronecker product of

(19). Let 20V) = 5 /Wx (0 x (oD

The polar code C (F,up) is {z)' ™! = u) G§™ -
upe € {0, 11171}, where VF C {0,1,--- ,N — 1}, up
is the subvector u; : i € F, and up € {0, 1}71.

Let W {0,1} = YN x {0,1} be
a sub-channel with WI(\,i)(y(])V Hub ) def
and

N—-1
=T NZI _HO Wy x (il (ud ~1GE™)),
u, o =

F c
1 - | i |
| B |
B F

Fig. 2. TIllustration of relationship between Fyy and F'p. The line
represents the indexes, and Fyy, and F’p are the frozen set for the
WEM channel W and the storage channel P, respectively.

2) The code construction: We focus on the code con-
struction with symmetric rewriting cost function, which
satisfies Vz,y, 2z € {0,1}, o(x,y) = ol + 2,y + 2),
where + is the XOR operation over GF(2). (Many cost
functions, such as the Hamming-distance based cost
function satisfies this constraint.)

Algorithm IV.1 A code construction for binary degraded
and symmetric noisy WEM and storage channel P

1: Let Cn(Fp,up,) be a polar code [2] designed
for the storage channel P, where Fp = {i €

{0,1,--- N =1} : Z(P¥) > 27V} and up,
is set to 0.

2: Let Cn(Fw,ur, ) be a polar code designed for
the WEM channel W, where Fyy, = {i €

{0,1,--- N =1} : ZWY) > 2=¥"} and Fp C
Fyy.

3: The (N, M,2,d)qe code is C = Cn(Fp,up,) =
{CN(Fw/F'p,UFW/FP(Z'))}, where UFW/FP(i)
the binary representation form of ¢ € {0,--- , M —

1.

The code construction is presented in Algorithm IV.1,
where we use nested polar codes (i.e., the polar code for
channel coding [2] and the polar code for WEM [14])
to design noisy WEM codes. The fact that F’)p C Fyy
follows from [10, lemma 4.7]. Fig. 2 presents us a
pictorial presentation of Fyy and Fp.

The rewriting function is presented in Algorithm IV.2.
It is very similar to that of [14] except for how to set up.

The decoding function is presented in Algorithm IV.3,
where we use the SC (Successive Cancellation) decod-
ing [2] to assure AN 5 0as N — 0.

3) Theoretical performance analysis:

a) Code analysis:

Theorem 5. For a binary degraded symmetric noisy
WEM, fix d, VR < R*(2,d)qe — H(Py|x) and any
0<p< %, there exists a sequence of nested polar codes
of length N with rates R < R so that under the above
rewriting and decoding operations, D < d + O(2~N E),
AN < O(Q_NB), and the rewriting as well as the
decoding operation complexity is O(N log N).

Proof: Let e and 0 < 8 < % be some constants.
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Algorithm IV.2 The rewriting operation ?Jo -1 =

N—-1 ;
R(xy ~,1).
1: Let vév_l = ;1:0 L 90 , where gN Vis a

common and uniformly distributed message, and +
is over GF(2).
2: Apply SC (Successive Cancellation) encoding [10]

N-1 N-1
Ty and yg .

Lemma 6. cy(Cn(F)) = lm}?n 2wt) where wt(1) is
cFe
the number of ones in (i.e., Hamming weight of) the

binary representation of [.

Proof: cu(Cn(F))

to Uo , and this results in a vector uév L = max min dH(xév ,yév 1),
4] zy T TECN(F,up(i))
U v , U that is, u; = 9 NESuE
0 Fw ) rp (1)) J vy TleCN (Fup ()
(u (1); ifjen . _ _
(v (187 € Py ~max min el -,
if j € Fp Ll el Tleon (Fup(i)
. . N-—1 .
with probability W(uo I{UON ‘fn), , ! GCN(FVH_F(])) N—1
EW( o lmY) = max min wt(zy ),
a y -1 _ N 1gen i 2T eON (Fur () +ur(5))
1% N- 1 NZ1 _ maxmm2wt(l) 1
y - yO +gO . k leFec ( )
= min2¥0,
lEF*©

Algorithm IV.3 The decoding operation up,, . (1) =

D(zy ).
gy =3 gy

1

2: Apply SC decoding to yN , and this results in

N—-1
Yo s 1€, y; =

0 if j € Fp
arg,, max P (yd =" 9N " m)  else
5 ey () = (0 CE™) My,

Fp and Py are By = {i : ZWY) > 27V},
= {i : Z(P) > 2-N"}. Based on [10, lemma

26] lim PrzoWQ) > 27N = 1 - 1(W) =
R*(2,d)qve, thus % < R?(2,d) gy +e€ for sufficiently
large N. Similarly, |F—]\’;‘ > H(Py|x) — e for sufficiently
large N.

As mentioned, Fp C Fyy, thus R = ‘FL];‘F”' <
Rs(z’ d)a'ue - H(PY\X)

Since the rewriting function is similar to that of [14],
the rewriting cost is guaranteed by [14, theorem 8], i.e
D<d+0@2 ).

The error probability A(") is guaranteed by [2, theo-
rem 4], that is \(V) < 37 Z(P](\?) <02, m

i€Fg
b) Covering radius 0]7”7 polar codes: In the follow-
ing, we present covering radius to theoretically upper
bound the maximal rewriting cost when the cost metric is
the Hamming distance between old and new cell levels.

Let the polar code ensemble be Cn(F) =
{Cn(Fyup) : up € {0,1}F1}. Let the covering
radius of Cn(F) (which we denote as cy(Cn(F)))

be max min d (@71 yy ™), where
LI e Tleon (Fup ()
vy leCn (Fup ()
N-1  N-1

du(xy ,yp ) is the Hamming distance between

where eq. (1) is based on [10, lemma 6.2], i.e., the
minimal distance of polar code Cn (F, ur) is lm}?n 2ut(l),
cFe

The above results can be generalized to the following

1—1
U Cn(F,up(i)), where
i=0
{up (i)} forms a group under tz)inary operations in GF(2).

4) Experimental performance: The experimental per-
formance is presented in Fig. 3, where the rewriting
cost function is the Hamming distance between old and
new cell states, the upper bound of C(2,d) is H(d) [1],
the storage channel P is the binary symmetric channel
with flipping rate p = 0.001, and the lower bound is
H(d) — H(p). \N) is set to be around 107°.

We can see that the rates and the average rewriting
costs approach those of points of H(d) — H(0.001) as
the length of codeword increases. Longer codewords are
needed for further approaching the lower bound.

polar codes Cn a(F) =

B. A nested polar code construction for binary degraded
and symmetric noisy WEM with a maximal rewriting cost
constraint

The code construction in Algorithm IV.1, the rewriting
function in Algorithm IV.2 and the decoding function in
Algorithm IV.3 can be applied to noisy WEM codes with
a maximal rewriting cost constraint as well.

Similar to the analysis of Theorem 5, we obtain the
following result for the theoretical performance of the
proposed code construction.

Theorem 7. For a binary degraded symmetric noisy
WEM, fix d, §, VR < R*(2,d) — H(Py|x) and any
0<p < %, there exists a sequence of nested polar
codes of length N with rates R < ‘R, so that under
the above rewriting operation and decoding operation,
the probability that the rewriting cost between a current
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polar codes for Noisy WEM

0.5 : : , : : :
uppper bound for capacity ———
0.45 | lower bound for capacity
N=512 *

0.4 t N=1024 =©o J
o N = 2048
Q 035 f N=4096 = Xy J
; N=8192
c 03 ¢ thearetical point R
£ o025 | ]
z
% 02 1
s
2 0.15 F 1
o
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rewriting rate

Fig. 3. Experimental performance for noisy WEM with an average

cost constraint for polar code with various lengths, where the x-axis
is the rewriting rate, the y-axis the average rewriting cost, and the
theoretical points are those points (R,d) (R € {0.2,0.3,---,0.9})
satisfying R = H(d) — H(0.001).

09

08

0.7

06

0.5

probability

04 ¢

03

0.2 r

01 ¢

0 1000

codeword length

Fig. 4. Experimental performance for noisy WEM with a maximal
cost constraint with d = 0.32,0.24 and 0.19, respectively, where the
x-axis is the codeword length, and y-axis is the empirical probability

Qlelyd 1z =1 > L.1a).

codeword Yy}~ and its updated codeword 2 ~* larger
than d -+ is bounded by Q(p(y) ~, /™) > d+0) <
2N’ AN < 0(2=N"), and the decoding and rewriting
operations’ complexity of the code is O(N log N).

We present our experimental results in Fig. 4. The
rewriting cost function, storage channel P, and A are
the same as those of the previous subsection. We let
0 = 0.1d, and d = 0.32, 0.24, and 0.19, respectively.
The empirical probability Q(p(y) !, 25 ) > 1.1d) is
presented in Fig. 4. As predicted by Theorem 7 it de-

2000 3000 4000 5000 6000 7000 8000 9000

creases (nearly exponentially) as the length of codeword
increases. However, even longer codewords are needed
to make the probability to be truly negligible.

V. CONCLUDING REMARKS

In this paper, we analyze the capacity for noisy WEM,
and present a code construction for binary degraded
and symmatric noisy WEM. The code construction is
both theoretically analyzed and experimentally verified.
We are interested in extending the code construction
to g-ary cells, and to more general settings regarding
channel degradation. Those remain as our future research
directions.
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