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Abstract—Endurance and security are two serious chal-
lenges for non-volatile memories such as flash memories.
Write-Efficient Memory (WEM) is an important rewriting
code model to solve the endurance problem.

Aiming at jointly solving the endurance and the security
issues in non-volatile memories, this work focuses on
rewriting code with a security constraint. To that end,
a novel coding model, secure WEM, is proposed here.
We explore its rewriting-rate-equivocation region and its
secrecy rewriting capacity in this paper.

I. INTRODUCTION

Flash memories are becoming ubiquitous due to the
advantages such as higher data density, scaling size and
non-volatility. The two most conspicuous challenges of
flash memories are its limited lifetime, i.e., the so called
endurance problem, and the difficulty of secure deletion,
i.e., the so called insecure deletion. Such characteristics
are different from traditional storage media, and posing a
threat to their further usages. In this work, we propose a
novel coding model here, secure write-efficient memory
(WEM), to address the two challenges jointly, and focus
on information theoretical results, i.e., rewriting-rate-
equivocation region and its secrecy rewriting capacity.

In the following, we present the two challenges in
detail (i.e.,endurance and insecure deletion), which mo-
tivate us to propose the secure WEM model to solve
them jointly.

A. Endurance and rewriting codes

Flash memories are significant non-volatile memory
techniques. The unit of flash memory is a cell. Each
flash chip is composed of blocks, each block consists
of pages, and each page is made up of cells. There are
three operations on flash cells, read, write/program and
erase. The granularity of read/write and erase is a page
and a block, respectively.

The first challenge in flash memories is endurance.
Endurance means flash memory can only experience a
limited number of program/erase cycles, beyond which
the cell quality degradation can no longer be accommo-
dated by the memory system fault tolerance capacity.

Rewriting code is a powerful coding technology to
solve the endurance problem from information theory
and coding theory perspective. Fig.1 presents us the
rewriting code model, where the rewriter selects a new
codeword yN−10 = (y0, y1, · · · , yN−1) based on the

Fig. 1. Rewriting code model, where M is the message to rewrite,
xN−1
0 is the current cell state, and yN−1

0 is the rewrite codeword.

message – which is M– to rewrite to the underlying
storage medium, and the current cell state of the storage
medium xN−10 = (x0, x1, · · · , xN−1) such that the pre-
defined constraint between xN−10 and yN−10 is satisfied.

Based on various constraints, different rewriting code
models such as write-once memory (WOM) codes [14]
and WEM codes [1] have been proposed, and optimal
code constructions [4], [11] have been constructed for
them, respectively. For WOM, the constraint is yi ≥ xi
for i = 0, 1, · · · , N − 1, that is the cell level can
only increase but not decrease. We repeat the definition
of WEM as follows, before which we present some
notations.

Let X be the alphabet of the symbol stored in a cell.
∀x, y ∈ X , let the rewriting cost of changing a cell’s
level from x to y be ϕ(x, y), which may be time or
energy taken. Given N cells and xN−10 , yN−10 ∈ XN ,

let ϕ(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

ϕ(xi, yi) be the rewriting

cost of changing the N cell levels from xN−10 to yN−10 .
Let D ⊆ N. We use D to denote the |D| possible

values of the data stored in the N cells. Let the decoding
function be D : XN → D, which maps the N cells’
levels to the data they represent. Let the rewriting
function be R : XN × D → XN , which changes the
N cells’ levels to represent the new input data. (Note
that the rewriting function can be either deterministic or
stochastic.)

Definition 1. [1] An (N,M,D) write-efficient memory
code consists of
• D = {0, 1, · · · ,M − 1} and

⋃M−1
i=0 Ci, where Ci ⊆

XN is the set of codewords representing data i. We
require ∀i 6= j, Ci

⋂
Cj = ∅;

• A rewriting function R(i, xN−10 ) such that
ϕ(xN−10 ,R(i, xN−10 )) ≤ D for any i ∈ D and
xN−10 ∈ XN ;

• A decoding function D(yN−10 ) such that
D(R(xN−10 , i)) = i for any i ∈ D.
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Fig. 2. An example of (3, 4, 1) WEM, where two sequences of
numbers inside a box are codewords, the number outside a box is the
data represented by the codewords inside the box, e.g., both codewords
(0, 0, 0) and (1, 1, 1) represent data (0, 0), the rewriting cost metric is
the Hamming distance, that is ϕ(0, 0) = ϕ(1, 1) = 0 and ϕ(0, 1) =
ϕ(1, 0) = 1.

That is, the constraint is for each rewrite the rewrit-
ing cost between the current cell state xN−10 and the
rewrite codeword yN−10 has to be less than a predefined
constraint. Note, another WEM model with the average
rewrite cost constraint is also present in [1]. We present
a concrete example of WEM in Fig.2.

Although WEM is a reasonable model for solving
endurance in phase-change memory [9], it is worth
noting that WEM can also be used in flash memories,
such as rank modulation [10]. On the other hand, as
pointed out by Fu et al [7], “the binary WOM and
the generalized WOM are special cases of deterministic
WEM”, for which the example presented in Fig. 2 is a
good example as it is exactly the classical WOM code
example used by Rivest et al. in [14]. Therefore, in
this work we focus on the WEM as our main tool for
rewriting codes.

B. Insecure deletion and wiretap codes
Flash memory is commonly accessed through a Flash

Translation Layer (FTL) [8], which is used in USB
sticks, solid state drives, etc. One core function of FTL
is to maintain a physical-to-logical mapping table. FTLs
access the raw flash memory directly by a Physical
Address (PA), and the PA is mapped to a Logical
Address (LA) that computer system uses to access data.
The writes on flash memory are made on out-of-place
fashion, i.e., to update data in a LA, the original LA-
PA mapping is marked as invalid, the data is written to
a free page and a new LA-PA mapping is established.
Other functions of FTL are wear leveling and garbage
collection, etc.

The second challenge in flash memories is insecure
deletion (or insecure erasure) ( [15]). Insecure deletion
is the phenomenon that FTL produces multiple copies
of data that can not be deleted completely as it is either
impossible or costly, however, a sophisticated attacker
can recover and obtain information about the data.

We illustrate insecure deletion using Fig. 3 in detail.
Let X ,Z be two alphabets of the symbol stored in
a cell. Let M be the sensitive data (personal, finance
information, etc) stored in a logical address LA0. Let

Fig. 3. Illustration of insecure deletion in flash memories

yN−10 ∈ XN be its codeword (which may not be
a rewriting codeword) initially stored in PA0. Due to
flash operations, pages are disturbed and interfered [12]
so much that the noise can not be tolerated by the
underlying error-correcting codes and other protection
mechanisms, and data is copied to PA1. (Note that
PA1 may also be the updated version of PA0 due
to data updating.) Similarly, copies of yN−10 may be
storied in PA2, · · · , PAt gradually, only one of which
is mapped to the LA0 (indicated by the valid arrow
in Fig. 3). zN−10 (0), zN−10 (1), · · · , zN−10 (t) ∈ ZN are
noisy codewords of yN−10 in PA0, · · · , PAt, respectively.
Besides noise, another reason to produce identical copies
of codewords is wear leveling and garbage collection,
that is, when a page is selected for garbage collection,
its valid data is copied to other free pages and the
mapping is reestablished. When M is deleted by cur-
rent methods such as overwriting (i.e., update LA0 to
some random number), some of zN−10 (0), · · · , zN−10 (t)
remain in raw flash memory [15] due to the out-of-
place update. Note that, it is possible to block erase
all copies of zN−10 (0), zN−10 (1), · · · , zN−10 (t), however,
such operations incur a great many of block erasures and
it is bad for flash memory endurance. Therefore, perfect
deleting data is either not possible or very costly. When
the flash is attacked by an eavesdropper, who is able to
trace any one of zN−10 (0), · · · , zN−10 (t), and is aware
of all encoding and decoding algorithms, the sensitive
information of M can be leaked. As pointed out by
Cassuto [5], “ the challenge of removing the data from
the device is both due to the imperfections of the physical
erasure processes and, at a higher level, due to address-
translation layers that may make it non-trivial to track
all traces of sensitive data for erasure ”.

Wiretap codes [16] provide unconditional information-
theoretic security under the sole assumption that the
channel from a sender to an eavesdropper is “noisier”
than the channel from a sender to a receiver. More
precisely, in the wiretap codes setting (see Fig. 4), Alice
wishes to send message M to Bob through a main
channel, but her transmissions are also accessible to
an eavesdropper Eve through another channel, wiretap
channel. That is, Alice selects a codeword yN−10 based
on the message M and random bits to send through
the main channel and the wiretap channel. wN−10 and
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Fig. 4. Wiretap codes model. M is the message to send to Bob, yN−1
0

is the encoded codeword, wN−1
0 and zN−1

0 are noisy codewords of
yN−1
0 passing through the main channel and the wiretap channel,

respectively, and M̂ is the estimate of M given by Bob.

Fig. 5. Illustration of rewriting codes with security constraint in flash
memories

zN−10 are noisy codewords of yN−10 passing through
the two channels, respectively. After receiving wN−10 ,
Bob maps it to an estimate of the original message.
The goal of wiretap channel is to design a reliabe and
secure communication scheme, that is, Bob can reliably
recover the message, while the information leaked to Eve
is negligible.

Wiretap codes have been gaining escalating practical
interest due to its two striking benefits over conven-
tional cryptography. One is no computational assump-
tion, which provides long-term security even facing with
the incoming quantum computing era, and the other is
no keys distribution, which is attractive for vulnerable
and low-power devices. Popular as wiretap code is for
secure wireless communication [13], there is barely no
research work [5] considering its application to non-
volatile memory storage.

C. Contribution of this paper
In this paper, we first propose a novel coding model

here – secure write efficient memory– which has both
properties of rewriting codes as well as wiretap channel
codes to jointly solve the endurance and the insecure
deletion problem. Fig. 5 presents us the big picture
of this setting, where the sensitive data M is encoded
using rewriting code yN−10 , noisy codewords of yN−10
are accessible to both a legal decoder, who can reliably
retrieve M , and an eavesdropper, whose knowledge
of M is negligible to satisfy the security constraint.
Rigorous definition of the codes is deferred to a later
section. To the best knowledge of authors, this is the first
work to study rewriting code with security concern under
the wiretap channel setting. To that end, in this work we

mainly explore the fundamental information theoretical
results, i.e., achievable rate region and its capacity.

II. PROBLEM DEFINITIONS AND MAIN RESULTS

In this section, we first define some notations used
throughout this paper, then formally present the secure
WEM model, and list main results of this paper.

A. Terms and Notations
Let X ,W,Z be the alphabets of the symbol stored

in a cell. Assume the sequence of data written to
the storage medium is {M1, · · · ,Mt}, where we as-
sume Mi for 1 ≤ i ≤ t is uniformly dis-
tributed over D, and the average rewriting cost is

D̄
def
= lim

t→∞
1
t

t∑
i=1

ϕ(xN−10 (i),R(Mi, x
N−1
0 (i))), where

xN−10 (i) is the current cell states before the ith update.
By assuming the stationary distribution of cell levels
xN−10 is π(xN−10 ), D̄ =

∑
xN−1
0

π(xN−10 )
∑
j∈D

D̄j(x
N−1
0 ),

where D̄j(x
N−1
0 ) is the average rewriting cost of updat-

ing cell levels xN−10 to a codeword representing j ∈ D.
(Note that the D̄j(x

N−1
0 ) may not be deterministic as

the R(·) can be stochastic.)
Let P(X × X ) be the set of joint probability distri-

butions over X × X . For a pair of random variables
(X,Y ) ∈ (X ,X ), let PXY , PX , PX|Y denote the joint
probability distribution, the marginal distribution, and the
conditional probability distribution, respectively. E(·)
denotes the expectation operator. If X is uniformly dis-
tributed over {0, 1, · · · , q − 1}, denote it by X ∼ U(q).

B. Secure WEM with a maximal rewriting cost con-
straint

The secure WEM model is illustrated in Fig. 6. Here
the N -dimensional vector xN−10 ∈ XN is the current
cell states, and the message M is the new information
to write, which is independent of xN−10 . The rewriter
uses both xN−10 and M to choose a new codeword
yN−10 ∈ XN , which will be programmed as the N
cells’ new states, such that the rewriting cost between
xN−10 and yN−10 satisfies a predefined cost constraint for
each rewrite. The codeword yN−10 passes through a noisy
main memoryless channel CH1 W = (X ,W,WW |X),
and the noisy codeword wN−10 ∈ WN is its output.
The decoder can reliably decode wN−10 to recover the
message M . The codeword yN−10 also passes through
a even noisier and memoryless wiretap channel CH2,
P = (X ,Z, PZ|Y ), Y ∈ X . (The assumption that
CH2 is more noisier than CH1 is due to the fact that
the decoding of wN−10 at a legitimate decoder always
happens prior to the deletion of wN−10 , thus zN−10 suffers
from more disturb/interference than wN−10 [12]). The
equivocation rate at the eavesdropper 1

NH(M |zN−10 )
[16], which is the uncertainty of the eavesdropper about
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Fig. 6. The secure WEM model. CH1, CH2 are the main channel and
the wiretap channel, respectively. M,xN−1

0 , yN−1
0 , zN−1

0 , wN−1
0

and M̂ are the message to rewrite, the current cell states, the rewrite
codeword, the wiretap channel’s output, the main channel’s output and
the estimated message, respectively.

the message M after observing the wiretap channel
output zN−10 , also satisfies a predefined constraint such
that at most a certain mount of information leaks.

Note that the wiretap channel P above not only
models the disturb/interference mentioned in [12], but
also models methods proposed in [15] such as scrubbing,
that is re-program the page to turn all the remaining cell
states to some specific state.

For simplicity, we assume that CH1 is noiseless, and
the leave the opposite case as the future work. For this
reason, we omit the rigorous definition of the notion
more noisier, and interested readers are referred to [3].

Definition 2. An (N, 2NR, Re, D) secure write-efficient
memory code for wiretap channel P = (X ,Z, PZ|Y ) and
the rewriting cost function ϕ(·) consists of
• A message set D = {0, 1, · · · , 2NR − 1} and its

corresponding codewords
⋃2NR−1
i=0 Ci, where Ci ⊆

XN is the set of codewords representing data i. We
require ∀i 6= j, Ci

⋂
Cj = ∅;

• A rewriting function R(M,xN−10 ) such that
– ϕ(xN−10 ,R(M,xN−10 )) ≤ D for any M ∈ D

and xN−10 ∈ XN ;
– and 1

NH(M |zN−10 ) ≥ Re − ε for any M ∈
D, zN−10 ∈ Zn and ε > 0.

• A decoding function D(yN−10 ) such that
D(R(xN−10 ,M)) = M for all M ∈ D and
xN−10 ∈ XN .

Note that in the above definition, the first requirement
of rewriting function is the same as that of WEM [1],
and the second requirement of rewriting function is
added here to consider the uncertainty of the message at
the eavesdropper, therefore (N, 2NR, Re, D) codes are
actually a subset of write-efficient memory codes [1],
and we term the code as secure WEM.

Also note that in the above the security measure is
the weak security condition. Besides it, other security
measures, such as the strong security condition [3] and
the recently proposed semantic security measure [2], also
exist, and we leave them as future work.

Fixed D, the rewriting cost function ϕ(·) and the wire-
tap channel P = (X ,Z, PZ|X), a tuple (R,Re) ∈ R2 is
said to be achievable if there exists an (N, 2NR, Re, D)
codes. When Re = R, we say it achieves full secrecy.
The set of all achievable tuples is denoted by Rswem,
rewriting-rate-equivocation region. The secrecy rewrit-
ing capacity is Cswem(D)

def
= supR{R : (R,R) ∈

Rswem}.

C. Secure WEM with an average rewriting cost con-
straint

The secure WEM code in definition 2 puts a constraint
on the maximal rewriting cost. We now define a code
with an average rewriting cost constraint.

Definition 3. An (N, 2NR, Re, D)ave secure write-
efficient memory code for wiretap channel P =
(X ,Z, PZ|Y ) and the rewriting cost function ϕ(·) con-
sists of
• A message set D = {0, 1, · · · , 2NR − 1} and its

corresponding codewords
⋃2NR−1
i=0 Ci, where Ci ⊆

XN is the set of codewords representing data i. We
require ∀i 6= j, Ci

⋂
Cj = ∅;

• A rewriting function R(M,xN−10 ) such that
– D̄ ≤ D;
– and 1

NH(M |zN−10 ) ≥ Re − ε for any M ∈
D, zN−10 ∈ ZN and ε > 0.

• A decoding function D(yN−10 ) such that
D(R(xN−10 ,M)) = M for any M ∈ D and
xN−10 ∈ XN .

That is, compared with (N, 2NR, Re, D) code, the
rewriting cost constraint for each rewrite is replaced by
the average rewriting cost constraint.

Similarly, a tuple (R,Re)ave ∈ R2 is said to be
achievable if there exists an (N, 2NR, Re, D)ave codes.
When Re = R, we say it achieves full secrecy. The
set of all achievable tuples is denoted by Rswemave , and
Cswemave (D)

def
= supR{R : (R,R)ave ∈ Rswemave }.

D. Main results of this paper

The following theorems present the main contributions
of this paper, which characterize the achievable region
for secure WEM. We defer their proofs to Section III.

1) Characterizing the achievable region for Rswem:

Theorem 4. Define R(PXY ) =

{(R,Re) :
R ≤ H(Y |X)
Re ≤ H(Y |Z)
Re ≤ R

},

where PXY ∈ P(D)
def
= {PXY : PX =

PY , E(ϕ(X,Y )) ≤ D}, the joint distribution of X,Y, Z
factorizes as PXPY |XPZ|Y , and the PZ|Y is given by
wiretap channel P = (X ,Z, PZ|Y ).
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Fig. 7. Typical shape of the achievable region in Theorem 4.

Then, the rewriting-rate-equivocation region of the
secure WEM is the convex region: Rswem =⋃
PXY
R(PXY ).

The first inequality in Theorem 4 is the same as the
rewriting rate for write-efficient memories [1, Theorem
2], which is an immediate result as secure WEM is an
especial case of WEM. The second inequality is the
mayor contribution of this paper.

The typical shape of the above achievable region
R(PXY ) is presented in Fig. 7: type one is the case
where H(Y |Z) ≤ H(Y |X) for a given PXY ∈ P(D),
and type two is the other case.

2) Characterizing the achievable region for Rswemave :

Theorem 5. The rewriting-rate-equivocation region for
secure WEM with an average rewriting cost constraint
is the same as that of secure WEM with a maximal
rewriting cost constraint, i.e., Rswemave = Rswem.

III. ACHIEVABLE REGIONS FOR SECURE WEM

In this section, we show that the regions presented in
Theorem 4 and Theorem 5 are achievable. We mainly
focus on the proof of Theorem 4 since the proof of
Theorem 5 is quite similar to that of Theorem 4. For
further simplicity, we only present details of type one
region of Fig. 7, skip the details for type two region of
Fig. 7 as it is similar to the previous one, and the sketch
can be found in the full version of this paper.

The proof for type one region is divided into the
following three steps and we present them in detail in
the following parts:
• Step 1: We use a random-coding argument

and show that the existence of a
sequence (N, 2NR, Re, D) code such that
1
NL

def
= 1

NH(M) − 1
NH(M |zN−10 ) ≤ ε for

some ε > 0 and R ≤ H(Y |Z). This shows that
the following sub-region of type one region is
achievable: R′(PXY )

def
=

{(R,Re) :
R ≤ H(Y |Z)
Re ≤ R },

where PXY ∈ P(D).

• Step 2: We show that the entire type one region in
Theorem 4 is achievable with a minor modification
of the code construction presented in step 1.

• Step 3: We show that the Rswem is convex.

A. Step 1: Achieving region R′(PXY )

1) Rewriting function being random to achieve full
secrecy: In this part, we explore one desired property of
rewriting function, i.e., it should be stochastic to achieve
full secrecy.

For convenience, we write the rewriting function as
yN−10 = R(M,xN−10 ,M1,M2) where M1 and M2 are
independent of M and xN−10 , are constant if R(·) is
deterministic, and at least one of them is a random
variable otherwise. M1 and M2 play significant roles
in deriving the rewriting-rate-equivocation region, i.e.,
whether only M1, M2, or both M1 and M2 should be
random, and how to determine their random values.

In the following, we bound L using M,M1,M2 as
follows, L

= I(M ; zN−10 ),

= I(MxN−10 M1M2; zN−10 )

− I(M1M2x
N−1
0 ; zN−10 |M),

= I(yN−10 ; zN−10 )− I(M1M2x
N−1
0 ; zN−10 M),

= I(yN−10 ; zN−10 )−H(M1M2x
N−1
0 )

+ H(M1M2x
N−1
0 |zN−10 M),

= I(yN−10 ; zN−10 )−H(M1M2)−H(xN−10 )

+ H(M1M2x
N−1
0 |zN−10 M),

= I(yN−10 ; zN−10 )− I(yN−10 ;xN−10 )−H(M1)

− H(M2)−H(xN−10 |yN−10 )

+ H(M1M2|MzN−10 ) +H(xN−10 |M1M2MzN−10 ),

= NI(Y ;Z)−NI(Y ;X)−H(M1)

− H(M2)−H(xN−10 |yN−10 )

+ H(M1M2|MzN−10 ) +H(xN−10 |M1M2MzN−10 ),

≤ NI(Y ;Z)−NI(Y ;X)−H(M1)

− H(xN−10 |yN−10 ) +H(xN−10 |M1M2MzN−10 )

+ H(M1M2|MzN−10 ),
where the third equation is due to yN−10 =
R(M,xN−10 ,M1,M2), and M1,M2 and xN−10 are inde-
pendent of M ; the last equation is due to (yN−10 , xN−10 )
is i.i.d according to PXY ∈ P(D), and the wiretap
channel is memoryless.

Therefore, if
1

N
H(M1) = I(Y ;Z)− I(X;Y ) + σ1, (1)

which implies that the rewriting function
R(M,xN−10 ,M1,M2) is random,

1

N
H(M1M2|zN−10 M) ≤ σ2, (2)
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Fig. 8. Type one enhanced secure WEM model. CH is the wiretap
channel. M,M1 are messages to rewrite, where M is the primary
message, M1 is the auxiliary message and may not carry information,
xN−1
0 is the current cell states, yN−1

0 is the rewrite codeword,
M2 is the random factor determined by f(yN−1

0 ), zN−1
0 is the

wiretap channel’s output, M̂1, M̂2 and M̂ are estimated messages
corresponding to M1, M2 and M , respectively.

and
H(xN−10 |M1M2MzN−10 )−H(xN−10 |yN−10 ) ≤ σ3 (3)

for σi ≥ 0 for i = 1, 2, 3, the full secrecy is possible.
2) Enhanced secure WEM: The achievability of the

region R′(PXY ) is obtained by designing a specific
random code construction for the following enhanced
secure WEM such that the equation (1), and inequations
(2) and (3) hold.

We define the enhanced secure WEM (as shown in
Fig. 8) as follows:

Definition 6. (N, 2NR, 2NR1 , 2NR2 , D) code for type
one enhanced secure WEM with the wiretap channel
P = (Y,Z,PY |Z) and the rewriting cost function ϕ(·)
consists of:
• A primary message set D = {0, 1, · · · , 2NR − 1},

an auxiliary message set R1 =
{0, 1, · · · , 2NR1 − 1} and a random message
set R2 = {0, 1, · · · , 2NR2 − 1};

• A stochastic rewriting function for Alice:
RA : R1 × D × XN → YN such that
ϕ(xN−10 ,RA(M1,M, xN−10 )) ≤ D for all
M ∈ D,M1 ∈ R1 and xN−10 ∈ XN ;

• An auxiliary function for Alice to determine
the random factor in RA, f : YN → R2.
And a deterministic rewriting function for Al-
ice: R′A : R1 × R2 × D × XN → YN such
that R′A(M1, f(RA(xN−10 ,M,M1)),M , xN−10 ) =
RA(xN−10 ,M,M1) for all M1 ∈ R1,M ∈ D and
xN−10 ∈ XN ;

• A decoding function for Bob: DB : YN → D such
that DB(RA(M1,M, xN−10 )) = M for all M ∈
D,M1 ∈ R1 and xN−10 ∈ XN ;

• A virtual decoding function for Charlie: DC :
ZN ×D → R1 ×R2.

That is, the original secure WEM is enhanced by 1)
splitting the message set into D and R1, and introducing

a random variable M2 ∈ R2. Note that M1 ∈ R1

is a dummy message to achieve full secrecy in this
part, and carries partial information otherwise (see the
following part). M2 does not carry any information;
2) for each stochastic rewriting codeword yN−10 =
RA(M1,M, xN−10 ), the implicit random variable M2

can be obtained by the auxiliary function f(·); 3) the
same rewriting codeword yN−10 = RA(M1,M, xN−10 )
can also be obtained by the deterministic rewriting
function R′A(M1,M2,M, xN−10 ); and 4) introducing a
virtual decoder Charlie, who accesses to zN−10 and the
message M , and is to give estimates of M1 and M2, M̂1

and M̂2.
The reliability of Charlie is measured by Pe =

Pr((M1,M2) 6= (M̂1, M̂2)).
3) Random code construction based on typical se-

quence for type one enhanced secure WEM :
• Codebook generation: Random divide T Nε (X) into

2N(R+R1) bins B(M,M1) where M ∈ D and
M1 ∈ R1. Let R2 = H(X) − R − R1, and for
each codeword in bin B(M,M1), index it by M2 ∈
{0, 1, ..., 2NR2 −1}. Abusing of notation, we index
xN−10 by B(M,M1,M2) or xN−10 (M,M1,M2).

• RA: given M,M1 and xN−10 , random choose M2

such that yN−10 = B(M,M1,M2) ∈ T NPY |X (xN−10 )
for any M2;

• f : given the rewriting codeword yN−10 =
B(M,M1,M2), output M2. R′A is to output
B(M,M1,M2) with M,M1,M2;

• DB : given yN−10 , output M such that yN−10 =
B(M,M1,M2) for any M2;

• DC : given M, zN−10 , output a unique M̂1, M̂2 such
that yN−10 = B(M,M̂1, M̂2) ∈ T NPY |Z (zN−10 ).

4) Analysis of the random code construction: Clearly,
DB satisfies the constraint DB(RA(M1,M, xN−10 )) =
M . We next consider the rewriting function.

Let us first consider the probability of rewriting fail-
ure, i.e., Pr(no yN−10 ∈ B(M,M1) such that yN−10 ∈
T NPY |X (xN−10 ))

= (1− 1

2N(R+R1)
)
|T NPY |X (xN−1

0 )|
,

= (1− 1

2N(R+R1)
)
2N(R+R1)|T NPY |X (xN−1

0 )|2−N(R+R1)

,

≤ e−(2
NH(Y |X)−N(R+R1)), (4)

where inequation (4) is based on the typical sequence
property. Therefore, if R + R1 ≤ H(Y |X), the above
probability tends to be 0 and we have a desired yN−10 .
We further know that R2 ≥ I(X;Y ) since R2 =
H(X)−R−R1.

Finally, we analyze the condition under
which the average error probability E(Pe) =
E(Pr(M1,M2) 6= (M̂1, M̂2)) = Pr((M1,M2) =
(j, k))E(Pr((M̂1, M̂2) 6= (j, k)|(M1,M2) = (j, k)))
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tends to be 0 as N → 0. If Pe → 0 holds, we know that
1
NH(M1M2|zN−10 M) ≤ σ2 based on Fano’s inequality.

By the symmetry of the code construction, the average
error probability does not depend on (M1,M2), thus
we assume (M1,M2) = (1, 1). Further, without less of
generality, we assume that M = 1.

Define the following error events: E1,1
def
=

{(yN−10 , zN−10 ) ∈ T Nε (Y Z) and yN−10 = B(1, 1, 1)},
and Fj,k

def
=

{(yN−10 , zN−10 ) ∈ T Nε (Y Z) and yN−10 ∈ B(1, j, k)}.
By the union bound, E(Pr((M̂1, M̂2) 6=
(1, 1)|(M1,M2) = (1, 1)))

≤ Pr(Ec1,1) +
⋃

(j,k)6=(1,1)

Pr(Fj,k),

≤
∑
j,k

Pr((yN−10 , zN−10 ) ∈ T Nε (Y Z)|yN−10

= B(1, j, k)) + ε′, (5)
≤ 2N(R1+R2−I(Y ;Z)+λ) + ε′, (6)

where inequation (5) and inequation (6) are based on
properties of typical sequences.

Therefore, when R1 + R2 ≤ I(Y ;Z), that is
R1 = I(Y ;Z) − I(X;Y ) + σ1, E(Pr((M̂1, M̂2) 6=
(1, 1)|(M1,M2) = (1, 1))) ≤ ε. Hence, we obtain that
R ≤ H(Y |Z) + σ. Based on Fano’s inequality [6,
lemma 7.9.1], we obtain that 1

NH(M1M2|zN−10 M) ≤
1
N + Pr((M̂1, M̂2) 6= (M1,M2))(R1 +R2) ≤ σ2.

Based on our code construction, yN−10 is
uniquely determined by M,M1,M2, therefore
H(xN−10 |MM1M2z

N−1
0 ) = H(xN−10 |yN−10 zN−10 ) ≤

H(xN−10 |yN−10 )+σ3. That is, 1
NL ≤ σ1+σ2+σ3 based

on inequation (??). Therefore, (R,R) is achievable for
R ≤ H(Y |Z).

B. Step 2: Achieving the entire type one region R(PXY )

The key idea is to modify step 1 such that we let the
dummy message M1 transmit additional information.

The code construction is modified as follows,
• DB : given yN−10 , output M and M1 such that
yN−10 = B(M,M1,M2) for any M2.

The remaining parts are the same as step 1.
The analysis of the above code construction is as

follows.
By checking the analysis for rewriting cost constraint

of step 1, we know that as long as R+R1 ≤ H(Y |X),
there exists a codeword satisfying the rewriting cost
constraint.

Next, consider the equivocation rate:
1

N
H(MM1|zN−10 ) ≥ 1

N
H(M |zN−10 ),

=
1

N
H(M)− 1

N
I(M ; zN−10 ).

With similar techniques to step 1, i.e. I(M ; zN−10 ) ≤ σ,
we can prove that 1

NH(MM1|zN−10 ) ≥ R − σ. Thus,

we obtain that (R + R1, R − σ) is achievable, where
R+R1 ≤ H(Y |X) and R ≤ H(Y |Z).

C. Step 3: Rswem is convex
We show that Rswem is convex by proving that,

for any PX1Y1 , PX2Y2 ∈ P(D), the convex hull of
R(PX1Y1

) and R(PX2Y2
) is in Rswem.

Let (R1, Re1) ∈ R(PX1Y1
) for some ran-

dom variables X1, Y1 and Z1 whose joint dis-
tribution is such that ∀(x, y, z) ∈ X × Y ×
Z , PX1Y1Z1

(x, y, z) = PX1
(x)PY1|X1

(y|x)PZ|Y (z|y).
Similarly, let (R2, Re2) ∈ R(PX2Y2) for some random
variables X2, Y2 and Z2 whose joint distribution is such
that ∀(x, y, z) ∈ X × Y × Z , PX2Y2Z2

(x, y, z) =
PX2

(x)PY2|X2
(y|x)PZ|Y (z|y).

Let

θ =

{
1 with probability λ,
2 with probability 1− λ,

thus we know that θ → Xθ → Yθ → Zθ forms a
Markov chain and the joint distribution of Xθ, Yθ and
Zθ satisfies ∀(x, y, z) ∈ X ×Y×Z , PXθYθZθ (x, y, z) =
PXθ (x)PYθ|Xθ (y|x)PZ|Y (z|y) and PXθYθ ∈ P(D). Let
X = Xθ, Y = Yθ and Z = Zθ. Then
H(Y |X) = H(Yθ|Xθ),

≥ H(Yθ|Xθ, θ),

= λH(Y1|X1) + (1− λ)H(Y2|X2),

= λR1 + (1− λ)R2, .
Similarly, we can prove that H(Y |Z) ≥ λRe1 + (1−

λ)Re2. Hence, for any λ ∈ [0, 1], there exist X,Y such
that (λR1+(1−λ)R2, λRe1+(1−λ)Re2) ∈ R(PXY ) ⊆
Rswemn, which finishes the proof.

D. Proof of the converse part
The proof for R is the same as that of [1], and for

completeness, we present it here. We first digress to
prove the following conclusion:

NR = H(yN−10 |xN−10 ). (7)
NR

= H(M), (8)
= H(M |xN−10 ), (9)
= H(MxN−10 |xN−10 ), (10)
≥ H(yN−10 |xN−10 ), (11)
≥ H(M |xN−10 ), (12)
= NR,

where
(8) follows from the assumption that M is uni-

formly distributed among D;
(9) follows from the fact that M is independent of

xN−10 ;
(11) follows from yN−10 = R(M,xN−10 ) and the

fact that function never increases entropy;
(12) follows from M = D(yN−10 ).
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Next, we proceed the proof as follows: R =

1
NH(yN−10 |xN−10 ) ≤ 1

N

N−1∑
i=0

H(yi|xi) ≤ H(Y |X).

Then, we consider the rewriting cost,

ϕ(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

ϕ(xi, yi) = E(ϕ(X,Y )) ≤

D, thus PXY ∈ P(D) = {PXY : PX =
PY , E(ϕ(X,Y )) ≤ D}, where the fact that PX = PY
follows from the assumption that stationary distribution
of xN−10 exists. Therefore, R ≤ H(Y |X) for
PXY ∈ P(D).

Let us consider Re ≤ 1
NH(M |zN−10 )

≤ 1
NH(yN−10 |zN−10 ) ≤ 1

N

N−1∑
i=0

H(yi|zi) ≤ H(Y |Z).

Meanwhile, we know that Re ≤ 1
NH(M |zN−10 ) ≤

1
NH(M) = R, where the last inequality is based on the
conclusion just obtained for H(M). Therefore, Re ≤
min{R,H(Y |Z)}.

IV. SECRECY REWRITING CAPACITY

In this section, we study secrecy rewriting capacities
by utilizing Theorem 4 and Theorem 5. We mainly
present the results for Cswem(D) as Cswemave (D) is the
same as Cswem(D) based on Theorem 5.

By specializing Theorem 4 to full secrecy, we obtain
the following result for secrecy rewriting capacity.

Corollary 7. The secrecy rewriting capacity of secure
WEM (N, 2NR, Re, D) code with wiretap channel P =
(Z,Y,PZ|Y) and the rewriting cost function ϕ(·) is:
Cswem(D) = max

PXY ∈P(D)
{min{H(Y |X), H(Y |Z)}},

where the definition of P(D) is the same as that of
Theorem 4.

Let us examine some extreme cases: when the eaves-
dropper obtains the same observation as the legitimate
decoder, clearly no confidential messages can be securely
transmitted. From the above theorem, we know that
Y = Z, then H(Y |Z) = 0, and thus Cswem(D) = 0.
On the other hand, when there is no eavesdropper, i.e.,
Z ∈ ∅, the result should be coinciding with origi-
nal WEM code [1]. From theorem 4, we know that
Cwem(D) = max

PXY ∈P(D)
H(Y |X), which is exactly the

rewriting capacity of WEM.
We define the following terms to obtain further sim-

pler results for secrecy rewriting capacity.

Definition 8. The WEM is more capable than wiretap
channel P = (Z,Y, PZ|Y) if I(X;Y ) ≥ I(Y ;Z)
for every PXY ∈ P(D); The WEM is less capable
than wiretap channel P = (Z,Y,PZ|Y) if I(X;Y ) ≤
I(Y ;Z) for every PXY ∈ P(D).

With the above notations, we have the following
results for secrecy rewriting capacity.

Corollary 9. The secrecy rewriting capacity Cswem(D)
is maxPXY ∈P(D)H(Y |X) if WEM is less capable than
wiretap channel P, (which is effectively the rewriting
capacity of write-efficient memory [1, Theorem 2]) and
H(Y |Z) for PXY ∈ P(D) if WEM is more capable
than wiretap channel.
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