
Joint Rewriting and Error Correction in
Flash Memories

Anxiao (Andrew) Jiang†, Yue Li†, Eyal En Gad∗, Michael Langberg∗‡, and Jehoshua Bruck∗
†Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
∗Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

‡Department of Mathematics and Computer Science, The Open University of Israel, Raanana 43107, Israel
†{ajiang, yli}@cse.tamu.edu ∗{eengad, mikel, bruck}@caltech.edu

Abstract—The current NAND flash architecture requires block
erasure to be triggered in order to decrease the level of a single
cell inside a block. Block erasures degrade the quality of cells
as well as the performance of flash memories. One solution is to
model flash memories as write-once memories (WOM) where the
level of a cell can only be increased. Various coding schemes for
WOM can then be applied so that a block of cells can be rewritten
multiple times without triggering a block erasure. Yet, due to the
high storage density of flash memories, programming and reading
memory cells bring nontrivial disturbance and interference,
which introduce errors to the data. Therefore, both rewriting
and error correction are important technologies for keeping flash
memories efficient and reliable. However, coding schemes that
combine them have been limited. This paper presents a new
coding scheme that combines rewriting and error correction for
the write-once memory model. Its construction is based on polar
codes, and it supports any number of rewrites and corrects
a substantial number of errors. The code is analyzed for the
binary symmetric channel, and experimental results verify its
performance. The results can be extended to multi-level cells
and more general noise models.

I. INTRODUCTION

The current NAND flash architecture requires block erasure
to be triggered in order to decrease the level of a cell inside
a block. Block erasures degrade the quality of cells as well
as the performance of flash memories. Coding for rewriting
is an important technology for mitigating such issues in flash
memories. It has the potential to substantially increase their
longevity, speed and power efficiency. Since its proposition
in recent years [2], [7], lots of works have appeared in this
area [14], [15], [16], [17]. The most basic model for rewriting
is a write-once memory (WOM) model [10], where a set of
binary cells are used to store data, and the cell levels can only
increase when the data are rewritten. For flash memories, this
constraint implies that the rewriting operation will delay the
expensive block erasure, which leads to better preservation of
cell quality and higher writing performance.

There have been many techniques for the design of WOM
codes. They include linear code, tabular code, codes based on
projective geometry, coset coding, etc. [4], [9], [10] Codes
with substantially higher rates were discovered in recent
years [14], [16]. In 2012, WOM codes that achieve capacity
were discovered by Shpilka et al. [11], [12], [18] and Burshtein
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et al. [3]. The latter code used a very interesting construction
based on polar coding. It should be noted that polar coding
is now also used to construct rewriting codes for the rank
modulation scheme [5].

Compared to the large amount of work on WOM codes, the
work on WOM codes that also correct errors has been much
more limited. Existing works are mainly on correcting a few
errors (for example, 1, 2, or 3 errors [19], [20]). However, for
rewriting to be widely used in flash memories, it is important
to design WOM codes that can correct a substantial number
of errors.

In this paper, we present a new coding scheme that com-
bines rewriting with error correction. It supports any number
of rewrites and can correct a substantial number of errors. The
code construction uses polar coding. Our analytical technique
is based on the frozen sets corresponding to the WOM channel
and the error channel, respectively, including their common
degrading and common upgrading channels. We present lower
bounds to the sum-rate achieved by our code. The actual
sum-rates are further computed for various parameters. The
analysis focuses on the binary symmetric channel (BSC). An
interesting observation is that in practice, for relatively small
error probabilities, the frozen set for BSC is often contained in
the frozen set for the WOM channel, which enables our code
to have a nested structure. The code can be further extended
to multi-level cells (MLC) and more general noise models.

The rest of the paper is organized as follows. In Section II,
we present the basic model and notations. In Section III, we
present the code construction. In Section IV, we analyze the
code for BSC. In Section V, we discuss the code’s extensions.
In Section VI, we experimentally analyze the actual sum-
rates achieved by our code. In Section VII, we present the
concluding remarks.

II. BASIC MODEL

Let there be N = 2m cells that are used to store data. Every
cell has two levels: 0 and 1. It can change only from level 0
to level 1, but not vice versa. That is called a WOM cell [10].

A sequence of t messages M1, M2, · · · , Mt will be written
into the WOM cells, and when Mi is written, we do not need to
remember the value of the previous messages. (LetMj denote
the number of bits in the message Mj, and let Mj ∈ {0, 1}Mj .)



For simplicity, we assume the cells are all at level 0 before
the first write happens.

After cells are programmed, noise will appear in the cell
levels. For now, we consider noise to be a BSC with error
probability p, denoted by BSC(p). These errors are hard
errors, namely, they physically change the cell levels from
0 to 1 or from 1 to 0. For flash memories, such errors can be
caused by read/write disturbs, interference and charge leakage,
and are quite common.

A. The model for rewriting

A code for rewriting and error correction consists of t
encoding functions E1, E2, · · · , Et and t decoding functions
D1, D2, · · · , Dt. For i = 1, 2, · · · , N and j = 1, 2, · · · , t,
let si,j ∈ {0, 1} and s′i,j ∈ {0, 1} denote the level of the i-
th cell right before and after the j-th write, respectively. We
require s′i,j ≥ si,j. Let ci,j ∈ {0, 1} denote the level of the i-th
cell at any time after the j-th write and before the (j + 1)-
th write, when reading of the message Mj can happen. The
error ci,j ⊕ s′i,j ∈ {0, 1} is the error in the i-th cell caused by
the noise channel BSC(p). (Here ⊕ is an XOR function.) For
j = 1, 2, · · · , t, the encoding function

Ej : {0, 1}N × {0, 1}Mj → {0, 1}N

changes the cell levels from sj = (s1,j, s2,j, · · · , sN,j) to
s′j = (s′1,j, s′2,j, · · · , s′N,j) given the initial cell state sj and
the message to store Mj. (Namely, Ej(sj, Mj) = s′j.) When
the reading of Mj happens, the decoding function

Dj : {0, 1}N → {0, 1}Mj

recovers the message Mj given the noisy cell state cj =
(c1,j, c2,j, · · · , cN,j). (Namely, Dj(cj) = Mj.)

For j = 1, · · · , t, Rj =
Mj
N is called the rate of the j-

th write. Rsum = ∑t
j=1 Rj is called the sum-rate of the code.

When there is no noise, the maximum sum-rate of WOM code
is known to be log2(t + 1); however, for noisy WOM, the
maximum sum-rate is still largely unknown [6].

B. Polar codes

We give a short introduction to polar codes due to its
relevance to our code construction. A polar code is a linear
block error correcting code proposed by Arıkan [1]. It is the
first known code with an explicit construction that provably
achieves the channel capacity of symmetric binary-input dis-
crete memoryless channels (B-DMC). The encoder of a polar
code transforms N input bits u = (u1, u2, · · · , uN) to N
codeword bits x = (x1, x2, · · · , xN) through a linear trans-

formation. (In [1], x = uG⊗m
2 where G2 =

(
1 0
1 1

)
, and

G⊗m
2 is the m-th Kronecker product of G2.) The N codeword

bits (x1, x2, · · · , xN) are transmitted through N independent
copies of a B-DMC. For decoding, N transformed binary
input channels {W(1)

N , W(2)
N , · · · , W(N)

N } can be synthesized
for u1, u2, · · · , uN , respectively. The channels are polarized
such that for large N, the fraction of indices i for which

I(W(i)
N ) is nearly 1 approaches the capacity of the B-DMC [1],

while the values of I(W(i)
N ) for the remaining indices i are

nearly 0. The latter set of indices are called the frozen set.
For error correction, the ui’s with i in the frozen set take
fixed values, and the other ui’s are used as information bits.
A successive cancellation (SC) decoding algorithm achieves
diminishing block error probability as N increases.

Polar code can also be used for optimal lossy source
coding [8], which has various applications. In particular, in [3],
the idea was used to build capacity achieving WOM codes.

Our code analysis uses the concept of upgrading and de-
grading channels, defined based on frozen sets. As in [13],
a channel W ′ : X → Z is called "degraded with respect to
a channel W : X → Y” if an equivalent channel of W ′ can
be constructed by concatenating W with an additional channel
Q : Y → Z, where the inputs of Q are linked with the outputs
of W. That is,

W ′(z|x) = ∑
y∈Y

W(y|x)Q(z|y)

We denote it by W ′ � W. Equivalently, the channel W is
called “an upgrade with respect to W ′”, denoted by W �W ′.

III. CODE CONSTRUCTION

In this section, we introduce our code construction that
combines rewriting with error correction.

A. Basic code construction with a nested structure

1) Basic concepts: First, let us consider a single rewrite
step (namely, one of the t writes). Let s = (s1, s2, · · · , sN) ∈
{0, 1}N and s′ = (s′1, s′2, · · · , s′N) ∈ {0, 1}N denote the cell
levels right before and after this rewrite, respectively. Let g =
(g1, g2, · · · , gn) be a pseudo-random bit sequence with i.i.d.
bits that are uniformly distributed. The value of g is known
to both the encoder and the decoder, and g is called a dither.

For i = 1, 2, · · · , N, let vi = si ⊕ gi ∈ {0, 1} and v′i =
s′i ⊕ gi ∈ {0, 1} be the value of the i-th cell before and after
the rewrite, respectively. As in [3], we build the WOM channel
in Figure 1 for this rewrite, denoted by WOM(α, ε). Here

0

1

(1, 0)

(1, 1)

(0, 0)

(0, 1)

1� ↵

1� ↵

↵(1� ✏)

↵(1� ✏)

↵✏

↵✏
v0 (s, v)

Fig. 1. The WOM channel WOM(α, ε).

α ∈ [0, 1] and ε ∈ [0, 1
2 ] are given parameters, with α =

1−∑N
i=1

si
N representing the fraction of cells at level 0 before



the rewrite, and ε =
∑N

i=1 s′i−si

N−∑N
i=1 si

representing the fraction of
cells that are changed from level 0 to level 1 by the rewrite.
Let FWOM(α,ε) ⊆ {1, 2, · · · , N} be the frozen set of the polar
code corresponding to this channel WOM(α, ε). It is known

that limN→∞
|FWOM(α,ε) |

N = α H(ε). [3]
For the noise channel BSC(p), let FBSC(p) ⊆ {1, 2, · · · , N}

be the frozen set of the polar code corresponding to the channel
BSC(p). It is known that limN→∞

|FBSC(p) |
|N| = H(p).

In this subsection, we assume FBSC(p) ⊆ FWOM(α,ε). It is
as illustrated in Figure 2(a). In this case, the code has a nice
nested structure: for any message M ∈ {0, 1}M, the set of
cell values VM ⊆ {0, 1}N that represent the message M is
a linear subspace of a linear error correcting code (ECC) for
the noise channel BSC(p), and {VM|M ∈ {0, 1}M} form a
partition of the ECC. Later we will extend the code to general
cases.

FWOM(↵,✏)

FBSC(p)

stored message all 0s

{1, 2, · · · , N}

(a)

{1, 2, · · · , N}
FWOM(↵,✏)

FBSC(p)

stored message all 0s

stored in additional cells

(b)

Fig. 2. (a) Nested code for FBSC(p) ⊆ FWOM(α,ε). (b) General code.

2) The encoder: Let E : {0, 1}N × {0, 1}M → {0, 1}N

be the encoder for this rewrite. Namely, given the current cell
state s and the message to write M ∈ {0, 1}M, the encoder
needs to find a new cell state s′ = E(s, M) that represents M
and is above s (that is, cell levels only increase).

The encoding process is similar to [3], but with some differ-
ence in how to assign bits to FWOM(α,ε). For convenience of
presentation, here we assume the polar code to be the original
code designed by Arıkan [1]; however, note that it can be gen-
eralized to other polar codes as well. We present the encoding
function in Algorithm 1. Here y and u are two vectors of
length N; uFWOM(α,ε)−FBSC(p)

, {ui|i ∈ FWOM(α,ε) − FBSC(p)}
are all the bits ui in the frozen set FWOM(α,ε) but not FBSC(p);
uFBSC(p)

, {ui|i ∈ FBSC(p)} are all the bits ui in FBSC(p); and

G⊗m
2 is the m-th Kronecker product of G2 =

(
1 0
1 1

)
.

3) The decoder: We now present the decoder D :
{0, 1}N → {0, 1}M. Let c = (c1, c2, · · · , cN) ∈ {0, 1}N

be the noisy cell levels after the message is written. Given c,
the decoder should recover the message as D(c) = M.

Our decoder works essentially the same way as a polar error
correcting code. We present it as Algorithm 2.

By [1], it is easy to see that both the encoding and the
decoding algorithms have time complexity O(N log N).

4) Nested code for t writes: In the above, we have pre-
sented the encoder and the decoder for one rewrite. It can be

Algorithm 1 The encoding function s′ = E(s, M)

y← ((s1, v1), (s2, v2), · · · , (sN , vN)) .
Let uFWOM(α,ε)−FBSC(p)

← M.
Let uFBSC(p)

← (0, 0, · · · , 0).
for i from 1 to N do

if i /∈ FWOM(α,ε) then

L(i)
N (y, (u1, u2, · · · , ui−1))← W(i)

N (y,(u1,u2,··· ,ui−1)|ui=0)

W(i)
N (y,(u1,u2,··· ,ui−1)|ui=1)

.

(Comment: Here W(i)
N (y, (u1, u2, · · · , ui−1)|ui = 0)

and W(i)
N (y, (u1, u2, · · · , ui−1)|ui = 1) can be com-

puted recursively using formulae (22), (23) in [1]).

Let ui ←


0 with probability L(i)

N

1+L(i)
N

1 with probability 1
1+L(i)

N

.

Let v′ ← uG⊗m
2 .

Let s′ ← v′ ⊕ g.

Algorithm 2 The decoding function M̂ = D(c)
View c⊕ g as a noisy codeword, which is the output of a
binary symmetric channel BSC(p). Decode c⊕ g using the
decoding algorithm of the polar error-correcting code [1],
where the bits in the frozen set FBSC(p) are set to 0s. Let
v̂ = (v̂1, v̂2, · · · , v̂N) be the recovered codeword.
Let M̂←

(
v̂(G⊗m

2 )−1)
FWOM(α,ε)−FBSC(p)

, which denotes the

elements of the vector v̂(G⊗m
2 )−1 whose indices are in the

set FWOM(α,ε) − FBSC(p).

naturally applied to a t-write error correcting WOM code as
follows. For j = 1, 2, · · · , t, for the j-th write, replace α, ε,
s, s′, v, v′, M, M, E, D, c, M̂, v̂ by αj−1, εj, sj, s′j, vj, v′j,
Mj,Mj, Ej, Dj, cj, M̂j, v̂j, respectively, and apply the above
encoder and decoder.

Note that when N → ∞, the values of α1, α2, · · · , αt−1
can be computed using ε1, ε2, · · · , εt−1: for BSC(p), αj =
αj−1(1− εj)(1− p) + (1− αj−1(1− εj))p. Optimizing the
code means to choose optimal values for ε1, ε2, · · · , εt that
maximize the sum-rate.

B. Extended code construction

We have introduced the code for the case FBSC(p) ⊆
FWOM(α,ε) so far. Our experiments show that for relatively
small p and typical values of (α0, ε1), (α1, ε2), · · · , (αt−1, εt),
the above condition holds. We now consider the general case
where FBSC(p) is not necessarily a subset of FWOM(α,ε).

We first revise the encoder in Algorithm 1 as follows.
After all the steps in the algorithm, we store the bits in
uFBSC(p)−FWOM(α,ε)

using Nadditional,j cells (for the j-th write).
(It is illustrated in Figure 2(b).) In this paper, for sim-
plicity, we assume the bits in uFBSC(p)−FWOM(α,ε)

are stored
using just an error correcting code designed for the noise
channel BSC(p). (It will not be hard to see that we can
also store it using an error-correcting WOM code, such



as the one presented above, for higher rates. However, we
skip the details for simplicity.) Therefore, we can have
limN→∞

Nadditional,j
|FBSC(p)−FWOM(αj−1,εj)

| = 1
1−H(p) . And the sum-rate

becomes Rsum =
∑t

j=1Mj

N+∑t
j=1 Nadditional,j

.

We now revise the decoder in Algorithm 2 as follows.
First recover the bits in uFBSC(p)−FWOM(α,ε)

using the decoding
algorithm of the ECC for the Nadditional,j additional cells.
Then carry out all the steps in Algorithm 2, except that the
bits in FBSC(p) − FWOM(α,ε) are known to the decoder as the
above recovered values instead of 0s.

IV. CODE ANALYSIS FOR BSC
In this section, we prove the correctness of the above code

construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,ε) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,ε) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,ε) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,ε), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,ε) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and ε (instead of αj−1, εj).

Lemma 1. When H(p) ≤ α H(ε), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,ε) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(ε) =

limN→∞
|FWOM(α,ε) |

N .

Lemma 2. When p ≤ αε,

FWOM(α, p
α )
⊆
(

FBSC(p) ∩ FWOM(α,ε)

)
,

and (
FWOM(α,ε) ∪ FBSC(p)

)
⊆ FBSC(αε).
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Fig. 3. Degrading the channel WOM(α, ε∗) to BSC(αε∗). The two channels
on the left and on the right are equivalent.
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The two channels on the left and on the right are equivalent.

Proof: (1) In Figure 3, by setting ε∗ = p
α , we see that

BSC(p) �WOM(α, p
α ). Therefore FWOM(α, p

α )
⊆ FBSC(p).

(2) In Figure 4, we can see that WOM(α, ε) �
WOM(α, p

α ). Therefore, FWOM(α, p
α )
⊆ FWOM(α,ε).

(3) In Figure 3, by setting ε∗ = ε, we see that BSC(αε) �
WOM(α, ε). Therefore FWOM(α,ε) ⊆ FBSC(αε).

(4) Since p ≤ αε, clearly BSC(αε) � BSC(p). Therefore
FBSC(p) ⊆ FBSC(αε).

We illustrate the meaning of Lemma 2 in Figure 5.

{1, 2, · · · , N}

FWOM(↵,✏)

FBSC(↵✏)

FBSC(p)

FWOM(↵, p
↵ )

Fig. 5. The frozen sets for channels BSC(p), WOM(α, ε), WOM(α, p
α )

and BSC(αε). Here p ≤ αε.

Lemma 3. When p ≤ αε, limN→∞
|FWOM(α,ε)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α )
|

N = α H( p
α ).

Lemma 4. When p ≤ αε, limN→∞
|FWOM(α,ε)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,ε) |+|FBSC(p) |−|FBSC(αε) |
N = α H(ε) + H(p) −

H(αε).



Proof: |FWOM(α,ε) ∩ FBSC(p)| = |FWOM(α,ε)| +
|FBSC(p)| − |FWOM(α,ε) ∪ FBSC(p)| ≥ |FWOM(α,ε)| +
|FBSC(p)| − |FBSC(αε)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj ,
|FWOM(αj−1,εj)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite
is

Mj =|FWOM(αj−1,εj)
| − |FWOM(αj−1,εj)

∩ FBSC(p)|
=Nαj−1 H(εj)− xj|FBSC(p)|
=N(αj−1 H(εj)− xj H(p))

and the number of additional cells we use to store the bits in
FBSC(p) − FWOM(αj−1,εj)

is

Nadditional,j =
N H(p)(1− xj)

1−H(p)

Therefore, the sum-rate is Rsum ,
∑t

j=1Mj

N+∑t
j=1 Nadditional,j

=
∑t

j=1 αj−1 H(εj)−H(p)∑t
j=1 xj

1 + H(p)
1−H(p) ∑t

j=1(1− xj)

=
(1−H(p))∑t

j=1 αj−1 H(εj)−H(p)(1−H(p))∑t
j=1 xj

(1−H(p) + H(p)t)−H(p)∑t
j=1 xj

=(1−H(p)) ·
1

H(p) ∑t
j=1 αj−1 H(εj)−∑t

j=1 xj

1−H(p)+H(p)t
H(p) −∑t

j=1 xj

.

Let γj , max

{
αj−1 H(

p
αj−1

)

H(p) ,
αj−1 H(εj)+H(p)−H(αj−1εj)

H(p)

}
.

Lemma 5. Let 0 < p ≤ αj−1εj. Then xj ≥ γj.

Proof: By Lemma 3, we have

xj =
|FWOM(αj−1,εj)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1, p

αj−1
)|

|FBSC(p)|
=

αj−1 H( p
αj−1

)

H(p)
.

By Lemma 4, we also have

xj =
|FWOM(αj−1,εj)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1,εj)

|+ |FBSC(p)| − |FBSC(αj−1εj)
|

|FBSC(p)|

=
αj−1 H(εj) + H(p)−H(αj−1εj)

H(p)
.
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Fig. 6. Lower bound to achievable sum-rates for different error probability
p.

Theorem 6 Let 0 < p ≤ αj−1εj for j = 1, 2, · · · , t. If
∑t

j=1 αj−1 H(εj) ≥ 1 − H(p) + H(p)t, then the sum-rate
Rsum is lower bounded by

(1−H(p))
∑t

j=1
(
αj−1 H(εj)−H(p)γj

)
1−H(p) + H(p)t−H(p)∑t

j=1 γj
.

If ∑t
j=1 αj−1 H(εj) < 1 − H(p) + H(p)t, and H(p) ≤

αj−1 H(εj) for j = 1, 2, · · · , t, then Rsum is lower bounded
by (

t

∑
j=1

αj−1 H(εj)

)
−H(p)t.

Proof: If ∑t
j=1 αj−1 H(εj) ≥ 1 − H(p) + H(p)t, the

sum-rate is minimized when xj (j = 1, 2, · · · , t) takes the
minimum value, and we have xj ≥ γj. Otherwise, the sum-
rate is minimized when xj takes the maximum value 1.

We show some numerical results of the lower bound to sum-
rate Rsum in Figure 6, where we let εi =

1
2+t−i . The curve

for p = 0 is the optimal sum-rate for noiseless WOM code.
The other four curves are the lower bounds for noisy WOM
with p = 0.001, p = 0.005, p = 0.010 and p = 0.016,
respectively, given by Theorem 6. Note that it is possible to
further increase the lower bound values by optimizing εi. We
also show in Figure 7 the lower bound to sum-rate when each
step writes the same number of bits.

V. EXTENSIONS

We now consider more general noise models. For simplicity,
we discuss it for an erasure channel. But it can be easily
extended to other noise models. Let the noise be a BEC with
erasure probability p, denoted by BEC(p). After a rewrite,
noise appears in some cell levels (both level 0 and level 1)
and changes them to erasures. An erasure represents a noisy
cell level between 0 and 1. We handle erasures this way: before
a rewrite, we first increase all the erased cell levels to 1, and
then perform rewriting as before.
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Fig. 7. Lower bound to achievable sum-rates for different error probability
p. Here each rewriting step writes the same number of bits.

Note that although the noise for cell levels is BEC(p),
when rewriting happens, the equivalent noise channel for the
cell value v = s ⊕ g is a BSC( p

2 ), because all the erased
cell levels have been pushed to level 1, and dither has a
uniform distribution. Therefore, the code construction and its
performance analysis can be carried out the same way as
before, except that we replace p by p

2 .
The code can also be extended to multi-level cells (MLC),

by using q-ary polar codes. We skip the details for simplicity.

VI. EXPERIMENTAL RESULTS

In this section, we study the achievable rates of our error
correcting WOM code, using polar codes of finite lengths. In
the following, we assume the noise channel is BSC(p), and
search for good parameters ε1, ε2, · · · , εt that achieve high
sum-rate for rewriting. We also study when the code can have
a nested structure, which simplifies the code construction.

A. Finding BSCs satisfying FBSC(p) ⊆ FWOM(α,ε)

The first question we endeavor to answer is when BSC(p)
satisfies the condition FBSC(p) ⊆ FWOM(α,ε), which leads to
an elegant nested code structure. We search for the answer
experimentally. Let N = 8192. Let the polar codes be
constructed using the method in [13]. To obtain the frozen sets,
we let |FWOM(α,ε)| = N(α H(ε)− ∆R), where ∆R = 0.025
is a rate loss we considered for the polar code of the WOM
channel [3]; and let FBSC(p) be chosen with the target block
error rate 10−5.

The results are shown in Figure 8. The four curves corre-
spond to α = 0.4, 0.6, 0.8, and 1.0, respectively. The x-axis
is ε, and the y-axis is the maximum value of p we found that
satisfies FBSC(p) ⊆ FWOM(α,ε). Clearly, the maximum value
of p increases with both α and ε. And it has nontrivial values
(namely, it is comparable to or higher than the typical error
probabilities in memories).
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Fig. 8. The maximum value of p found for which FBSC(p) ⊆ FWOM(α,ε).

B. Achievable sum-rates for nested code

We search for the achievable sum-rates of codes with
a nested structure, namely, when the condition FBSC(p) ⊆
FWOM(αj−1,εj)

is satisfied for all j = 1, 2, · · · , t. Given p, we
search for ε1, ε2, · · · , εt that maximize the sum-rate Rsum.

We show the results for t-write error-correcting WOM
codes—for t = 2, 3, 4, 5—in Figure 9. (In the experiments,
we let N = 8192, ∆R = 0.025, and the target block error rate
be 10−5.) The x-axis is p, and the y-axis is the maximum sum-
rate found in our algorithmic search. We see that the achievable
sum-rate increases with the number of rewrites t.
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Fig. 9. Sum-rates for different t obtained in experimental search using code
length N = 8192, when FBSC(p) ⊆ FWOM(α,ε).

C. Achievable sum-rates for general code

We now search for the achievable sum-rates of the gen-
eral code, when FBSC(p) is not necessarily a subset of
FWOM(αj−1,εj)

. When p is given, the general code can search
a larger solution space for ε1, ε2, · · · , εt than the nested-code
case, and therefore achieve higher sum-rates. However, for



relatively small p (e.g. p < 0.016), the gain in rate obtained
in the experiments is quite small. This means the nested
code is already performing well for this parameter range. For
simplicity, we skip the details.

Note that the lower bound to sum-rate Rsum in Figure 6
is actually higher than the rates we have found through
experiments by now. This is because the lower bound is for
N → ∞, while the codes in our experiments are still short so
far and consider the rate loss ∆R. Better rates can be expected
as we increase the code length and further improve our search
algorithm due to the results indicated by the lower bound.

VII. CONCLUDING REMARKS

This paper presents a new code construction for error-
correcting WOM codes. It supports any number of rewrites and
can correct a substantial number of errors. The construction is
based on polar coding, and the results show that they achieve
nice performance for both rewriting and error correction.

There are still a number of problems to be studied. For
example, a stronger theoretical understanding is needed as to
when the frozen set of one channel is contained in that of
another channel. More generally, it is interesting to know how
large the intersection of two frozen sets is. Those remain as
our future research directions.
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