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Abstract—Write-efficient memories (WEM) [1] were in-
troduced by Ahswede and Zhang as a model for storing
and updating information on a rewritable medium with
constraints. A coding scheme for WEM using recently
proposed polar codes is presented. The coding scheme
achieves rewriting capacity, and the rewriting and decoding
operation can be done in time O(N logN), where N is the
length of the codeword.

I. INTRODUCTION

Write-efficient memories (WEM) are models for stor-
ing and updating information on a rewritable medium
with constraints. WEM is widely used in data stor-
age area: in flash memories, write-once memories
(WOM) [11], and the recently proposed compressed rank
modulation (CRM) [9] are examples of WEM; codes
based on WEM were proposed for phase change memo-
ries [8]. The recently proposed scheme, that polar codes
are constructed for WOM codes achieving capacity [3],
motivates us to construct codes for WEM.

A. WEM with a maximal rewriting cost constraint

Let X = {0, 1, ..., q − 1} be the storage alpha-
bet. R+ = [0,+∞), and ϕ : X × X → R+ is
the rewriting cost function. Suppose that a memory
consists of N cells. Given one cell state, xN−10

def
=

(x0, x1, ..., xN−1) ∈ XN , and another cell state, yN−10 ∈
XN , the rewriting cost of changing xN−10 to yN−10 is

ϕ(xN−10 , yN−10 ) =
N−1∑
i=0

ϕ(xi, yi).

Let M ∈ N, and D = {0, 1, ...,M − 1}. Define the
decoding function, D : XN → D, i.e., D(xN−10 ) = i.
Given the current cell state xN−10 , and data to rewrite, j,
the rewriting function is defined as R : XN ×D → XN
such that D(R(xN−10 , j)) = j.

Definition 1. [5] An (N,M, q, d) WEM code is a
collection of subsets, C = {Ci : i ∈ D}, where Ci ⊆ XN ,
and ∀xN−10 ∈ Ci D(xN−10 ) = i, such that
• ∀i 6= j, Ci

⋂
Cj = ∅.

• ∀j, ∀xN−10 ∈ C, ∃yN−10 = R(xN−10 , j) such that
ϕ(xN−10 , yN−10 ) ≤ Nd.

The rewriting rate of an (N,M, q, d) WEM code
is R = log2M

N , and the rewriting capacity function,
R(q, d), is the largest d-admissible rate when N →∞.

Let P(X × X ) be the set of joint probability distri-
butions over X × X . For a pair of random variables
(X,Y ) ∈ (X ,X ), let PXY denote the joint probability
distribution, PY denotes the marginal distribution, and
PY |X denotes the conditional probability distribution.
E(·) denotes the expectation operator. If X is uniformly
distributed over {0, 1, ..., q−1}, denote it as X ∼ U(q).

Let P(q, d) = {PXY ∈ P(X × X ) : PX =
PY , E(ϕ(X,Y )) ≤ d}. R(q, d) is determined as [5]:
R(q, d) = max

PXY ∈P(q,d)
H(Y |X).

For WOM codes, the cell state can only increase but
not decrease. WOM codes are special cases of WEM
codes: for a WOM cell if we update it from x ∈ X to
y ∈ X , the cost is measured by ϕ(x, y) = 0 if y ≥ x, and
∞ otherwise. Therefore, WOM codes are such WEM
codes with ϕ(·) defined previously, and d is equal to 0.

In this paper, we focus on symmetric rewriting capac-
ity function Rs(q, d):

Definition 2. For X,Y ∈ X with PX , PY and PXY , and
ϕ : X × X → R+, Rs(q, d) = max

PXY ∈Ps(q,d)
H(Y |X),

where Ps(q, d)
def
= {PXY ∈ P(X × X ) : PX =

PY , X ∼ U(q), E(ϕ(X,Y )) ≤ d}.

We present an example of WEM with Rs(q, d) below.
Sq,m is the set of (mq)!

m!q permutations over

{
m︷ ︸︸ ︷

1, 1, ..., 1, ...,

m︷ ︸︸ ︷
q, q, ..., q}. We abuse the notation of

uqm−10

def
= [u0, u1, ..., uqm−1] to denote an element of

Sq,m, which denotes the mapping i→ ui.

Example 3. A rewriting code for CRM with a maximal
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rewriting cost constraint, (q,m,M, d), is defined by
replacing XN by Sq,m, ϕ(·) by Chebyshev distance
between uqm−10 , vqm−10 ∈ Sq,m, d∞(uqm−10 , vqm−10 )

def
=

max
j∈{0,1,...,qm−1}

|uj − vj | , and Nd by d in definition 1.

The above rewriting code is actually an instance of
WEM: for x, y ∈ X , let ϕ(x, y) = 0 if |x − y| ≤ d,
and ∞ otherwise. Now the (q,m,M, d) CRM is an
(qm,M, q, 0) WEM with XN replaced by Sq,m, and
ϕ(·) is defined previously.

B. WEM with an average rewriting cost constraint

With deterministic D(xN−10 ) and R(xN−10 , i), sup-
pose that message sequences M1,M2, ...,Mt (t → ∞)
are written into the memory medium, where Mi ∈ D
is uniformly distributed, represented by xN−10 (i), and it
forms a markov chain. Its transition probability matrix
µ(yN−10 |xN−10 )yN−1

0 ,xN−1
0 ∈XN is given by

µ(yN−10 |xN−10 ) =

{
1
M if ∃i s.t.yN−10 = R(xN−10 , i),

0 otherwise.

Denote the stationary distribution of xN−10 by π(xN−10 ).
The average rewriting cost D̄ is determined as follows:

D̄ = lim
t→∞

1

Nt

t∑
i=1

E(ϕ(xN−10 (i), xN−10 (i+ 1))),

=
1

N

∑
xN−1
0

π(xN−10 )
∑
yN−1
0

µ(yN−10 |xN−10 )

ϕ(xN−10 , yN−10 ),

=
∑
xN−1
0

π(xN−10 )
∑
j

D̄j(x
N−1
0 ), (1)

where D̄j(x
N−1
0 ) is the average rewriting cost of updat-

ing from xN−10 to data j.

Definition 4. An (N,M, q, d)ave WEM code is a col-
lection of subsets, C = {Ci : i ∈ D}, where Ci ⊆ XN ,
and ∀xN−10 ∈ Ci D(xN−10 ) = i, such that
• ∀i 6= j, Ci

⋂
Cj = ∅;

• The average rewriting cost D̄ ≤ d.

The rewriting rate of an (N,M, q, d)ave code is
Rave = log2M

N , and its rewriting capacity function,
Rave(q, d), is the largest d-admissible rate when N →
∞. It is proved that Rave(q, d) = R(q, d) [1]. Similarly,
we focus on the symmetric rewriting capacity function,
Rsave(q, d), as defined in definition 2.

C. The outline

The connection between rate-distortion theorem and
rewriting capacity theorem is presented in section II;

The binary polar WEM codes with an average rewriting
cost constraint and a maximal rewriting cost constraint
are presented in subsection A and B of section III,
respectively; The q-ary polar WEM codes, based on the
recently proposed q-ary polar codes [10], are presented
in subsection A and B of section IV for an average
rewriting cost constraint and a maximal rewriting cost
constraint, respectively; The conclusion is obtained in
section V.

II. LOSSY SOURCE CODING AND ITS DUALITY WITH
WEM

In this section, we present briefly background of lossy
source coding and its duality with WEM, which inspires
code constructions for WEM.

Let X also denote the variable space, and Y denotes
the reconstruction space. Let d : Y × X → R+

denote the distortion function, and the distortion among
a vector xN−10 and its reconstructed vector yN−10 is

d(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

d(xi, yi).

A (qNR, N) rate distortion code consists of a en-
coding function fN : XN → {0, 1, ..., qNR − 1}
and a reproduction function gN : {0, 1, ..., qNR −
1} → YN . The associated distortion is defined
as E(d(XN−1

0 , gN (fN (XN−1
0 )))), where the expecta-

tion is with respect to the probability distribution on
XN . R(q,D) is the infimum of rates R such that
E(d(XN−1

0 , gN (fN (XN−1
0 )))) is at most D as N →∞.

Let P (q,D)
def
= {PXY ∈ P(X × Y) : E(d(X,Y )) ≤

D}, and R(q,D) is min
PXY ∈P (q,D)

I(X;Y ) [4].

We focus on the double symmetric rate-distortion
for (X,Y ) ∈ (X × X ), and d(x, y), RS(q,D),
which is Rs(q,D) = min

PXY ∈P s(q,D)
I(Y ;X), where

P s(q,D)
def
= {PXY ∈ P(X × X ) : PX = PY , X ∼

U(q), E(d(X,Y )) ≤ D}.
The duality between Rs(q,D) and Rs(q,D) is cap-

tured by the following lemma, the proof of which is
ommited due to being straightforward.

Lemma 5. With the same d(·) and ϕ(·),

Rs(q,D) +Rs(q,D) = log2 q. (2)

III. POLAR CODES ARE OPTIMAL FOR BINARY WEM

Inspired by lemma 5, we show that polar codes can be
used to construct binary WEM codes with Rs(2, D) in
a way related to the code construction for lossy source
coding of [7] in this section.
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A. A code construction for binary WEM with an average
rewriting cost constraint

1) Background on polar codes [2]: Let W : {0, 1} →
Y be a binary-input discrete memoryless channel for
some output alphabet Y . Let I(W ) ∈ [0, 1] denote the
mutual information between the input and output of W
with a uniform distribution on the input. Let GN denote
n-th Kronecker product of

(
1 0
1 1

)
. Let the Bhattacharyya

parameter Z(W ) =
∑
y∈X

√
WY |X(y|0)WY |X(y|1).

The polar code, CN (F, uF ), ∀F ⊆ {0, 1, ..., N − 1},
uF denotes the subvector ui : i ∈ F , and uF ∈
{0, 1}|F |, is a linear code given by CN (F, uF ) =
{xN−10 = uN−10 GN : uF c ∈ {0, 1}|F

c|}. The polar
code ensemble, CN (F ), ∀F ⊆ {0, 1, ..., N − 1}, is
CN (F ) = {CN (F, uF ),∀uF ∈ {0, 1}|F |}.

The secret of polar codes achieving I(W ) lies
in how to select F : define W

(i)
N : {0, 1} →

YN × {0, 1}i as sub-channel i with input ui,
output (yN−10 , ui−10 ) and transition probabilities
W

(i)
N (yN−10 , ui−10 |ui)

def
= 1

2N−1

∑
uN−1
i+1

WN (yN−10 |uN−10 ),

where WN (yN−10 |uN−10 )
def
=

N−1∏
i=0

W (yi|(uN−10 GN )i),

and (uN−10 GN )i denotes the i-th element of uN−10 GN ;
The fraction of {W (i)

N } that are approaching noiseless,
i.e., Z(W

(i)
N ) ≤ 2−N

β

for 0 ≤ β ≤ 1
2 , approaches

I(W ); The F is chozen as indecies with large Z(W
(i)
N ),

that is F
def
= {i ∈ {0, 1..., N − 1} : Z(W

(i)
N ) ≥ 2−N

β}
for β ≤ 1/2.

The encoding is done by a linear transformation, and
the decoding is done by successive cancellation (SC).

2) Polar codes on lossy source coding: We sketch
the binary polar code construction for lossy source
coding [7] as follows.

Note that Rs(2, D) can be obtained through the fol-
lowing optimization function:

min : I(Y ;X),

s.t. :
∑
x

1

2
P (y|x) =

∑
y

1

2
P (x|y) =

1

2
,

∑
x

∑
y

1

2
P (y|x)d(y, x) ≤ D. (3)

Let P ∗(y|x) be the probability distribution minimizing
the objective function of (3). P ∗(y|x) plays the role of a
channel. By convention, we call P ∗(y|x) as test channel,
and denote it as W (y|x).

Now, we construct the source code with Rs(2, D)
using the polar code for W (y|x), and denote the rate of

the source code by R: set F as N(1−R) sub-channels
with the highest Z(W

(i)
N ), set F c as the remaining NR

sub-channels, and set uF to an arbitrary value.
A source codeword yN−10 is mapped to a codeword

xN−10 ∈ CN (F, uF ), and xN−10 is described by the index
uF c = (xN−10 G−1N )F c .

The reproduction process is done as follows: we do
SC encoding scheme, ûN−10 = Û(yN−10 , uF ), that is for
each k in the range 0 till N − 1:

1) If k ∈ F , set ûk = uk;
2) Else, set ûk = m with the posterior

P (m|ûi−10 , yN−10 ).
The reproduction codeword is ûN−10 GN .

Thus, the average distortion DN (F, uF ) (over the
source codeword yN−10 and the encoder randomness for
the code CN (F, uF )) is :∑

yN−1
0

P (yN−10 )
∑
ûFc

∏
i∈F c

P (ûi|ûi−10 , yN−10 )

d(yN−10 , ûN−10 GN ),

where ûF = uF .
The expectation of DN (F, uF ) over the uniform

choice of uF , DN (F ), is DN (F ) =
∑
uF

1
2|F |

DN (F, uF ).

Let QUN−1
0 ,Y N−1

0
denote the distribution defined by

QY N−1
0

(yN−10 ) = P (yN−10 ), and QUN−1
0 |Y N−1

0
by

Q(ui|ui−10 , yN−10 ) =

{
1
2 , if i ∈ F,
P (ui|ui−10 , yN−10 ), otherwise.

Thus, DN (F ) is equivalent to EQ(d(yN−10 , uN−10 GN )),
where EQ(·) denotes the expectation with respect to the
distribution QUN−1

0 ,Y N−1
0

.

It is proved that DN (F ) ≤ D+O(2−N
β

) for 0 ≤ β ≤
1
2 , the rate of the above scheme is R = |F c|

N , and polar
codes achieve the rate-distortion bound by Theorem 3
of [7].

On the other hand, Theorem 2 of [3] further states the
strong converse result of the rate distortion theory. More
precisely, if yN−10 is uniformly distributed over {0, 1}N ,
then ∀δ > 0, 0 < β < 1

2 , N sufficiently large, and
with the above SC encoding process and the induced Q,
Q(d(uN−10 GN , y

N−1
0 ) ≥ D + δ) < 2−N

β

. That is, for
∀yN−10 , the above reproduction process obtains xN−10 =
uN−10 GN such that the distortion d(xN−10 , yN−10 ) is less
than D almost by sure.

3) The code construction: We focus on the code con-
struction with symmetric rewriting cost function, which
satisfies ∀x, y, z ∈ {0, 1}, ϕ(x, y) = ϕ(x + z, y + z),
where + is over GF(2).
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To construct codes for WEM with Rs(2, D), we
utilize its related form Rs(2, D) in (2) and the test
channel W (y|x) for Rs(2, D). Note that W (y|x) is a
binary symmetric channel.

The code construction for (N,M, 2, D)ave with rate
R is presented in Algorithm III.1:

Algorithm III.1 A code construction for
(N,M, 2, D)ave WEM

1: Set F as NR sub-channels with the highest
Z(W

(i)
N ), and set F c as the remaining N(1 − R)

sub-channels.
2: The (N,M, 2, D)ave code is C = {Ci : Ci =
CN (F, uF (i))}, where uF (i) is the binary represen-
tation form of i for i ∈ {0, 1, ...,M − 1}.

Clearly, since GN is of full rank [2], ∀uF (i) 6= uF (j),
CN (F, uF (i))

⋂
CN (F, uF (j)) = ∅.

The rewriting operation and the decoding operation
are defined in Algorithm III.2 and Algorithm III.3,
respectively, where the dither gN−10 is inspired by [3].

Algorithm III.2 The rewriting operation yN−10 =
R(xN−10 , i).

1: Let vN−10 = xN−10 + gN−10 , where gN−10 is known
both to the decoding function and to the rewriting
function, it is chosen such that vN−10 is uniformly
distributed over {0, 1}N , and + is over GF(2).

2: SC encoding vN−10 , and this results uN−10 =
Û(vN−10 , uF (i)) and ŷN−10 = uN−10 GN .

3: yN−10 = ŷN−10 + gN−10 .

Algorithm III.3 The decoding operation uF (i) =
D(xN−10 ).

1: yN−10 = xN−10 + gN−10 .
2: uF (i) = (yN−10 G−1N )F .

Lemma 6. D(R(yN−10 , i)) = i holds for each rewriting.

Proof: From the rewriting operation,
yN−10 = ŷN−10 + gN−10 = uN−10 GN + gN−10 =
Û(vN−10 , uF (i))GN + gN−10 , from the decoding
function Û(vN−10 , uF (i))GN + gN−10 + gN−10 , which is
Û(vN−10 , uF (i))GN , thus the decoding result is i.

4) The average rewriting cost analysis:
From yN−10 = R(xN−10 , i), we know that
yN−10 = Û(vN−10 , uF (i))GN + gN−10 = Û(xN−10 +
gN−10 , uF (i))GN + gN−10 , thus ϕ(xN−10 , yN−10 ) is

ϕ(xN−10 , Û(xN−10 + gN−10 , uF (i))GN + gN−10 ), which
is ϕ(xN−10 +gN−10 , Û(xN−10 +gN−10 , uF (i))GN ) due to
ϕ(·) being symmetric. Denote wN−10 = xN−10 + gN−10 ,
thus ϕ(xN−10 , yN−10 ) = ϕ(wN−10 , Û(wN−10 , uF (i))GN ).

The average rewriting cost D̄

= lim
t→∞

1

Nt

t∑
i=1

E(ϕ(xN−10 (i), xN−10 (i+ 1))),

= lim
t→∞

1

Nt

t∑
i=1

E(ϕ(wN−10 ,

Û(wN−10 , uF (Mi+1))GN )),

=
∑
wN−1

0

π(wN−10 )
∑
j

D̄j(w
N−1
0 ). (4)

Let us focus on D̄j(w
N−1
0 ), which is the average

(in this case, over the probability of rewriting to data
j and the randomness of the encoder) rewriting cost
of updating wN−10 to a codeword representing j. Thus
D̄j(w

N−1
0 ) =

1

2|F |

∑
uFc

∏
i∈F c

P (ui|ui−10 , wN−10 )ϕ(wN−10 , uN−10 GN ).

Therefore, interpreting ϕ(·) as d(·), D̄ is actually the
average distortion over the ensemble CN (F ), DN (F ).

The following lemma from [7] is to bound D̄:

Lemma 7. [7] Let β < 1
2 be a constant and let σN =

1
2N 2−N

β

. When the polar code for the source code with
Rs(2, D) is constructed with F :

F = {i ∈ {0, 1, ..., N − 1} : Z(W
(i)
N ) ≥ 1− 2σ2

N},

then DN (F ) ≤ D +O(2−N
β

), where D is the average
rewriting cost constraint.

Therefore, with the same β, σN , F, and polar code
ensemble CN (F ), D̄ ≤ D +O(2−N

β

).
According to [2], lim

N=2n,n→∞
|F c|
N =

lim
N→∞

|{i ∈ {0, 1, ..., N} : Z(W
(i)
N ) ≤ 2−2

nβ}|
N

= I(W ) = Rs(2, D),

thus this implies that for N sufficiently large ∃ a set F
such that |F

c|
N ≥ Rs(2, D)− ε, ∀ε > 0. In other words,

the rate of the constructed WEM code, R = |F |
N = 1−

|F c|
N ≤ Rs(2, D) + ε.

The complexity of the decoding and the rewriting
operation is of the order O(N logN) according to [2].

We conclude the theoretical performance of the above
polar WEM code as follows:
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Theorem 8. For a binary symmetric rewriting cost
function ϕ : X × X → R+. Fix a rewriting cost D and
0 < β < 1

2 . For any rate R < Rs(2, D), there exists
a sequence of polar WEM codes of length N and rate
R ≤ R, so that under the above rewriting operation, D̄
satisfies D̄ ≤ D+O(2−N

β

). The decoding and rewriting
operation complexity of the codes is O(N logN).

B. A code construction for binary WEM with a maximal
rewriting cost constraint

The code construction, the rewriting operation and the
decoding operation are exactly the same as Algorithm
III.1, Algorithm III.2, and Algorithm III.3, respectively.

The rewriting capacity is guaranteed by Lemma 5, the
decoding and rewriting operation complexity is the same
as polar codes, and the rewriting cost is obtained due to
the strong converse result of rate distortion theory, i.e.,
Theorem 2 of [3]. Thus, we have:

Theorem 9. For a binary symmetric rewriting cost
function ϕ : X × X → R+. Fix a rewriting cost D,
δ, and 0 < β < 1

2 . For any rate R < Rs(2, D), there
exists a sequence of polar WEM codes of length N and
rate R ≤ R, so that under the above rewriting operation
and the induced probability distribution Q, the rewriting
cost between a current codeword ∀yN−10 and its updated
codeword xN−10 satisfies Q(ϕ(yN−10 , xN−10 ) ≥ D+δ) <

2−N
β

. The decoding and rewriting operation complexity
of the codes is O(N logN).

IV. POLAR CODES ARE OPTIMAL FOR q-ARY WEM,
q = 2r

In this section, we extend the previous binary scheme
to q-ary WEM (q = 2r), considering the length of polar
codes, which is N = 2n.

A. A code construction for q-ary WEM with an average
rewriting cost constraint, q = 2r

1) Background of q-ary polar codes, q = 2r [10]:
The storage alphabet is X , |X | = q, and for x ∈ X ,
(x0, x1, ..., xr−1) is its binary representation. Let W :
X → Y be a discrete memoryless channel. I(W ) is∑
x∈X

∑
y∈Y

1
qW (y|x) log2

W (y|x)∑
x′∈X

1
qW (y|x′) .

The sub-channel i, W
(i)
N , is defined by

W
(i)
N (yN−10 , ui−10 |ui)

def
= 1

qN−1

∑
uN−1
i+1

WN (yN−10 |uN−10 ),

where WN (yN−10 |uN−10 )
def
=

N−1∏
i=0

W (yi|(uN−10 GN )i).

Consider the following bit channel and
its Bhattacharyya: Fix k ∈ {0, 1, ..., r}, and
W [r−k](y|u) = 1

2k

∑
x:xr−1

k =u

W (y|x), where

y ∈ Y, u ∈ {0, 1}r−k, and x = (x0, x1, ..., xr−1) ∈ X ;
Define Z(W{x,x′}) =

∑
y∈Y

√
W (y|x)W (y|x′), let

Zv(W ) = 1
2r

∑
x∈X

Z(W{x,x+v}) for v ∈ X\{0}, and

Zi(W ) = 1
2i

∑
v∈Xi

Zv(W ), where i = 0, 1, ..., r − 1, and

Xi = {v ∈ X : i = arg max
0≤j≤r−1

vj 6= 0} with the binary

representation of v, (v0, v1, ..., vr−1).
Zi(W

(j)
N ) ∀i ∈ {0, 1, ..., r− 1} and j ∈ {0, 1, ..., N −

1} converges to Zi,∞ ∈ {0, 1}, and with probability
one (Z0,∞, Z1,∞, ..., Zr−1,∞) takes one of the values
(Z0,∞ = 1, ..., Zk−1,∞ = 1, Zk,∞ = 0, ..., Zr−1,∞ = 0)
∀k = 0, 1, ..., r − 1, i.e., Theorem 1.b of [10]. j ∈ Ak,n
iff (Z0(W

(j)
N ), Z1(W

(j)
N ), ...., Zr−1(W

(j)
N )) ∈ Rk(ε),

where Rk(ε)
def
= (

k−1∏
i=0

D1) × (
r−1∏
i=k

D0), D0 = [0, ε),

D1 = (1− ε, 1]. The channel polarizes in the sense that∑
i∈{0,1,...,N−1}

|Aki,n|

rN → I(W ) as N →∞.
For uN−10 ∈ XN , we also represent

it by its binary form, that is uN−10 =
(uI(0,0), ..., uI(0,r−1), ..., uI(N−1,0), ..., uI(N−1,r−1)) ∈
{0, 1}rN , where uI(i,0), ..., uI(i,r−1) is the binary
representation of ui ∈ X , and I(i, j) = i × r + j.
∀i ∈ Aki,n, let the frozen bit set be determined
by F = {I(i, j) : i ∈ {0, 1, ..., N − 1}, j ∈
{0, 1, ..., ki − 1}} ⊆ {0, 1, ..., rN − 1}. Frozen bits for
uN−10 are defined as uF ∈ {0, 1}|F | with the subvector
ui : i ∈ F .

Finally, the polar code, CN (F, uF ), ∀F ⊆
{0, 1, ..., rN − 1} and uF ∈ {0, 1}|F |, is a linear
code given by CN (F, uF ) = {xN−10 = uN−10 GN :
∀uF c ∈ {0, 1}|F

c|}. The polar code ensemble, CN (F ),
∀F ⊆ {0, 1, ..., rN − 1}, is CN (F ) = {CN (F, uF ) :
∀uF ∈ {0, 1}|F |}.

2) The code construction: We focus on the q-ary
WEM code construction with a symmetric rewriting
cost function, which satisfies ∀x, y, z ∈ {0, 1, ..., q −
1}, ϕ(x, y) = ϕ(x+ z, y + z), where + is over GF(q).

Similar to the binary case, to construct codes for WEM
with Rs(q,D), we utilize its related form Rs(q,D) in
Lemma 5 and its test channel W (y|x).

The code construction is presented in Algorithm IV.1.

Algorithm IV.1 A code construction for (N,M, q,D)ave
WEM

1: ∀i ∈ Aki,n, F = {I(i, j) : i ∈ {0, 1, ..., N − 1}, j ∈
{0, 1, ..., ki − 1}}.

2: The (N,M, q,D)ave code is C = {Ci : Ci =
CN (F, uF (i))}, where uF (i) is the binary represen-
tation form of i for i ∈ {0, 1, ...,M − 1}.
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The WEM code rate is R = |F |
rN , and the polar

code rate is R = |F c|
rN . Similarly, when R approaches

Rs(q,D), R approaches Rs(q,D) based on Lemma 5.
The rewriting operation and the decoding operation

are defined in Algorithm IV.2 and Algorithm IV.3, re-
spectively, where the SC encoding is a generalization
of q-ary lossy source coding, and the dither gN−10 is
inspired by [3] to make sure the uniform distribution of
vN−10 .

Algorithm IV.2 The rewriting operation yN−10 =
R(xN−10 , i).

1: Let vN−10 = xN−10 + gN−10 , where gN−10 is known
both to the decoding function and to the rewriting
function, it is chosen such that vN−10 is uniformly
distributed, and + is over GF(q).

2: SC encoding vN−10 , ûN−10 = Û(vN−10 , uF (i)), that
is for each k in the range 0 till N − 1:

ûj =

{
uj if j ∈ Ar,n,
m with the posterior P (m|ûj−10 , vN−10 ),

where in the above m = 0, 1, ..., q − 1 and if j ∈
Ak,n for 0 ≤ k ≤ r − 1, the first k bits of ûj are
fixed, and let ŷN−10 = ûN−10 GN .

3: yN−10 = ŷN−10 − gN−10 , and − is over GF(q).

Algorithm IV.3 The decoding operation uF (i) =
D(xN−10 ).

1: yN−10 = xN−10 + gN−10 .
2: uF (i) = (yN−10 G−1N )F .

The correctness of the above rewriting function can
be verified similarly to Lemma 6.

3) The average rewriting cost analysis: Similar to
the analysis of equation (4), we obtain that D̄ =∑
wN−1

0

π(wN−10 )
∑
j

D̄j(w
N−1
0 ).

In the following, we first focus on D̄j(w
N−1
0 ). Note

that ûN−10 = Û(vN−10 , uF (j)) is random, i.e., the SC
encoding function may result in different outputs for the
same input. More precisely, in step i of the SC encoding

process, i ∈
r−1⋃
k=0

Ak,n, ûi = m with the posterior

P (m|ûi−10 , vN−10 ), where if i ∈ Ak,n, the first k bits of
ûi are fixed and known. This implies that the probability
of picking a vector uN−10 with Âr,n given vN−10 with

Ar,n is equal to
0 if Âr,n 6= Ar,n,∏
i∈
r−1⋃
k=0

Ak,n
P (ui|ui−10 , vN−10 ) otherwise,

where in the second case ∀i ∈ Ak,n, the first k bits of
ui are fixed.

Therefore, the average (in this case, over the proba-
bility of rewriting to data j and the randomness of the
encoder) rewriting cost of updating wN−10 to a codeword
representing j, D̄j(w

N−1
0 ), is

=
1

2|F |

∑
uFc

∏
i∈

⋃r−1
k=0Ak,n

P (ui|ui−10 , wN−10 )

ϕ(wN−10 , uN−10 GN ),

where uF = uF (j), uF c ∈ {0, 1}|F
c|, and the sum-

mation over uF c takes care of Ar,n and the fact that
i ∈ Ak,n, the first k bits of ui are fixed.

Thus, we obtain that D̄

=
∑
wN−1

0

π(wN−10 )
∑
j

D̄j(w
N−1
0 ),

=
∑
wN−1

0

π(wN−10 )
∑
uF (j)

1

2|F |

∑
ucF

∏
i∈

⋃r−1
k=0Ak,n

P (ui|ui−10 , wN−10 )ϕ(wN−10 , uN−10 GN ),

<
∑
wN−1

0

π(wN−10 )
1

q|Ar,n|

∑
uN−1
0

∏
i∈

⋃r−1
k=0Ak,n

P (ui|ui−10 , wN−10 )ϕ(wN−10 , uN−10 GN ). (5)

Let QUN−1
0 ,WN−1

0
denote the distribution defined by

QWN−1
0

(wN−10 ) = π(wN−10 ), and QUN−1
0 |WN−1

0
defined

by

Q(ui|ui−10 , wN−10 ) =

{
1
q if i ∈ Ar,n,
P (ui|ui−10 , wN−10 ) otherwise.

Then, inequation (5) is equivalent to D̄ <
EQ(ϕ(wN−10 , uN−10 GN )), where EQ(·) denotes the ex-
pectation with respect to the distribution QUN−1

0 ,WN−1
0

.
Similarly, let EP (·) denote the expectation with respect
to the distribution PUN−1

0 ,WN−1
0

.
The following three lemmas are already proved in [7]

for q = 2 and in [6] for primary q, they extend trivially
to q = 2r, and we omit their proofs.

Lemma 10.
∑

wN−1
0 ,uN−1

0

|Q(wN−10 , uN−10 ) −

P (wN−10 , uN−10 )| ≤
∑

i∈Ar,n

q−1∑
ui=0

EP (| 1q −

P (ui|ui−10 , wN−10 )|).
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Lemma 11. Let F be chosen such that for i ∈ Ar,n,

q−1∑
ui=0

EP (|1
q
− P (ui|ui−10 , wN−10 )|) ≤ σN .

Then, the average rewriting cost is bounded by

1

N
EQ(ϕ(wN−10 , uN−10 GN )) ≤

1

N
EP (ϕ(wN−10 , uN−10 GN )) + |Ar,n|dmaxσN ,

where dmax
def
= maxx,y ϕ(x, y).

Lemma 12. EP (ϕ(wN−10 , uN−10 GN )) = ND.

The following lemma, which is a modification of
Lemma 5 [6], presents that it is sufficient to choose
the set F as those bits with indexes I(i, j) for which
i ∈ {0, 1, ..., N−1}, j ∈ {0, 1, ..., ki−1} with i ∈ Aki,n.

Lemma 13. If i ∈ Ar,n, that is
(Z0(W

(i)
N ), ..., Zr−1(W

(i)
N )) ∈ Rr(ε), and let

εN ≥ r
√
ε, then

q−1∑
ui=0

EP (|1
q
− P (ui|ui−10 , wN−10 )|) ≤

√
2εN .

Proof: By Pinsker’s inequality, for two distribu-
tion functions P and Q defined on X , ||P − Q||1 ≤√

2D(P ||Q), where D(P ||Q) is the Kullback-Leibler
divergence between two distributions, that is D(P ||Q) =∑
i log2(P (i)

Q(i) )P (i), we obtain that:
q−1∑
ui=0

EP | 1q − P (ui|ui−10 , wN−10 )|

P (ui)=
1
q

=
∑

wN−1
0 ,ui0

|P (ui)P (ui−10 , wN−10 )

−P (ui|ui−10 , wN−10 )P (ui−10 , wN−10 )|,
=

∑
wN−1

0 ,ui0

|P (ui)P (ui−10 , wN−10 )

−P (ui0, w
N−1
0 )|,

≤

√√√√2
∑

wN−1
0 ,ui0

log2

P (ui0, w
N−1
0 )

P (ui)P (ui−10 , wN−10 )√
P (ui0, w

N−1
0 ),

=

√
2I(W

(i)
N ),

≤
√

2εN ,

where the last inequality is based on the conclusion of
Lemma 1 [10], that is if (Z0(W

(i)
N ), ..., Zr−1(W

(i)
N )) ∈

Rk(ε) ∀k = 0, 1, ..., r, then |I(W
(i)
N ) − (r − k)| ≤ γ

with γ ≥ max(k
√
ε, (2r−k − 1)ε log2 e).

Therefore, the performance of the above polar WEM
code can be concluded as follows:

Theorem 14. For a q-ary (q = 2r) symmetric rewriting
cost function ϕ : X ×X → R+. Fix a rewriting cost D
and 0 < β < 1

2 . For any rate R < Rs(q,D), there exists
a sequence of polar WEM codes of length N and rate
R ≤ R, so that under the above rewriting operation, D̄
satisfies D̄ ≤ D+O(2−N

β

). The decoding and rewriting
operation complexity of the codes is O(N logN).

B. A code construction for q-ary WEM with a maximal
rewriting cost constraint, q = 2r

Similarly, the code construction, the rewriting oper-
ation and the decoding operation are exactly the same
as Algorithm IV.1, Algorithm IV.2, and Algorithm IV.3,
respectively. Next, we mainly focus on its performance.

Theorem 15. For a q-ary (q = 2r) symmetric rewriting
cost function ϕ : X ×X → R+. Fix a rewriting cost D,
δ, and 0 < β < 1

2 . For any rate R < Rs(q,D), there
exists a sequence of polar WEM codes of length N and
rate R ≤ R, so that under the above rewriting operation
and the induced probability distribution Q, the rewriting
cost between a current codeword ∀yN−10 and its updated
codeword xN−10 satisfies Q(ϕ(yN−10 , xN−10 ) ≥ D+δ) <

2−N
β

. The decoding and rewriting operation complexity
of the codes is O(N logN).

Proof: We mainly focus on the rewriting cost analy-
sis. The proof of this part is based on the ε-strong typical
sequence [4] and Theorem 4 and 5 of [3]. We give the
sketch as follows.

We recall ε-strong typical sequences xN−10 × yN−10 ∈
XN×YN with respect to p(x, y) over X×Y , and denote
it by A

∗(N)
ε (X,Y ). We denote by C(a, b|xN−10 , yN−10 )

the number of occurrences of a, b in xN−10 , yN−10

with the same indexes, and require the follow-
ing. First, ∀a, b ∈ X × Y with p(a, b) > 0,
|C(a, b|xN−10 , yN−10 )/N − p(a, b)| < ε. Second, ∀a, b ∈
X × Y with p(a, b) = 0, C(a, b|xN−10 , yN−10 ) = 0.

In our case yN−10 = uN−10 GN . Due to the full rank of
GN , there is a one-to-one correspondence between uN−10

and yN−10 . We say that uN−10 , xN−10 ∈ A
∗(N)
ε (U,X)

if xN−10 , uN−10 GN ∈ A
∗(N)
ε (X,Y ) with respect to

1
qW (y|x), where W (y|x) is the test channel.

The first conclusion is that for N sufficiently large,
Q(A

∗(N)
ε (U,X)) > 1 − 2−N

β

for ∀0 < β < 1
2 ,

ε > 0, which is a generalization of Theorem 4
of [3], and where Q(A

∗(N)
ε (U,X)) = Q(∀a, b :
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| 1NC(a, b|uN−10 GN , x
N−1
0 ) − 1

qW (a|b)| ≤ ε). The out-
line is that based on Lemma 10 and Lemma 11 we obtain
that ∑
uN−1
0 ,xN−1

0 ∈A∗(N)
ε (U,X)

|Q(uN−10 , xN−10 )−P (uN−10 , xN−10 )|

≤ |Ar,n|σNdmax.

Thus, we obtain

|
∑

uN−1
0 ,xN−1

0

Q(uN−10 , xN−10 )− P (uN−10 , xN−10 )|

≤
∑

uN−1
0 ,xN−1

0

|Q(uN−10 , xN−10 )− P (uN−10 , xN−10 )|,

≤ |Ar,n|σNdmax,

where in the above uN−10 , xN−10 ∈ A∗(N)
ε (U,X).

By lower bounding P (A
∗(N)
ε (U,X)) = 1− P (∃a, b :

| 1NC(a, b|uN−10 GN , x
N−1
0 ) − 1

qW (a|b)| ≥ ε) ≥
1 − 2q2e−2Nε

2

based on Hoeffding’s inequality, and
Q(A

∗(N)
ε (U,X)) ≥ P (A

∗(N)
ε (U,X)) − |Ar,n|σNdmax,

we obtain the desired result by setting σN = 2−N
β

2Ndmax
.

The second conclusion is that let yN−10 = R(xN−10 , i),
then ∀δ > 0, 0 < β < 1

2 and N sufficiently large,
Q(ϕ(yN−10 , xN−10 )/N ≥ D + δ) < 2−Nβ , which is a
generalization of Theorem 5 of [3]. The outline is that

Q(ϕ(xN−10 , yN−10 )/N ≥ D + δ)

≤ Q(ϕ(xN−10 , yN−10 )/N ≥ D + δ⋂
xN−10 , yN−10 ∈ A∗(N)

ε (X,Y ))

+ Q(xN−10 , yN−10 6∈ A∗(N)
ε (X,Y )),

≤ 2−Nβ ,

where the last inequality is based on the conclusion just
obtained Q(xN−10 , yN−10 6∈ A∗(N)

ε (X,Y )) < 2−Nβ , and
that when xN−10 , yN−10 ∈ A∗(N)

ε (X,Y ), for ε sufficiently
small and N sufficiently large, ϕ(yN−10 , xN−10 )/N ≤
D + δ.

V. CONCLUSION

Code constructions for WEM using recently proposed
polar codes have been presented. Future work focuses
on exploring error-correcting codes for WEM.
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