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ABSTRACT
Target detection and field surveillance are among the most
prominent applications of Sensor Networks (SN). The qual-
ity of detection achieved by a SN can be quantified by evalu-
ating the probability of detecting a mobile target crossing a
Field of Interest (FoI). In this paper, we analytically evalu-
ate the detection probability of mobile targets when N sen-
sors are stochastically deployed to monitor a FoI. We map
the target detection problem to a line-set intersection prob-
lem and derive analytical formulas using tools from Integral
Geometry and Geometric Probability. We show that the
detection probability depends on the length of the perime-
ters of the sensing areas of the sensors and not their shape.
Hence, compared to prior work, our formulation allows us to
consider a heterogeneous sensing model, where each sensor
can have an arbitrary sensing area. We also evaluate the
mean free path until a target is first detected.

Categories and Subject Descriptors
C.2 [Computer System Organization]: Computer-Com-
munication Networks; C.2.1 [Network Architecture and
Design]: Distributed networks—Network topology

General Terms
Algorithms, Performance, Design

Keywords
Heterogeneous Sensor Networks, Target Detection, Tracking

1. INTRODUCTION
Target detection is one of the fundamental services pro-

vided by most Sensor Networks (SN). For the purposes of
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target detection, a number of sensors N are deployed to
monitor a Field of Interest FoI. The sensor deployment can
be either stochastic or deterministic depending on the appli-
cation and the FoI. Stochastic deployment is preferred when
the FoI is not under the designer’s control at the time of
deployment (hostile environment), or when it is more cost-
effective to randomly deploy the sensors than systematically
place them (large-scale networks) [3,6,19].

Once the SN is deployed, targets are detected using one or
more sensing modalities such as optical, mechanical, acoustic,
thermal, RF and magnetic sensing. In fact, to ensure robust-
ness and enhance performance, oftentimes a sensor fusion
approach is required [15]. As an example, a surveillance
system can be realized via fusion of data aggregated from
infrared, CCD, pressure and acoustic sensors.

Depending on the modality, sensing areas have any arbi-
trary shape, a reality significantly different from the widely
adopted idealized unit disk model [2–4,10,24]. Moreover, in
sensor fusion scenarios, devices of different modalities have
heterogeneous sensing capabilities. To date, prior work as-
sumes identical sensing areas for all sensors [2–5, 10, 11, 18,
19,24]. In this paper, we address the problem of quantifying
the target detection capability of stochastically deployed SN,
when sensors have heterogeneous sensing areas.

In stochastically deployed networks, target detection is
only probabilistic. A metric that quantifies the detection
capability of a SN, is the probability of detecting a target
with at least one sensor [3]. This metric provides a worst-
case guarantee on target detection. Furthermore, to enhance
fault tolerance and reduced false alarms, detection by more
than one sensors is required [6, 18, 19]. In such cases, the
SN detection capability can be quantified by the probability
of detection by at least k sensors, where k is a design para-
meter. Finally, in several applications it is critical that the
target is detected in a timely fashion, a quality that can be
quantified by computing the mean free path of the target
until the first detection. Given a velocity model, the mean
free path translates to the mean time until detection [3,10].

We consider the following two detection models. In the
first model called the Instant Detection model (ID), a sensor
s detects a target X when the trajectory of X intersects
the sensing area of s. A similar model was considered in
[2–4,10,24]. We also consider the Sampling Detection model
(SD), where a sensor s must sample the target X for at least
tth units of time, before s can determine the presence of X.
Several previous works have assumed the Energy Detection
model (ED), where a target is detected if the energy level
measured exceeds a pre-defined threshold [5,11,18,19].
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Figure 1: (a) A convex sensing area Ai of size Fi and perimeter Li, (b) a non-convex sensing area with a
convex hull boundary of size Lh

i and area size F h
i , (c) the instant detection model: a target X is detected if

its trajectory crosses the sensing area of si, (d) the sampling detection model: a target X is detected if it is
sensed for at least tth units of time. Given a constant speed v of X, the length of the trajectory of X within
the sensing area of si must be greater than vtth.

1.1 Our Contributions
In this paper we make the following contributions. We

map the target detection problem to a line-set intersection
problem. Based on our mapping, we use tools from Integral
Geometry and Geometric Probability to analytically evalu-
ate the probability of detecting targets moving at a random
direction within the FoI.

Our formulation shows that the target detection proba-
bility is independent of the shape of the sensing areas of the
devices, and depends only on the length of the perimeters
of the sensing areas (length of the perimeters of the convex
hulls of the sensing areas, for non-convex shapes). Hence,
compared to prior work, [2–5,10,11,18,19,24], our mapping
allows us to consider a heterogeneous sensing model. Using
our formulation, we analytically evaluate the target detec-
tion probability for heterogeneous SN, and derive the results
for homogeneous SN, as a special case.

We study the problem of target detection under both the
ID and SD models, and show that the target detection prob-
lem under the SD model can be reduced to the target detec-
tion problem under the ID model, by introducing the con-
cept of the effective sensing area. We also evaluate the mean
free path until the target is first detected, a critical measure
for timely detection. Our derivations provide an analytic
tool for network designers to select parameters such as the
number of sensors, and type of sensing areas to guarantee a
minimum target detection probability.

The rest of the paper is organized as follows. In Section
2 we present related work. In Section 3, we state our model
assumptions, formulate the target detection problem, and
provide relevant background. In Section 4, we analytically
evaluate the target detection probability and the mean free
path until the first detection. In Section 5, we verify our
theoretical results via simulations. In Section 6, we present
our conclusions.

2. RELATED WORK
The target detection problem in SN has been a topic

of extensive study under different metrics and assumptions
[2–6, 10, 11, 16, 18, 24]. In [10], the authors investigate the
tradeoff between detection quality and power conservation.
They assume that nodes are randomly deployed within a
planar FoI, and have sensing areas that follow the unit disk
model. Given a target X moving on a straight line, they
derive the mean time until X is first detected.

In [3], analytic formulae for the mean delay until a target
is detected are provided, when targets move on a straight
line at a constant speed. The authors consider a system
model where N sensors are randomly distributed within an
FoI, with each sensor having identical sensing areas that
follow the unit disk model. Assuming that the target X
moves on a straight line, they provide closed analytic for-
mulas that take into account the sleeping pattern for sen-
sors. Compared to our work, we additionally provide closed
analytic formulas when sensors have different sensing areas
that do not follow the idealized unit disk model.

In [5, 11, 18], the authors proposed a collaborative detec-
tion model, where sensors collectively arrive at a consensus
about the presence of a target. Their formulation assumes
that the detection capability of each sensor decays as a func-
tion of distance and hence, the sensing area of each sensor
follows the unit disk model. As performance metrics, the
authors consider the minimum exposure path, that is, the
target path for which the target is least exposed to detec-
tion, and the maximum exposure path, that is, the target
path for which the target is most exposed to detection.

In [14], the problem of optimum k-coverage of the bound-
ary of an FoI is addressed. Covering the boundary of an
FoI guarantees that any intruder will be detected with cer-
tainty. The authors in [14] assume that all sensors have
identical sensing areas following the unit disk model as well.

In [7] the authors address the problem of determining the
delay until a target (intruder) is first detected. They con-
sider the detection problem under the additional constraint
that any sensor detecting the target must have a connected
path to the sink. They assume that targets move on a
straight line, and all sensors have identical sensing areas
conforming to the unit disk model.

A relevant problem to target detection is the problem of
target tracking. Once the target X has been detected, the
SN is used to track the motion of X within the FoI. Several
methods for tracking moving targets with SNs have been
proposed in the literature [2,10,16,16,24]. We do not address
the problem of target tracking in this paper.

3. ASSUMPTIONS,PROBLEMFORMULA-
TION AND BACKGROUND

3.1 Network and Target Model Assumptions
In this section we state our model assumptions about the

network deployment, sensor nodes and targets.
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Table 1: Mapping the mobile target detection problem to the line-set intersection problem

Mobile Target Detection ↔ Line-Set Intersection
Number of sensors N ↔ Number of sets N
Field of Interest A0 ↔ Set S0

Sensing area Ai of perimeter Li ↔ Set Si of perimeter Li

Random sensor deployment ↔ Random set placement
Trajectory of target X ↔ Random line � crossing S0

Probability of target detection ↔ Probability of � intersecting
by at least k sensors PD(k) at least k sets

Sensor Deployment: We assume that N sensors are iden-
tically and independently distributed within a planar FoI,
A0, according to a random (uniform) distribution. The FoI
is a connected and closed set of perimeter L0 of arbitrary
shape. In the case where the FoI is not convex, we assume
that the perimeter, denoted as Lh

0 , of the convex hull of FoI
is known. The target detection problem under deterministic
sensor deployment is addressed in [17].

Target Model: We assume that the trajectories of the mo-
bile targets are straight lines, with all trajectories crossing
the FoI being equiprobable. Although such an assumption
constraints the space of all possible trajectories, we adopt it
for two reasons.

(a) Given any arbitrary entry and exit point in the FoI,
moving on a straight line minimizes the length of the
trajectory of the target within the FoI (minimizes the
time that the target can be detected). Hence, the tar-
get detection probability assuming line trajectories is
the worst case probability compared to the detection
of any other possible trajectory. The worst case analy-
sis allows us to compute network parameters such as
sensor density and length of the perimeters of the sens-
ing areas, so that target detection is guaranteed with
a minimum probability.

(b) If an arbitrary trajectory is considered, the parame-
ters of the trajectory (length, curvature, multiple self-
crossing points) need to be specified in the model, in
order to analytically evaluate the probability of target
detection. On the other hand, line trajectories have a
simple parameterization that facilitates the analytical
calculation and physical interpretation.

Straight line motion models have also been assumed in pre-
vious works addressing the target detection problem [3, 7,
10].Furthermore, though we do not present it in this paper,
our formulation can be extended to include three dimen-
sional FoI.

Sensing Model: We assume that each sensor si, i = 1 . . . N
has a sensing area Ai that is a closed and connected set
of perimeter Li. In the case where the sensing area is not
convex, we assume that the perimeter, denoted as Lh

i of
the convex hull of Ai is known. Based on our assumptions,
sensors need not have an identical sensing area Ai. Figure
1(a) illustrates a sensing area Ai of convex shape. Figure
1(b) illustrates a non-convex sensing area and the equivalent
convex hull boundary. For detecting a mobile target X we
consider the following two cases:

(a) ID model: A target X is detected by a sensor si if the
trajectory of X crosses the sensing area of si.

(b) SD model: A target X is detected by a sensor si if X
is sensed (sampled) for at least t ≥ tth units of time,
where tth is a design parameter.

The ID and SD models can be combined with any stochas-
tic sensor failure model to provide the overall probability of
target detection. The events of sensor failures are indepen-
dent from the events of a target crossing the sensing area of
sensors. Hence, the senor failure model and the target detec-
tion can be independently computed. Providing a realistic
sensor failure model is beyond the scope of this article.

Figure 1(c) illustrates detection based on the ID model
which places no constraint on the length of the line segment
of the trajectory within Ai. Figure 1(d) illustrates detection
based on the SD model , where a target X moving at a
constant speed v is detected, only if the trajectory inside Ai

is longer than vtth. We now provide our formulation for the
moving target detection problem.

3.2 Problem Formulation
Mobile target detection problem: Given an FoI A0 of
perimeter L0 sensed by N sensors with sensor si having a
sensing area Ai of perimeter Li, randomly and independently
deployed within the FoI, compute the probability PD(k) that
a target X randomly crossing A0 is detected by at least k
sensors.

Mapping the mobile target detection problem: The
problem of mobile target detection under stochastic deploy-
ment can be mapped to a line-set intersection problem in
the following way. Let the FoI be mapped to a bounded
set S0, defined as a collection of points in the plane with
perimeter length L0. Let the sensing area of sensor si be
mapped to a bounded set Si with perimeter length Li. Let
the trajectory of the target X be mapped to a straight line
�(ξ, θ) in the plane, with parameters ξ and θ be the shortest
distance of � to the origin of a coordinate system, and θ be
the angle of the line perpendicular to � with respect to the
x axis. Then, the mobile target detection problem for sto-
chastic SN is equivalent to the following line-set intersection
problem.

Line-set intersection problem: Given a bounded set S0

of perimeter length L0 and N sets Si of perimeter length Li,
randomly and independently placed inside S0, compute the
probability PD(k) that a random line � intersecting S0, also
intersects at least k out of the N sets Si, i = 1 . . . N.

Table 1 summarizes the mapping from the mobile tar-
get detection problem to the line-set intersection problem.
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Throughout the rest of the paper the terms sensing area Ai

and set Si will be used interchangeably.

3.3 Relevant Background
The probability of target detection PD can be evaluated

using a simple frequency count argument. If all possible lines
in the plane that intersect set A0 (the FoI) are considered
as possible target trajectories, PD is equal to the quotient of
the “number” of lines that intersect A0, over the “number”
of lines that intersect any k or more sets Ai (sensing areas).
However, the set of lines in the plane intersecting a set A
is uncountable. To bypass our difficulty in counting lines in
the plane, we adopt a measure from Integral Geometry and
Geometric Probability [20,22]. In geometric probability, the
measure m(�) of a set of lines �(ξ, θ) in the plane is defined
as follows [20,22]:

Definition 1. Measure of set of lines m(�): The mea-
sure m of a set of lines �(ξ, θ) is defined as the integral over
the line density d� = dξ ∧ dθ

m(�) =

�
dξ ∧ dθ, (1)

where ∧ denotes the exterior product used in Exterior Cal-
culus [9].

In the case where A is convex, the measure of the set of
lines that intersect A is equal to:

m(� : �
�

A �= ∅) =

�
�
�A�=∅

dξ ∧ dθ =

� 2π

0

ξdθ = L, (2)

where L is the perimeter of A. Interested reader is referred
to [20–22], for the proof of (2). In the case where A is non-
convex, the measure in (2) can be computed by observing
that any line intersecting the convex hull of A, also intersects
A. Hence, the measure of the set of lines that intersect a
non-convex set is equal to the perimeter of the convex hull
of that set, denoted as Lh.

A geometric interpretation for (2), can be obtained by
considering the thickness T (θ) of a bounded set A [22]:

Definition 2. Thickness of a bounded set T (θ) :
The thickness of a bounded set A at direction θ is defined as
the length of the projection of A to a line of direction θ.

The thickness of a set A measures the set of lines along the
direction perpendicular to θ, that intersect A. Figure 2(a),
illustrates the thickness of a set Ai at direction θ. Figure
2(b) illustrates the thickness of a circular sensing area Ai,
of radius r. Independent of the direction of projection, the
thickness of a disk is always equal to the diameter of the
sensing area, that is T (θ) = 2r, ∀θ. Thickness is related to
m(�) via:

m(�) =

�
�
�A�=∅

dξ ∧ dθ
(i)
=

� π

0
T (θ)dθ

(ii)
= πE(T ) = L. (3)

Step (i) holds due to the fact that for a fixed θ, the integral
of dξ (set of positions) of the lines that intersect A is equal
to T (θ). Step (ii) holds due to the uniform distribution of
the lines:

E(T ) =

� π

0

1

π
T (θ)dθ. (4)

(a) (b)

Figure 2: (a) The thickness T (θ) of a set Ai is equal
to the length of the projection of Ai on a line with
direction θ. T (θ) measures the set of lines of direction
perpendicular to θ that intersect Ai. (b) For the case
of a disk, T (θ) = 2r, ∀θ, where r is the radius of the
disk Ai.

The relation between m(�) and L as expressed in (3) can
be interpreted as follows. The measure m(�) of the set of
lines �(ξ, θ) intersecting a bounded set A is equal to the
average length E(T ) of the projection of A over all possible
directions, times the measure of all the possible directions.

4. TARGET DETECTION PROBABILITY
In this section, we analytically evaluate the detection prob-

ability PD(k), that a target crossing the FoI is detected by
at least k sensors. We then evaluate PD(k) under the SD
model. Finally, we compute the mean time until a target X
crossing the FoI is first detected.

4.1 Instant Detection
Under the ID model, the probability that target X is de-

tected by at least k sensors is given by the following theorem.

Theorem 1. Let A0 be a bounded FoI of perimeter length
L0 monitored by N sensors randomly deployed within A0,
with sensor si, i = 1 . . . N having a sensing area of perimeter
length Li. The probability PD(k) that at least k ≥ 1 sensors
detect a target X crossing the FoI and moving on a random
straight line trajectory is given by:

PD(k) = 1 −
k−1�
w=0

|ZN,w|�
j=1

|zj|�
i=1

qzj(i)

|z̄j|�
v=1

�
1 − qz̄j(v)

�
, (5)

where ZN,w denotes the
�

N
w

�
w-tuples zj of vector [1, . . . , N ].

That is, ZN,w = {zj : zj(1), . . . , zj(i), . . . , zj(w) | j(i) ∈
[1, N ], j(i) �= j(g),∀i �= g}. The z̄j denotes the complement
(N − w)-tuple of zj with respect to vector [1, . . . , N ], and qi

is given by qi = Li
L0

.

Proof. Let us first compute the probability that a target
is detected by a single sensor si. Based on our mapping in
Section 3.2, this event is equivalent to the probability qi that
a line intersecting A0, also intersects Ai. This probability is
equal to the quotient of the measure of the set of lines that
intersect both A0,Ai over the measure of the set of lines
that intersect A0.

qi =
m(�

�A0

�Ai �= ∅)
m(�

�A0 �= ∅)
(i)
=

m(�
�Ai �= ∅)

m(�
�A0 �= ∅)

(ii)
=

Li

L0
. (6)

Step (i) holds due to the fact that Ai is within A0 and hence,
any line intersecting Ai also intersects A0. Step (ii) follows
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due to (2). The probability qi in (6) is computed for the
case where both A0,Ai are convex sets. In the case where
any of the sets are not convex, the length of the perimeter
of the convex hull, denoted as Lh, is used to compute qi.

Using (6), we now compute the probability that a line �
intersects exactly k sets. Let ZN,k denote the

�
N
k

�
k-tuples zj

of vector [1, . . . , N ]. That is, ZN,k = {zj : zj(1), . . . , zj(i), . . . ,
zj(k) | j(i) ∈ [1, N ], j(i) �= j(g),∀i �= g}. Let also z̄j denote
the complement of zj with respect to the vector [1, . . . , N ].
The probability that a line � intersects all sets indicated by
the k-tuple zj is given by:

P (zj)
(i)
= P

�
�
�

Azj(1) �= ∅, . . . , �
�

Azj(k) �= ∅,

�
�

Az̄j(1) = ∅, . . . , �
�

Az̄j(N−k) = ∅
	

(ii)
= P

�
�
�

Azj(1) �= ∅
	

. . . P
�
�
�

Azj(k) �= ∅
	

P
�
�
�

Az̄j(1) = ∅
	

P
�
. . . �

�
Az̄j(N−k) = ∅

	

=

|zj |�
i=1

qzj(i)

|z̄j|�
v=1

�
1 − qz̄j(v)

�
. (7)

In step (i), we express P (zj) as the probability that a ran-
dom line intersects exactly the k sets denoted by the k-tuple
zj . Since the sets Ai are randomly and independently de-
ployed within the FoI, in step (ii) the probability of the
intersection of events becomes equal to the product of the
probabilities of the individual events. To compute the prob-
ability of a random line intersecting any k sets, P (zj) must
be summed over all possible k-tuples zj .

P (ZN,k) =
�
ZN,k

|zj |�
i=1

qzj(i)

|z̄j|�
v=1

�
1 − qz̄j(v)

�
. (8)

Theorem 1 holds by noting that

PD(k) = 1 −
k−1�
w=0

P (ZN,w). (9)

From Theorem 1, note that PD(k) depends only on the ra-
tios Li

L0
of Ai and not the specific shape, or size of the sensing

areas. Hence, Theorem 1 allows the analytic computation of
the detection probability in the case of sensors with hetero-
geneous sensing areas. Also note that sensors with sensing
areas of different shapes but same perimeter length, yield
identical detection capabilities. This fact is true only if all
possible target trajectories are assumed equiprobable.

Theorem 1, can also be used to describe the target de-
tection capability of a SN, at a particular direction θ. The
measure of a set of lines intersecting with a set at a fixed
direction θ is equal to the thickness T (θ) of the set in that
direction. Hence, the elementary probability qi(θ) that a
target X is detected by a single sensor when moving at di-
rection θ is equal to

qi(θ) =
Ti(θ)

T0(θ)
. (10)

Substituting (10) to (5), yields the probability PD(k, θ)
at a particular direction θ. The probability PD(k, θ), can be
used to evaluate the target detection capability of SN, when
the possible trajectories of target X crossing the FoI are not

equiprobable. Let f(θ) denote the probability distribution
of the trajectories of target X with respect to the trajectory
direction θ. Then the target detection probability PD(k) is
expressed in the following corollary.

Corollary 1. The probability PD(k) that at least k ≥
1 sensors detect a target X crossing the FoI and moving
on a straight line trajectory, with the line trajectories being
distributed according to f(θ), is given by:

PD(k) =

� π

0

f(θ)



�1 −

k−1�
w=0

|ZN,w|�
j=1

|zj |�
i=1

qzj(i)(θ)

|z̄j|�
v=1

�
1 − qz̄j(v)(θ)

��
 dθ, (11)

where f(θ) denotes the target trajectory distribution with re-
spect to the direction θ, ZN,w denotes the

�
N
w

�
w-tuples zj of

vector [1, . . . , N ]. That is, ZN,w = {zj : zj(1), . . . , zj(i), . . . ,
zj(w) | j(i) ∈ [1, N ], j(i) �= j(g),∀i �= g}. The z̄j denotes
the complement (N − w)-tuple of zj with respect to vector

[1, . . . , N ], and qi(θ) is given by qi(θ) = Ti(θ)
T0(θ)

.

Proof. For a given direction θ the target detection prob-
ability PD(k, θ) is given by (5), by substituting qi with qi(θ) =
Ti(θ)
T0(θ)

. Corollary 1, follows by computing the average value

of PD(k, θ), over all θ.

PD(k) =

� π

0

f(θ)PD(k, θ)dθ. (12)

The complexity of computing (5) and (11) grows exponen-
tially with the heterogeneity of the sensing areas. If all sen-
sors had sensing areas of different perimeters, an exponential
number of terms must be summed to calculate (5),(11). For
large-scale networks, PD(k) can be efficiently approximated
with the use of the following theorem.

Theorem 2. Let the probability qi that a target X is de-
tected by sensor si be small, while the sum of the probabili-
ties

�
i qi is nearly a constant γ, as i → ∞. The probability

P (ZN,k) converges to a Poisson distribution of rate γ.

P (ZN,k) =
γk

k!
e−γ ,

�
i

qi → γ, max
i

qi → 0. (13)

Proof. The proof of Theorem 2 is a special case of Lin-
deberg’s Central Limit Theorem and is provided in [13].

Substituting (13) to (9) yields PD(k), for the case of large-
scale heterogeneous SN. If sensors have sensing areas with
perimeters of equal length (not necessarily identical shapes),
(5) can be simplified to the following form.

Corollary 2. The probability PD(k) that a target cross-
ing the FoI will be detected by at least k sensors, when all
sensors have sensing areas with equal perimeters L is equal
to:

PD(k) = 1 −
k−1�
i=0

�
N

i

�
Li(L0 − L)N−i

LN
0

. (14)

Proof. Corollary 2 follows by setting qi = L
L0

in (5).
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(a) (b) (c)

Figure 3: (a) The effective thickness of a rectangle on direction θ = 0, (b) the effective thickness of a rectangle
on a random direction θ, (c) the effective sensing area of a disk.

Using Theorem 1, we can also evaluate the probability
that a target X remains undetected by any sensor. Corollary
3, computes the probability PM of missing a target.

Corollary 3. The probability PM that a target crossing
the FoI is not detected by any sensor is equal to:

PM =
N�

i=1

�
1 − Li

L0

�
. (15)

Proof. The proof of Corollary 3 follows, by observing
that PM = P (ZN,0), and zj = ∅, z̄j = {1, . . . , N}.

Depending on the application, (15) allows us to select
Li, N so that PM remains below any desired threshold value.

4.2 Sampling Detection
Under the SD model, a target X must remain within the

sensing area of a sensor si for at least tth units of time,
before si can detect X. Given a velocity model for X, SD
occurs if the length of the intersection of the trajectory of
X with the sensing area Ai is at least lth(v). Assuming the
simplest velocity model of constant speed1 for X, SD occurs
when the length of the intersection is longer than vtth. To
measure the set of lines that intersect a set A and have a
cord within A of length longer than vtth we define the notion
of effective thickness T ′(θ).

Definition 3. Effective Thickness T ′(θ) : The effec-
tive thickness T ′(θ) for a set A is defined as the measure
of the set of lines m(�) perpendicular to the direction θ, for
which the length of the cord within A is greater or equal vtth.
That is,

T ′(θ) =

�
|�(ξ,θ)

�A|≥vtth

dξ. (16)

The probability of moving target detection under the SD
model is given by the following theorem.

Theorem 3. Let a target X cross the FoI moving on a
straight line at a constant speed v. The probability PD(k) that

1Any other velocity model can be assumed to map the sam-
pling time threshold tth into a trajectory length lth(v).

at least k sensors detect X when the target must be sensed
for at least time tth is given by:

PD(k) = 1 −
k−1�
w=0

�
ZN,w

|zj|�
i=1

q′zj(i)

|z̄j|�
v=1

�
1 − q′z̄j(v)

	
, (17)

where q′i =
E(T ′

i )

E(T0)
.

Proof. The proof of Theorem 3, follows the same steps of
the proof of Theorem 1 in the case of the ID model. The only
difference between the two proofs is the computation of the
probability qi for a single sensor to detect a target X. Based
on our mapping in Section 3.2, in the case of the SD model,
target detection is equivalent to the conditional probability
q′i that a line that intersects A0, also intersects Ai, with the
length of the cord being |��Ai| ≥ vtth. This probability
is equal to the quotient of the measure of the lines that
intersect both A0,Ai and have a cord length |��Ai| ≥ vtth,
over the measure of the set of lines that intersect A0,

q′i =
m(|��A0

�Ai| ≥ vtth)

m(�
�A0 �= ∅) . (18)

The measure of the set of lines that intersect A0 is given
by (2) and is equal to E(T0) = L0. The measure of the set
of lines that intersect both A0,Ai and have a cord length
|��Ai| ≥ vtth, is computed as follows:

m(|l
�

A0

�
Ai| ≥ vtth)

(i)
= m(|�

�
Ai| ≥ vtth)

(ii)
=

�
|��Ai|≥vtth

dξ ∧ dθ

(iii)
=

� π

0

T ′
i (θ)dθ

(iv)
= πE(T ′).

In step (i), Ai is a subset of A0 and, hence, the length of
the line that is common to both A0 and Ai is equal to the
length of the cord in Ai. In step (ii), we integrate the line
density dl = dξ∧dθ over all lines that intersect Ai and have
a length of at least vtth. In step (iii), for a fixed direction θ
the integral of dξ over all lines for which |��Ai ≥ vtth| is
equal to the effective thickness T ′(θ). The average effective
thickness for random lines is given by:

E(T ′) =

� π

0

1

π
T ′(θ)dθ. (19)
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Figure 4: The effective area of a sensor si.

Hence, step (iv) follows. The combination of (18), (19), (2)
and (3) yields:

q′i =
πE(T ′

i )

L0
=

πE(T ′
i )

πE(T0)
=

E(T ′
i )

E(T0)
. (20)

Following the same steps as in the proof of Theorem 1,
yields Theorem 3.

4.3 Mapping the SD Model to the ID Model
The ID model facilitates a geometric interpretation of the

target detection problem. Any target crossing the sensing
area of a sensor is detected. However, no such geometric
interpretation exists for the SD model. We now provide a
reduction from the SD model to the ID model that allows us
to map any results for the simpler ID model to the SD one.
Our goal is to define for each sensor si, an effective sensing
area A′

i with the following property. If a target X crosses
the boundary of A′

i (ID model), then X is detected under
the SD model.

For sensing areas of arbitrary shape, the average effective
thickness of Ai, does not correspond to the average thickness
of a subset of Ai. As an example, in figure 3(a), all lines
of direction π

2
intersecting the rectangular sensing area Ai,

have a line segment within A longer than vtth (assuming
vtth ≤ b.). However, for a direction θ �= {0, π

2
, π} there is

a set of lines with a line segment within Ai shorter than
vtth. The subset of Ai that does not result in detection for
lines in direction θ is depicted by the shaded areas in figure
3(b). Hence, one cannot define a subset of Ai with average
thickness equal to the average effective thickness of Ai.

However, from (17), the probability of detection PD(k)
only depends on E(T ′

i ), and not the shape of the sensing
area. Hence, we can define an effective sensing area A′ for
each sensor si, that is not necessarily a subset of A.

Definition 4. Effective Sensing Area A′ : Let the
average effective thickness of a set A be equal to E(T ′).
The effective sensing area A′ is defined as a disk of radius
r′ = E(T ′)/2.

Using the notion of the effective sensing area, we can map
the target detection probability under the SD model, to a
target detection problem under the ID model using the fol-
lowing corollary.

Corollary 4. The target detection probability under the
SD model is equal to the target detection probability under
the ID model, when the sensing areas of the sensors are re-
placed by the effective sensing areas.

Proof. The proof follows by setting Li = 2πr′ in (5).

In figure 4, we show the equivalence between the sensing
area of a sensor si under the SD model. Note that in the
case of the unit disk model, the effective sensing area is a
subset of the original sensing area. As an example, in figure
3(c) the effective sensing area of a disk of radius r, is a

concentric disk of radius r′ =
�

r2 − ( vtth
2

)2. Through the

rest of the paper we focus on the ID model, with equivalent
results holding for the SD model.

4.4 Mean Free Path until the First Detection
In several applications, the distance that the target X

travels within the FoI undetected is an important metric
of the quality of detection. In this section, we analytically
compute the mean free path E(σ) until the first detection
of a target X. To facilitate the computation we assume that
sensors have identical sensing areas. Note that computing
the mean free path E(σ) traveled by X, is sufficient to de-
termine the mean time E(t) until X is first detected, given
a velocity model for X. The mean free path problem can be
stated as follows.
Mean Free Path Problem: Let N sensors with identi-
cal sensing areas be randomly and independently deployed
within a FoI of area F0. Assuming that a target X is mov-
ing on a straight line, compute the mean free path before
the target X is detected.

The mean free path for which the target X remains un-
detected is given by the following theorem.

Theorem 4. Let N sensors with identical sensing areas
be randomly and independently deployed within a FoI of area
F0. Assuming a target X moving on a straight line, the mean
free path before X is detected equals:

E(σ) ≈ F0

NE(T )
. (21)

Proof. Under the ID model, a target X travels for a
distance σX undetected, if it does not cross the sensing area
of any sensor. When the sensors have a sensing area of
identical thickness for all θ, on a given trajectory, any sensor

within distance E(T )
2

from the trajectory of X, detects X.
This event is equivalent to considering that the target X has
an average thickness of E(T ) = T (θ),∀θ, while the sensing
area of all sensors is reduced to point masses. Figure 5(a)
illustrates target X being detected by sensors with sensing
areas of average thickness E(T ) while it crosses the FoI.
Figure 5(b) illustrates the equivalent scenario, where the
target X has an average thickness of E(T ), while the sensing
areas of the sensors are reduced to point masses.

When the target X moves a distance σX , it covers an
area of size F(σX) = E(T )σX + f, where f denotes the
residual shaded area in figure 5(c). Hence, the probability
that the target X is not detected for a distance of σ ≥ σX

is equal to the probability that no sensor is located within
F(σX). Given that the sensors are randomly and indepen-
dently deployed, the number of sensors within F(σX) is
given by a homogeneous planar Poisson point process of den-
sity ρ = N

F0
[20]:

P (|S| = k) =
(ρF )k

k!
e−ρF , (22)

where |S| denotes number of sensors. Equation (22) holds
under the assumption that F0 → ∞, while the sensor density
ρ remains constant. Based on (22), the probability that the
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(a) (b) (c)

Figure 5: (a) Any sensor within a distance E(T )
2

from the trajectory of the target X, detects X, (b) Equivalent
formulation, for a target of average thickness E(T ), and sensors with sensing areas reduced to point masses,
detection occurs if a sensor si “collides” with the target, (c) the mean free path of a target X and the
equivalent free area.
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Figure 6: Homogeneous SN: (a) Probability of detecting a target by the deployment of a single sensor with
circular sensing area, as a function of the radius r. (b) Probability of detecting a target by the deployment
of a single sensor with square sensing area, as a function of the side α.

free path of target X is σ ≥ σX , is equal to the probability
that no sensors exist within an area of size F(σX) :

P (σ ≥ σX) = P
�
NF(σ)X ) = 0

�
= e−ρF(σ) = e−ρ(E(T )σ+f). (23)

The random variable σ is a non-negative continuous random
value and, hence its expectation is given by:

E(σ) =

� Q

0

P (σ ≥ σX)dσX =
e−ρf

ρE(T )

�
1 − e−ρE(T )Q

	
,

(24)
where Q denotes the maximum possible length of the tra-
jectory of X within the FoI. When the residual area f is
small enough so that e−ρf ≈ 1 and Q is long enough so that
e−ρE(T )Q ≈ 0,

E(σ) ≈ 1

ρE(T )
=

F0

NE(T )
. (25)

Note that in the present analysis we have assumed sensing
areas of constant thickness T (θ), ∀θ. This assumption can
by relaxed if one assumes sensing areas of equal thickness
on a given direction θ, but not constant over all θ, and then
average over all θ.

5. VALIDATION OF THE THEORETICAL
RESULTS

In this section, we verify the validity of our theoretical
results be performing extensive simulations. We randomly
deployed N sensors in a circular FoI of radius R = 100m.
We then generated random lines corresponding to random
trajectories of targets and measured the number of sensors
that detect the moving targets. We performed the following
experiments.

5.1 Probability ofDetection by a Single Sensor
In our first experiment,we randomly deployed a single sen-

sor, with a circular sensing area of radius r. We varied r from
10m to 80m and measured the probability that a target mov-
ing at a random trajectory is detected by the sensor. For
each radius r we repeated the experiment 100 times to en-
sure statistical validity. Based on our derivations in Section
4, the probability that the target is detected is equal to:

PD = qi =
Li

L0
=

r

R
. (26)

In figure 6(a) we show the probability of detection PD for
varying r for our first experiment. We observe an almost
exact match between the theory and the simulation, con-
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Figure 7: (a) Heterogeneous SN: Probability of target detection by at least one sensor as a function of the
network size, when the radius of the sensing area is uniformly distributed within r ∈ [0, 1]. (b) Probability
of target detection by at least one sensor as a function of the network size, when the radius of the sensing
area is uniformly distributed within r ∈ [0, 0.1]. (c) Homogeneous SN: Target detection probability by exactly
k sensors. (d) Target detection probability by at least k sensors. (e) Probability of missing a target as a
function of the network size. (f) Probability of target detection by at least one sensor as a function of the
network size, and comparison with the fraction of the FoI covered by at least one sensor.

firming that the probability of a random line intersecting
a set of perimeter Li given that it intersects the overset of
perimeter L0 is equal to the quotient of the two perimeters.

We also repeated our experiment when the deployed sen-
sor had a square sensing area of perimeter 4 ∗ α, where α
denotes the length of the side of the square and was varied
from 10m to 80m. In figure 6(b) we show the probability
of detection PD for varying α for the case of square sensing
area. We observe that regardless of the shape of the sensing
area, our theoretical formula agrees with the simulation.

5.2 Probability of Detection in Heterogeneous
SN

In our second experiment we deployed sensors with het-
erogeneous sensing capabilities and evaluated the detection
performance of the SN. Each sensor deployed had circular
sensing area of a radius uniformly distributed in [0, 1]. We
selected a small sensing area in order to satisfy the condi-
tion maxi qi → 0 while

�
i qi → γ, so that the probability

of detection of a target by exactly k sensors can be approx-
imated by (13). We varied the number of sensors deployed
from N = 100 to N = 1000, and computed PD(1). The exact
formula for PD(1) is given by

PD(1) =
N�

i=1

�
1 − Li

L0

�
. (27)

For large N according to Theorem 2, PD(1) tends to

PD(1) = 1 − e
−�N

i=1
Li
L0 . (28)

In figure 7(a), we show the theoretical value of PD(1), the
value according to Theorem 2, and the simulated value, as
a function of N. We observe that when the conditions of
Theorem 2 are satisfied, one can compute PD(k) without
incurring the high computational cost of the exact formula
(as k increases the number of terms in the exact formula of
PD(k) increase exponentially).

In figure 7(b), we show PD(1) when the radius of the
sensors is uniformly distributed in [0, 0.1]. We observe that
the target detection probability grows almost linearly with
the number of sensors is deployed when the length of the
perimeters of the sensing areas of the devices deployed are
significantly smaller than the perimeter of the FoI. We also
observe that the Poisson approximation is very close to the
exact theoretical value as well as the simulated value.

5.3 Probability of Detection in Homogeneous
SN

In our third experiment, we evaluated the detection per-
formance of a SN when all deployed sensors have identical
sensing areas. We initially deployed 30 sensors with a circu-
lar sensing area of radius r = 10m and measured the prob-
ability of detection P (ZNk ) that a target randomly crossing
the FoI is detected by exactly k sensors. The probability

527



P (ZN,k) for the homogeneous case is given by:

P (ZN,k) =

�
N

k

��
L

L0

�k �
1 − L

L0

�N−k

. (29)

In figure 7(c) we show P (ZN,k) for a homogeneous SN as a
function of k. We also evaluate the probability PD(k) that
a target would be detected by at least k sensors, that in the
homogeneous case is given by (14). In figure 7(d), we show
PD(k) as a function of k. We observe that our theoretical
formulas match the simulation results.

We also evaluated the probability PM of not detecting a
target crossing the sensor field as well as the probability of
detection by at least one sensor PD(1), a function of the
number of sensors deployed. In figure 6(e) we show PM as
a function of N. In figure 7(f) we show PD(1) as a function
of N. From figures 7(e), 7(f), one can select N so that the
PD(1) is above a threshold. As an example, if PD(1) ≥ 95%
more than 30 sensors must be deployed.

Figure 7(f), also shows the fraction of the FoI denoted
as Fr(A0) covered by at least one sensor. From figure 7(f),
we note that it is not necessary to cover the entire FoI to
achieve detection probability close to unity. Thus, target
mobility helps detecting targets with a significantly smaller
number of sensors, compared to the number required for
detecting static targets.

6. CONCLUSION
We studied the problem of quantifying the target detec-

tion capability of heterogeneous SN. We mapped the mobile
target detection problem to the line-set intersection problem
and derived analytical expressions for the probability that a
target is detected by at least k sensors in stochastically de-
ployed heterogeneous SN. We showed that the target detec-
tion probability depends only on the length of the perimeters
of the sensing areas of the sensors and not on their shape or
area. We derived formulas for SN with homogeneous sens-
ing capabilities, and provided useful approximations for the
case of large SN. We also analytically evaluated the mean
free path until a target is first detected, a critical measure of
timely target detection. We calculated the mean free path
under both the ID model and the SD model, and showed
that the SD model can be reduced to the ID model using
the notion of the effective sensing area. Finally, we verified
our theoretical results via detailed simulations.
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