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1
STORING INFORMATION IN A MEMORY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to and claims the benefit of
co-pending provisional application Ser. No. 60/878,984, filed
Jan. 5, 2007, which is incorporated herein by reference.

BACKGROUND

This disclosure relates to storing information in a memory.
Some memories include storage cells that transit asymmetri-
cally among states. For example, flash memories may store
information in the states of floating-gate cells. The state of a
floating-gate cell may depend on the amount of charge
trapped in the cell, and writing information to a flash memory
may include injecting charge into one or more of the floating-
gate cells (e.g. by the hot-electron injection mechanism or the
Fowler-Nordheim tunneling mechanism). Rewriting infor-
mation to the flash memory may include erasing all of the
information stored in a collection (e.g. a block) of floating-
gate cells.

SUMMARY

In one general aspect, one or more variables are repre-
sented with one or more cell values in a memory. Each vari-
ableis associated with one or more of' the cell values. Multiple
states of the one or more variables are defined, and each state
ofthe one or more variables includes a current store value for
each variable and one or more previous store values for the
variable. One or more single cell values influence the current
store value and previous store value of at least one of the
variables.

Implementations may include one or more of the following
features. One or more first cell values can be written to one or
more cells of a memory. Each of the cells can have multiple
possible cell states sequentially ordered from a lowest cell
state to a highest cell state. Each of the first cell values can
correspond to one of the possible cell states. The one or more
first cell values can jointly represent multiple first store values
of'a variable. The multiple first store values can be a first store
value of the variable and one or more previous store values of
the variable. One or more of the first cell values can be an
individual cell value based at least in part on more than one of
the multiple first store values.

One or more second cell values can be written to the cells.
Each of the second cell values can correspond to one of the
possible cell states. Each of the cells can either remain in its
previous cell state or progress to a cell state higher than its
previous cell state. The second cell values can jointly repre-
sent multiple second store values of a variable, the second
plurality of store values can be a new store value of the
variable and one or more previous store values of the variable.

The multiple second store values of the variable can
include the first store value of the variable. The multiple first
store values and the multiple second store values can each
include two store values, where the one or more previous
store values is a most recent store value of the variable. The
multiple second store values can include at least one of the
one or more previous store values of the variable included in
the multiple first store values.

The multiple first store values and the multiple second store
values can each include r store values. The value of r can be
greater than one. The multiple second store values can include
r-1 of the multiple first store values. The second cell values
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can be determined based at least in part on an algorithm. The
algorithm can have inputs that include the second store value
of the variable.

The multiple cells of the memory can be n cells. The
variable can have two possible store values. Each of the
multiple first store values and each of the multiple second
store values can correspond to one of the two possible store
values. Each of the cells can have q possible cell states. Each
of the first cell values and each of the second cell values can
correspond to one of the q possible cell states. For a given set
of'values of r, n, and q, the algorithm can substantially maxi-
mize a minimum number of times that the variable can be
updated in the memory, under a constraint that, when updat-
ing the variable in the memory, each of the n cells of the
memory either remains in its previous cell state or progresses
to a cell state higher than its previous cell state. The algorithm
can substantially allow the variable to be updated in the
memory at least a number of times including [q/2" ' ]+r-2
times; (q-1)(n-2r+1)+r-1 times; or (q-1)(n-2)+1 times,
under a constraint that, when updating the variable in the
memory, each of the n cells of the memory either remains in
its previous cell state or progresses to a cell state higher than
its previous cell state.

The memory can include multiple memory blocks. Each of
the memory blocks can include multiple cells, and a particular
one of the memory blocks may include a portion of the cells
storing the first cell values and the second cell values. An
operation may be performed to lower the state of each cell of
the particular memory block to the lowest cell state. The
operation to lower the state of each cell of the particular
memory block to the lowest cell state can be performed at
some time after one or more of the plurality of variables can
no longer be updated under a condition that each of the cells
of'the particular memory block either remains in its previous
cell state or progresses to a higher cell state.

Each of the plurality of possible cell states can be defined
by a quantity of charge stored in one of the cells of the
memory. One or more cell values can be detected, and each of
the one or more detected cell values can correspond to a cell
state of a particular one of the cells. Each of the cells can have
two possible cell states, where each of the first cell values and
each of the second cell values corresponds to one of the two
possible cell states.

The first cell values can jointly represent multiple first store
values of k variables. The multiple first store values can
include a first store value of each of the k variables and one or
more previous store values of each of the k variables. The
second cell values can jointly represent multiple second store
values. The multiple second store values can include a second
store value of at least one of the k variables and the first store
value of at the least one of the k variables.

The memory can be part of a system that includes a pro-
cessor. The memory can be at least one of an optically
encoded memory, a flash memory, a hard drive of a computer,
a write asymmetric memory, or a write once memory.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating a computing system.

FIG. 2 is a diagram illustrating a memory system in accor-
dance with some aspects of the present disclosure.
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FIG. 3A is a graphical representation of a code construc-
tion in accordance with some aspects of the present disclo-
sure.

FIGS. 3B and 3C are diagrams and tables illustrating
example code constructions in accordance with some aspects
of the present disclosure.

FIG. 4 is a flow chart illustrating an example process for
storing information in a memory in accordance with some
aspects of the present disclosure.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

A memory may include multiple memory cells for storing
information, and each of the memory cells may be able to
assume multiple possible cell states. A memory cell may be
described in terms of its possible cell states (e.g. “0” and “1”
for a binary cell) and the transitions among its possible states
(e.g. “Oto 1” and “1 to 0”). In a write asymmetric memory,
such as a flash memory or an optically encoded memory, a
different resource “cost” may be associated with different
transitions. For example, a write operation (e.g. a transition
where charge is injected into a flash memory cell) may be
performed at a relatively low cost in terms of the amount of
time and processing resources needed to perform the write
operations, the amount of wear on the memory, and the lack of
an impact on the other cells in the memory. On the other hand,
an erase operation (e.g. a transition where charge is removed
from a flash memory cell) may have a higher associated cost
in terms of the need to erase an entire block of memory cells
(e.g. due to the construction of at least some flash memories,
which requires cells to be erased in blocks), the amount of
time and processing resources needed to rewrite some or most
of'the information stored in the memory block (e.g. when only
aportion of the cells need to be erased while the data stored in
other cells needs to be retained), and the corresponding wear
on the memory from erasing and rewriting the cells. The wear
on the memory may include cell damage (i.e. a reduction in
memory cell quality) associated with implementing a particu-
lar cell state transition. For example, in a flash memory,
erasing a block of memory cells may reduce the quality of the
memory cells (i.e. the ability to reliably control the charge
level when erasing and writing to the cell), and the operational
lifetime of a flash memory may be limited to a finite number
(e.g. 10%) of erasures. Other types of memories may have
additional or different costs associated with writing, rewrit-
ing, and erasing memory cells.

Techniques (e.g. a code construction) may be implemented
in a memory to record and update a history of stored infor-
mation using low cost operations. In some implementations,
a code construction may be implemented to update a current
value of one or more variables one or more times in a write
asymmetric memory without requiring higher cost operations
(e.g. erasing a memory block), and upon each update, the
write asymmetric memory may record a sequence of one or
more previous values of each updated variable. In some
implementations, the sequence of previous values may be
indicated by a state of one or more memory cells. Maintaining
a sequence of past values in a memory may, for example,
allow efficient recovery of information that has been rewritten
one or more times. In some implementations, the cost of
rewriting information may be reduced by increasing the num-
ber of rewrites implemented between erasures (i.e. in a single
write/erase cycle). For example, current and previous values
of one or more variables stored in a memory may be updated
multiple times using only low-cost operations and without the
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use of high-cost operations (e.g. erasures). By using only
low-cost operations to rewrite information to the memory, the
effective memory speed may be increased. Furthermore, by
allowing multiple (low-cost) information rewrite steps before
each (high-cost) memory erasure, the number of memory
rewrites allowed by the lifetime of a memory may be
increased, therefore enhancing the effective lifetime of the
memory.

Information stored in memory may be formatted as mul-
tiple variables. For example, each variable may be a binary or
hexadecimal value, an ASCII character, or any other repre-
sentation of information. Current and previous values of one
or more variables may be stored jointly in the collective state
of multiple memory cells. When storing multiple values
jointly in the collective state of memory cells, the state of any
one of the individual cells may be based on more than one of
the values. In some implementations, neither an individual
memory cell nor a subset of memory cells is allocated for
storing an individual value of a variable. Rather, a group of
memory cells are allocated for collectively storing the mul-
tiple values (e.g. current and previous values) of one or more
variables. Storing information jointly may increase the num-
ber of times that one or more of the variables can be rewritten
in the memory before erasure. For example, if the rewriting
frequencies of the variables stored in a flash memory are
non-uniform, jointly storing the variables in the collective
state of multiple memory cells may increase the number of
times that the most frequently rewritten variables can be
updated in the memory before erasure (i.e. by increasing the
charge stored in one or more cells without having to erase the
cell). Thus, storing information jointly may reduce the num-
ber of memory erasures required for a given number of
memory rewrites, which may extend the effective lifetime of
the memory and/or increase the effective speed of the
memory.

FIG. 1 is a diagram illustrating an example computing
system 100. The computing system 100 includes a memory
102 in communication with a processor 104. The processor
104 may store information in the memory 102 and may
retrieve information, such as software instructions and data,
from the memory 102. The processor 104 may also commu-
nicate with an interface 106 and a display 108 for receiving
input from a user and representing information to a user.

FIG. 2 is a diagram illustrating an example implementation
of the memory 102. The memory 102 may include multiple
memory blocks 202, where each memory block 202 includes
multiple memory cells 204. Each of the memory cells 204
may be in one of multiple possible cell states 206a, 2065, . . .
206¢ (collectively 206). Each state may be associated with a
different sub-range of voltages within an overall range of
voltages capable of being stored in each memory cell. The
possible cell states 206 may be ordered sequentially from a
lowest cell state (e.g. 206a), which may correspond to a stored
charge within a relatively narrow sub-range near zero volts, to
a highest cell state (e.g. 206¢), which may correspond to a
relatively narrow sub-range near a highest voltage used for
storing data in the memory cells. Accordingly, each sequen-
tially higher state may correspond to a progressively higher
sub-range of voltages. In some implementations, each sub-
range may be separated by some buffer zone of nominally
unused voltages, which may help avoid reading incorrect
values and facilitate error correction. The computing system
100 may allow information to be rewritten one or more times
in the memory 102 using only operations that raise memory
cells 204 from a lower cell state (e.g. 206a) to a higher cell
state (e.g. 2065) and leave all other cells 204 in their previous
cell states. By recording in the memory 102 a history of stored
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information, the system 100 may allow efficient recovery of
previously written information (e.g. a previous value of a
variable that has been updated and/or changed). By storing
information jointly in the memory 102, the computing system
100 may increase the number of times that current and pre-
vious values of one or more variables can be updated in the
memory 102 before erasing the cells. The system 100 may
implement algorithms for efficiently encoding and/or decod-
ing information stored jointly in the memory 102.

The computing system 100 may include a variety of fea-
tures not included in the illustration, such as memory buffers,
electronic sensors and devices, transducers, adapters, com-
munication ports, power supplies, and others. Generally, the
computing system 100 may be any electronic or information
processing device that uses nonvolatile memory, such as a
portable or desktop computer, a calculator, a sensor, a server,
a client, a personal digital assistant (PDA), a media player or
recorder, a game console, a mobile phone, an email device
and/or a monitoring device. The computing system 100 may
also omit one or more of the illustrated features. For example,
when the computing system 100 is implemented as a sensor,
the display 108 and/or the interface 106 may be omitted. In
some implementations, one or more of the components of the
system 100 may be implemented as an external system. For
example, the interface 106 may be embodied as an external
data entry system (e.g a keyboard or an electronic sensor).

The memory 102 may be nonvolatile memory, such as
read-only memory (ROM), optically encoded memory (e.g.,
CD, DVD, or LD), magnetic memory (e.g., hard disk drives,
floppy disk drives), NAND flash memory, NOR flash
memory, electrically-erasable, programmable read-only
memory (EEPROM), ferroelectric random-access memory
(FeRAM), magnetoresistive random-access memory
(MRAM), non-volatile random-access memory (NVRAM),
non-volatile static random-access memory (nvSRAM),
phase-change memory (PRAM), punch cards, and/or any
other memory that does not need its memory contents peri-
odically refreshed and/or can retain information without
power. The memory 102 may include memory chips or
memory modules (e.g., single in-line memory modules
(SIMMs) or dual in-line memory modules (DIMMs)). The
memory 102 may be electrically, magnetically, or optically
erasable. Part or all of the memory 102 may be removable
(e.g. CD, flash memory stick) or non-removable (e.g. hard
disk).

The processor 104 may include a programmable logic
device, a microprocessor, or any other appropriate device for
logically manipulating information. The processor 104 may
execute an operating system for the computing system 100.
The processor 104 may store information on or access infor-
mation from the memory 102. Information may be stored or
accessed, for example, by a user of the computing system
100, an application running on the computing system 100, or
an external computing system connected to the computing
system 100. The information may include multiple variables
stored jointly in the memory 102. The processor 104 may
send information to the display 108 (e.g. for presentation to a
user). The processor 104 may communicate with the interface
106, for example, to transmit information to an external sys-
tem, to receive information from an external system, and/or to
receive information from a user. Information may be commu-
nicated to/from the processor 104 as electromagnetic and/or
optical signals. Processor 104 may communicate with the
memory 102, the interface 106, and/or the display 108 via
local electronic circuitry (e.g. passive, active, resistive, con-
ductive, capacitive, inductive, and/or semiconductor materi-
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als), wireless and/or wired network protocols (e.g., TCP/IP,
Bluetooth, and/or Wi-Fi), and/or a bus (e.g., serial, parallel,
USB, and/or FireWire).

The interface 106 may allow communication with external
systems (e.g. external systems not illustrated in FIG. 1). Inter-
face 106 may communicate with external systems via local
electronic circuitry (e.g. passive, active, resistive, conductive,
capacitive, inductive, and/or semiconductor materials), wire-
less and/or wired network protocols (e.g., TCP/IP, Bluetooth,
and/or Wi-Fi) and/or a bus (e.g., serial, parallel, USB, and/or
FireWire). The display 108 may present data such as text,
videos, music, and/or other information from the processor
104 and/or the memory 102. For example, the display 108
may present data in visual and/or audio format. Other types of
user interface devices may be used in addition to or instead of
the display, such as a screen, speakers, and/or graphical or
tactile interfaces.

As shown in FIG. 2, amemory cell 204 may generally have
q possible cell states 206, where q may be any integer greater
than or equal to two. The q possible cell states 206a,
2065, ...2064, may be selected based on physical (electronic,
magnetic, mechanical and/or optical) properties of the cell
204 (e.g. electronic charge and/or threshold voltage) that can
be reliably manipulated, maintained, and/or detected. For
example, each of the possible cell states 206 for a flash
memory may be defined as a specified amount of trapped
charge in the cell 204; the state of the cell 204 may be manipu-
lated by injecting charge into the cell 204 and may be detected
by measuring a voltage of the cell 204 and comparing the
measured voltage with thresholds that correspond to the dif-
ferent cell states.

In some implementations, the sequential ordering of pos-
sible cell states 206 may be arbitrary. However, typically the
sequential ordering of the possible cell states 206 may corre-
spond to the order in which the cell 204 traverses the possible
cell states 206 under the action of one or more of the opera-
tions available for manipulating the state of the memory cell
204. Continuing the example of the flash memory, the pos-
sible cell states 206 may be ordered sequentially according to
the trapped charge specified by each state. For example, if an
available memory operation includes injecting electrons into
the cell 204, the lowest cell state (e.g. 206a) may be defined as
the state that occurs when the cell 204 comprises the highest
trapped charge (i.e. the fewest trapped electrons) and the
highest cell state (e.g. 2064) may be defined as the state that
occurs when the cell 204 comprises the least trapped charge
(i.e. the most trapped electrons). Intermediate cell states (e.g.
2065, etc.) may be ordered sequentially (i.e. from lower cell
states to higher cell states) in order of decreasing trapped
charge (i.e. increasing number of trapped electrons). Alterna-
tively, the possible cell states 206 may be sequentially ordered
according to any other specification. For example, in some
implementations, the possible cell states 206 may be ordered
sequentially from the lowest cell state (e.g. 206a) to the
highest cell state (e.g. 206¢) in order of increasing trapped
charge (i.e. decreasing number of trapped electrons), which
may be useful for memories in which cells are erased by
injecting electrons up to some level and data is written by
selectively removing electrons from the cell.

Each of the possible cell states (206a, 2065, etc.) may be
labeled or associated with a cell value. For example, as illus-
trated in FIG. 2, the cell value “0” may correspond to the
lowest cell state (e.g. 206a), the cell value “1” may corre-
spond to the second lowest cell state (e.g. 2065), and the cell
value “q-1" may correspond to the highest cell state (e.g.
206¢). Other labeling schemes may also be used. For
example, the cell value “0”” may correspond to the highest cell
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state (e.g. 206¢), the cell value “q-2" may correspond to the
second lowest cell state (e.g. 2065), and the cell value “q-1"
may correspond to the lowest cell state (e.g. 2064a). For the
purposes of the present disclosure, a cell state may be referred
to by the cell value corresponding to that state. For example
the cell state 206a may be referred to as the cell state “0.” In
the examples provided in FIGS. 3B and 3C, the lowest cell
state corresponds to the cell value “0” and the highest cell
state corresponds to the cell value “q-1."

Erasing a memory cell 204 may include lowering the
memory cell to its lowest cell state (e.g. the cell state “0”). In
some implementations, memory cells 204 may not be indi-
vidually erasable. For example, the operation for erasing the
memory cell 204a may necessitate erasing all of the memory
cells 204 of memory block 202a. In other implementations,
the memory cells 204 may be individually erasable, and indi-
vidually erasing a memory cell 204a may include a high-cost
operation (i.e. an operation that uses more computational
resources, such as time, energy, hardware, and/or hardware
damage, than other operations). Therefore, reducing the num-
ber of memory erasures performed while using the memory
102 may improve the effective speed, efficiency, and/or
operational lifetime of the memory 102.

Writing a cell value to a memory cell 204 may include
performing operations that cause the memory cell 204 to
assume the cell state corresponding to the cell value. For
example, writing the cell value “1” to memory cell 204a may
include raising the state of cell 2044 from the lowest cell state
206a (corresponding to the cell value “0”) to the second
lowest cell state 2065 (corresponding to the cell value “17). In
some implementations, writing a cell value to a memory cell
204 may be done using low-cost operations (i.e. an operation
that uses less computational resources, such as time, energy,
hardware, and/or hardware damage, than other operations),
such as raising the state of the memory cell 204 by injecting
charge into the cell 204. In some implementations, cell values
may be written to the cells 204 of the memory 102, and new
cell values may be rewritten to the cells 204 of the memory
102 before any of the memory cells 204 are erased (or new
cell values may be written to the subset of the cells 204 of the
memory 102 before any of the memory cells 204 in the subset
are erased). A write/erase cycle may refer to the sequence of
writing, rewriting (one or more times), and erasing cell values
on one or more memory cells 204.

In some implementations, the operational lifetime of the
memory 102 may be roughly bound by a finite number (e.g.
10°) of erasures (i.e. write/erase cycles). As the finite number
of erasures approaches, the reliability of manipulating, main-
taining, and/or detecting the state of' a memory cell 204 may
become reduced. At some point, the reliability may render the
memory cell 204 effectively or actually unusable because the
memory may be incapable of storing data for an acceptable
period of time and/or may require an unacceptable amount of
error correction. For example, after a certain number of era-
sures of a flash memory cell, the flash memory cell may tend
to leak electrons, impairing the ability of the flash memory
cell to maintain a specified amount of charge. As another
example, after a certain number of erasures, the ability to
erase a flash memory cell (i.e. to remove some or all of the
trapped electric charge) may be reduced. Therefore, increas-
ing the number of times that information can be written to the
memory 102 before the memory 102 is erased may increase
the effective lifetime of the memory 102. The techniques
described here may increase the number of times that infor-
mation can be rewritten to the memory block 202 before the
memory block 202 is erased.
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The information stored in the memory 102 may include
current and previous values of multiple variables. A variable
may be a label representing one of a well-defined set (i.e. an
alphabet) of possible values. The value (or store value) of a
variable may be the particular one of the possible values
represented by a variable in the memory 102. A variable, for
example, may be an integer variable, a fixed point variable, a
floating point variable, a single- or double-precision variable,
or others. The current and previous values of a variable may
be stored as a time-ordered sequence of values.

When the current and previous store values of one or more
variables are stored in a memory block 2024, the store values
may be mapped to a corresponding set of cell values, and the
cell values may be subsequently written to the memory cells
204 ofthe memory block 202a. For example, a variable v may
have a current store value of 0 and previous store values of 1
and 0, 1 being the most recent store value and O being the
second most recent store value. In a particular example, if the
current value and two most recent store values of the variable
v are to be jointly stored in the state of a single memory cell
204a, the sequence of store values (0, 1, 0) may be mapped to
the cell value “3.” The cell value “3” may then be written to
the memory cell 204aq. If the state of the variable v is then
updated to a current store value of 1, the most recent store
value would be 0 and the second most recent store value
would be 1. The sequence of store values (1, 0, 1) may then be
mapped to the cell value “7,” and the cell value “7” may be
written to the memory cell. Subsequently, the state of the
memory cell 204a may be detected, and the cell values cor-
responding to the detected cell state may be used to recover
the current, the most recent, and/or the second most recent
store values of the variable v.

The mapping between cell values (which designate cell
states) and store values (which designate values of variables)
may be defined arbitrarily and stored, for example, as a table.
In some implementations, the mapping between cell values
and store values may be defined algorithmically, for example,
by a code construction. A code construction may allow cur-
rent and previous values of multiple variables to be stored
jointly in a plurality of memory cells and may increase the
number of times that one or more variables can be updated
before the state of any one of the plurality of memory cells is
lowered (e.g. by erasure). In some implementations, a code
construction may include an algorithm that maximizes, sub-
stantially maximizes, or otherwise provides a relative
increase in, a minimum number of times that current and
previous values of one or more variables can be updated in the
memory 102 without erasing one or more of the memory cells
204, under a constraint that, when updating the variables in
the memory, each of the memory cells 204 either remains in
its previous cell state or progresses to a cell state higher than
its previous cell state.

In some implementations, a code construction may imple-
ment error correction. For example, the system 100 may
implement an error-correcting code construction that allows
errors to be removed from information stored in and/or read
from the memory 102. An error-correcting code construction
may be based on an error model. The error model may be
based on noise and/or error parameters, such as maximum
read errors. Error parameters may be calculated based on
measurements of noise affecting the memory 102 or the pro-
cessor 104.

A number of example code constructions are described in
the present disclosure and with regard to the figures. In at least
some implementations, any code construction and/or algo-
rithm for storing current and past of values of one or more
variables jointly in a memory and/or for updating current and
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past of values of one or more variables jointly in a memory
may be used. Some of the concepts of the present disclosure
are demonstrated in the examples, but the concepts of the
present disclosure are not necessarily limited to the details of
any of the examples.

In the context of the following examples, a sequence of r
store values (one current store value and the r—1 most recent
store values) of a variable may be stored in a memory com-
prising n memory cells, where n may be a positive integer.
According to various embodiments, r may be less than, equal
to, or greater than n. Each of the n memory cells may include
q possible cell states, ordered from a lowest cell state, corre-
sponding to a cell value of “0,” to a highest cell state, corre-
sponding to a cell value of “q-1". A value of q may be an
integer greater than 1. In the examples, a variable has an
alphabet of size 2: {0,1}, meaning that each store value of the
variable may be one of 2 possible values. In general, a vari-
able of arbitrarily large alphabet may be stored in the n
memory cells.

Avariable vector (e.g. (v, Vs, ...,V )wherev,e{0,1}) may
represent a sequence of store values that includes one current
store value v, and the r-1 most recent store values (v,
Vs, ...V, ;). For example, v,_, may be the most recent store
value, v,_, may be the second most recent store value, and so
forth. A cell state vector (e.g. (¢, Cs, - . . ¢,) Where ¢, €{0,
1,...q-1}) may represent the collective state of the n cells of
the memory. A cell state vector may include n cell values,
each cell value corresponding to the state of one of the n
memory cells. According to some implementations, a code
construction may map a cell state vector to exactly one vari-
able vector, and a code construction may map a variable
vector to more than one cell state vector. A code construction
may identitfy the particular cell state vector to be rewritten to
the memory cells based on the current states of the memory
cells in addition to the updated current store value of the
variable. A code construction may be embodied as instruc-
tions (e.g. including rules, formulae, and/or tables) encoded
onatangible medium, such as the memory 102 of FIGS. 1 and
2, and executed by a processor, such as the processor 104 of
FIG. 1.

FIG. 3A is a diagram illustrating a graphical representation
of'a code construction in accordance with some aspects of the
present disclosure. FIGS. 3B and 3C are diagrams and tables
illustrating example code constructions in accordance with
some aspects of the present disclosure. The graphical conven-
tions used in FIG. 3A are used consistently through FIGS. 3B
and 3C. A value or set of values illustrated inside of a circle
represents a variable vector. Circle 302 represents the variable
vector (v, V,, . ..V,) foravariable v. Circle 304 represents an
updated variable vector (e.g. (v, Vs, . .. V,.,.; ) after the current
store value of the variable v has changed from v,, to v, .
Circle 306 represents an updated variable vector (e.g. (v,,
Vs, ...V,,,") after the current store value of the variable v has
changed from v, to v, ,". Arrow 308 indicates an operation
+x,; may be applied to the n memory cells to represent that the
current store value of the variable v is changed from v, tov, ;.
The operation +x,; may indicate a cell state transition, for
example, that the cell state of a memory cell is raised by an
amount x,. Arrow 310 indicates an operation +xX, may be
applied to the n memory cells to represent that the current
store value of the variable v is changed from v, tov,,,".

Code Construction CC-I (n=1, g>1, r>0)

A Code Construction CC-I is an example code construc-
tion that can be used to implement the described techniques.
The code CC-I may be generated for any set of values satis-
fying n=1, g>1, and r>0 according to the mapping f,, which
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maps a cell value x to a binary variable vector of length r. The
mapping f, may be a surjective mapping from N to {0, 1},
defined as:

Sfix)=x mod 2

and for r>0,

St )=(0,7,0)) , if (v mod 27 )<

Sre1)=(1, F{x)) , otherwise.

The overbar denotes the NOT function (e.g. 0=1 and T=0),
and “mod” denotes the modulus function (e.g. 3 mod 3=0; 4
mod 3=1; 5 mod 3=2; 6 mod 3=0). The code construction
CC-l is further described by particular examples of the code
CC-I illustrated in FIGS. 3B and 3C. Some code construc-
tions may allow specification of a value t, the minimum
number of times that any one of the stored variables can be
updated under a condition that each of the n cells of the
memory begins in the lowest cell state and each of the n cells
of the memory either remains in its previous cell state or
progresses to a higher cell state upon each update. In some
implementations, the code CC-I may allow t equal to
[q/27+r-2.

FIG. 3B includes a diagram 325 and a table 330, which
collectively illustrate an example code construction CC-1B,
which is an example of the code CCI for the case of n=1, q=6,
r=2. The code CC-IB defines a mapping between cell values
and store values of a single variable v, wherein a current store
value and a most recent store value of the variable v are stored
jointly on a single memory cell comprising six possible cell
states. The code CC-IB may allow t equal to three. FIG. 3C
includes a diagram 335 and a table 340, which collectively
illustrate an example code construction CC-IC, which is an
example embodiment of the code CCI for the case of n=1,
q=12, r=3. The code CC-IC defines a mapping between cell
values and store values of a single variable v, wherein a
current store value and two most recent store values (i.e. a
most recent store value and a second most recent store value)
of the variable v are stored jointly on a single memory cell
comprising twelve possible cell states. The code CC-IC may
allow t equal to four.

As shown in the diagram 325 of FIG. 3B, if the current store
value is 1 and the most recent store value is 0 (i.e. the variable
vector is (0, 1)), the current store value may be updated to 1
(i.e. making the variable vector (1, 1)) by raising the state of
the memory cell by “+1.” Similarly, if the current store value
is 1 and the most recent store value is 0 (i.e. the variable vector
is (0, 1)), the current store value may be updated to O (i.e.
making the variable vector (1, 0)) by raising the state of the
memory cell by “+2.” For example, if the current cell state is
“1,” the current store value is 1, and the most recent store
value is O (i.e. the variable vector is (0, 1)), then updating the
value of the variable v to 0, then to 0, then to 1, may be
represented in the memory cell by changing the cell state as
“17—37—=47 5" (e.g. because “17+—“37; “37+%4”;
“47+57).

As shown in the table 330 of FIG. 3B, ifthe memory cell is
in the state corresponding to either the cell value “0” or the
cell value “4,” the current store value and the most recent store
value may both be 0 (i.e. the variable vector (0, 0)). Similarly,
if the memory cell is in the state corresponding to either the
cell value “1” or the cell value ““5,” the current store value may
be 1 and the most recent store value may be 0 (i.e. the variable
vector (0, 1)). Ifthe memory cell is in the state corresponding
to the cell value *“2.” both the current store value and the most
recent store value may be 1 (i.e. the variable vector (1, 1)). If
the memory cell is in the state corresponding to the cell value
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“3,” the current store value may be 0 and the most recent store
value may be 1 (i.e. the variable vector (1, 0)).

The diagram 335 of FIG. 3C uses the same conventions as
the diagram 300 of FIG. 3A and the diagram 325 of FIG. 3B.
For example, if the current store value is 1, the most recent
store value is 0, and the second most recent store value is 0
(i.e. the variable vector (0, 0, 1)), the current store value may
be updated to 1 (i.e. making the variable vector (0, 1, 1)) by
raising the state of the memory cell by “+1.” Similarly, if the
current store value is 1, the most recent store value is 0, and
the second most recent store value is O (i.e. the variable vector
(0, 0, 1)), the current store value may be updated to 0 (i.e.
making the variable vector (0, 1, 0)) by raising the state of the
memory cell by “+2.” The table 340 of FIG. 3C uses the same
format as table 330 of FIG. 3B. For example, if the memory
cell is in the state corresponding to either the cell value “0” or
the cell value ““8,” the current store value, the most recent store
value, and the second most recent store value are all 0 (i.e. the
variable vector (0, 0, 0)).

Code Construction CC-1I (nZ2r, g>1, r>0)

An alternative Code Construction CC-I1 may be generated
for any set of values satisfying n==2r, ¢>>1, and r>0. In some
implementations, the code CC-II may allow a value of t that is
asymptotically maximal as n and q become large (e.g. as n
and/or q approaches infinity). The code CC-II may allow
t=(q-1)(n-2r+1)+r-1.

The code CC-II is first presented for the case of =2, and
then the code CC-I1 is extended for arbitrarily large values of
q (e.g. ¢>2). The code CC-II may begin with all of the n
memory cells in the cell state “0” (e.g. the cell state vector (0,
0, 0, 0, 0) for n=5). The set of cell state vectors that may be
written to the memory cells after i times of rewriting may be
referred to as the i-th generation of cell state vectors. For
example, for n=>5, the 1% generation of cell state vectors may
include the cell state vectors (0,0, 0,0, 1), (0, 0,0, 1,0), (0,0,
1,0,0),(0,1,0,0,0),and (1, 0,0,0,0). A valid cell state vector
in the i-th generation (¢, c,, . . . , ¢,)) may have the property
that, fori=1, 2, . . ., n-r, there are i cells in the state “1” and
there are n—i cells in the state “0.” Furthermore, the i cells in
the state “1” may belong to the set {a,, a,, .. ., a,,,.} (e.g. the
first i+r cells). A valid cell state vector (¢, ¢, . . ., C,,) may be
in the

[ C;]— th
i=1

generation. According to the code CC-II, a valid cell state
vector (¢4, Cs, - . ., C,,) in the i-th generation may be mapped
to a variable vector (v, v,, . . .,V, ) foravariable v as follows:
forj=1,2,...,1, v/,

For the case of q=2, the code CC-II may enable the variable
v to be updated n—r times (i.e. the code CC-II may allow n-r
writing operations). For example, the n memory cells may be
in a collective state corresponding to the valid cell state vector
(X1, X5, - . ., X,,) of the i-th generation (where 0=i=n-r), and
updating the variable v may change the current store value to
y. In some implementations, updated cell values may be writ-
ten to the memory cells only when an update to the variable v
changes the variable vector. Therefore, if the variable vector
is(0,0,...,0)or(1,1,...,1), then updated cell values may
not be written to the memory cells when y equals 0 or 1,
respectively. Proceeding with the example, the cell state vec-
tor may be updated as follows: if y=0, an integer j=i+1 may
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be found such that x,=0, and c, (i.e. the state of the j-th cell)
may bechangedto “1;”andify=1, thenc,,,.,, may be changed
from “0” to “1

A specific example implementation of the code CC-II is
presented for the case n=9, q=2, and r=3. If updating the
variable v six times in the memory (i.e. n—r=6 writing opera-
tions) changes the variable vector as (0, 0, 0)—(0, 0, 1)—(0,
1, D—(1, 1, 0)—(1, 0, 0)—(0, 0, 1)—(0, 1, 0), then the cell
state vector representing the collective state of the n=9
memory cells may change as (0, 0, 0, 0, 0, 0, 0, 0, 0)—(0, 0,
0,1,0,0,0,0,0—(0,0,0,1,1,0,0,0,0—(0,0,1,1, 1, 0,
0,0,0)—(0,1,1,1,1,0,0,0,0)—(0,1,1,1,1,0,0, 1, 0)—(0,
1,1,1,1, 1,0, 1, 0). A cell state vector may be mapped to a
variable vector by reading the (w+1)-th, (w+2)-th, . . ., (W+r)-
th entries in the cell state vector, where w is the number of <“1”
cell values occurring in the cell state vector.

The code CC-II may be extended from q=2 to arbitrary q
(e.g.q>2). The code CC-II may use the n memory cells “layer
by layer”” When q>2, for the first n—r updates (i.e. rewrites),
the memory cells may be used in the same manner as they are
used for the case of q=2 (i.e. using only two cell states, “0”
and “1,” of the q possible cell states). If updating the variable
v for the (n-r+1)-th time changes the variable vector to
(Vi=Z;, V5=Zs, . . . , V,=Z,), the (n—r+1)-th writing operation
may be carried out as follows: (1) every cell may be raised to
the cell state “1”; (2) the cell state vector (1, 1, ..., 1) may be
treated as the cell state vector (0, 0, . .., 0) is treated in the first
n-r updates; (3) the cell state “1” may be treated as the cell
state “0” is treated in the first n—r updates, and the cell state
“2” may betreated as the cell state “1” is treated in the first n—r
updates, including the way cell state vectors are mapped to
variable vectors and the way writing operations are per-
formed; (4) r successive rewriting operations may be per-
formed, where the i-th rewriting operation (1=i=r) changes
the current store value of the variable (i.e. v,) to z,. After the
r-th rewrite, the cell state vector may correspond to the vari-
able vector (v,=7,, V,=Z,, . . ., V,=Z,), and the two cell states
“1” and “2” may be used to perform further updates as the two
cell states “0” and “1” are used to perform the first n-r
updates. The code CC-II may allow (n-2r+1) updates to be
performed using the two cell states “1” and “2” as described
herein. The code CC-II may proceed by using the cell states
“2” and “3” (and generally the cell states “m-1"" and “m” for
m<q) for updating the variable v in a similar manner.

A specific example implementation of the code CC-II is
presented for the case n=9, q=4, and r=3. The collective state
of'the n=9 memory cells may be represented by the cell state
vector (0, 1, 1, 1, 1, 1, 0, 1, 0), which may be in the (n-r)-th
generation and correspond to the variable vector (0, 1, 0). If
updating the variable v three times in the memory changes the
current store value to 1, 0 and 1 successively, then the cell
state vector representing the collective state of the n=9
memory cells may change as (0, 1,1, 1,1, 1,0, 1, 0)—=(1, 1,
2,2,1,2,1,1,H)—=(1,2,2,2,1,2,1,1, 1)—(1,2,2,2,1, 2,
1,2, D).

Code Construction CC-III (n>0, g>1, r=2)

Another Code Construction CC-I1I may be generated for
any set of values satisfying n>0, g>1, and r=2. For the case of
q=2, the code CC-III may maximize, substantially maximize,
or otherwise increase the value of t (e.g. t=(n-1)). More
generally, the code CC-III may allow a value of t equal to
(q-D(n-2)+1.

The code CC-111 is first presented for the case of q=2, and
then the code CC-I11 is extended for arbitrarily large values of
q (e.g. ¢>2). The code CC-III may use the same technique as
the code CC-III to map cell state vectors of the 1%, 2", . . .,
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(n-2)-th generations to variable vectors, adding the following
specifications to handle the first n—2 rewriting operations:

The n memory cells may be in a collective state corre-
sponding to the cell state vector (x;, X,, . . . , X,,) of the i-th
generation (where 0=i=n-2), and the corresponding vari-
able vector may be (v,=x,,, v,=X,,,).) Updating the variable
v may change the current store value to y, and rewriting the
memory cells may be performed as follows: (1) if y=0 and
(X415 X;,0)=(0, 1), then ¢, (i.e. the state of the (i+1)-th cell)
may be changed to “17; (2) if y=0 and (x,, ;, X;,,)=(1, 0), an
integer j=i may be found such that x=0, and c; may be
changed to “17; (3) if y=0 and (Xx,,;, X,,,)=(1, 1), then an
integer j=i may be found such that “x,=0 and (i+3)-j is an
eveninteger,” and ¢, may be changed to 1; (4) if y=1, c,, ; may
be changed from “0” to “1.”

A valid cell state vector in the (n—-1)-th generation may
have the property that, among the n memory cells, n—1 of the
cells are in the cell state “1” and one of the cells is in the cell
state “0.” A valid cell state vector in the (n-1)-th generation
may be mapped to a variable vector (v, v,) according to the
following specifications: (1) if i=n-2 and if n-i is even, then
(v1,v2)=(1,0); (2) ifi=n-2 and if n—i is odd, then (v,, v,)=(0,
0); (3) if i=n-1, then (v,, v,)=(1, 1); (4) if i=n, then (v,,
v2)=(0, 1).

After the variable v has been updated in the memory n-2
times (i.e. after the (n-2)-th rewrite), the collective state of the
memory cells may be represented by the cell state vector (x,,
X,, - - - X,,), and the corresponding variable vector may be
(V,=X,,_1, V,=X,,). If the (n-1)-th update of the variable v is to
change the store value to y, then, according to the code CC-I1I,
the update may be performed according to the following
specifications: (1) If either “y=0 and (x,_,, x,,)=(0, 1)” or
“y=1 and (x,,_,, x,,)=0, 0),” then ¢, _, may be changed from
“0” to “17; (2) If y=0 and (x,,_;, x,)=(1, 0), then ¢, may be
changed from O to 1; (3) If y=0 and (x,,_,, x,)=(1, 1), then an
integer j may be specified such that j=n-2, x,=0, and n-j is
odd, and ¢, may be changed from “0” to “1”; (4) If y=1 and
(X,,_1, X, )=either (0, 1) or (1,0), then an integer j may be
specified such that j=n-2 and x=0, and c; may be changed
from “0” to “1”.

A specific example implementation of the code CC-III is
presented for the case n=6, q=2, r=2. If updating the variable
v five times in the memory changes the variable vector as (0,
0)—(0, 1)—(1, 0)—(0, 1)—(1, 1)—(1, 0), then the cell state
vector representing the collective state of the n=6 memory
cells may change as (0, 0, 0,0, 0,0) —(0,0, 1,0,0,0)—(0, 1,
1,0,00—(0,1,1,0,1,0)—(0,1,1,0,1,1)—(1,1,1,0,1, 1).

FIG. 4 is a flow chart illustrating an example process 400
for storing information in a memory. The process 400 may
generally be used for storing and updating information in a
memory. In particular, the process 400 may be used for stor-
ing and updating multiple store values of each of one or more
variables jointly in the collective state of one or more cells of
a memory. The multiple store values may include a current
store value of each of the one or more variables as well as one
or more previous values of each of the one or more variables.
Additionally, the process 400 may be used to update infor-
mation stored in memory cells using only operations that
transit the memory cells to higher cell states and leave all
other memory cells in their previous cell states. The process
400 may be used for storing information in the memory 102 of
FIG. 1.

At 402, current store values of one or more variables to be
stored in a memory may be identified. The memory may, for
example, be the memory 102 of FIGS. 1 and 2. In some
implementations, the memory may comprise any of an opti-
cally encoded memory, a flash memory, a hard drive of a
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computer, a write asymmetric memory, and/or a write once
memory. A write once memory may include cells that only
transit in one direction (e.g. to higher cell states or to lower
cell states). For example, a punch card or an optically encoded
memory (e.g. CD-ROM) may comprise a write once memory.

The memory may include one or more memory cells (e.g.
n memory cells). Each of the n cells may comprise a plurality
of possible cell states sequentially ordered from a lowest cell
state to a highest cell state. The collective state of the n cells
may jointly represent a plurality of store values, the plurality
of store values including the current store values and one or
more previous store values of each of the one or more vari-
ables. The cell state of at least one of the n cells values may be
individually based at least in part on more than one of the
plurality of store values.

At 404, n cell values representing the current store value
and r-1 previous store values of the one or more variables are
identified, where each of the n current cell values corresponds
to of q possible cell states. The q possible cell states may be
defined, for example, as a specified amount of trapped charge
in a cell. The possible cell states may be ordered sequentially
from the lowest cell state to the highest cell state in order of
increasing or decreasing trapped charge. In some implemen-
tations, each memory cell may comprise q=2 possible cell
states, which may correspond to a binary system. In other
implementations, each memory cell may comprise g>2 pos-
sible cell states. In some implementations, the n cell values
are determined based at least in part on a code construction,
and the code construction may include an algorithm having
inputs comprising the current store value of each of the one or
more variables and/or the current state of one or more of the
n cells of the memory.

In some implementations, each of the one or more vari-
ables comprises two possible store values, and each of the
current (and each of the previous) store values may corre-
spond to one of the two possible store values. Writing the n
current cell values to the n cells of the memory may comprise
updating the one or more variables in the memory. In some
implementations, the one or more variables may comprise a
single variable, and for a given set of values of n, r, and g, an
algorithm may substantially maximize a minimum number of
times that the variable can be updated in the memory, under a
constraint that, when updating the variable in the memory,
each of'the n cells of the memory either remains in its previous
cell state or progresses to a cell state higher than its previous
cell state.

At 406, the n current cell values are written to the n cells by
raising the state of one or more of the cells and leaving other
cells in their previous cell states. In some implementations,
the one or more variables may be updated multiple times.
Each time the one or more variables are updated, the process
400 may returnto 402 and proceed. In some implementations,
the process may implement 402, 404, and 406 as many times
as it is possible (e.g. t times) to update the one or more
variables under the condition that, each time one or more of
the variables is updated, none of the n cells is transited to a
lower state. In some implementations, after the one or more
variables is updated, the memory cells may subsequently be
erased or lowered to a lower cell state (e.g. the lowest cell
state). For example, the memory cells may be erased once
there are no available higher cell states.

In some implementations, the one or more variables
include a single variable, and the i-th time that the variable is
updated, an i-th plurality of store values are stored in the n
memory cells. The i-th plurality of store values may include
an i-th current store value and an i-th set of r-1 previous store
values. The i-th set of r-1 previous store values may include
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the (i-1)-th current store value and one or more of the (i-1)-th
set of r—1 previous store values. In some implementations,
each plurality of store values may comprise two store values
(i.e. r=2) including a current store value and a most recent
store value of the variable.

A number of embodiments of the invention have been
described. Nevertheless, it will be understood that various
modifications may be made without departing from the spirit
and scope of the invention. For example, code constructions
other than the examples described herein may be used to store
and update information (e.g. current and previous values of
variables) in a memory. Furthermore, a code construction
may implement additional, fewer, and/or different operations
than the examples described herein, and a code construction
may implement the operations in an order other than the order
described in the examples. Accordingly, other embodiments
are within the scope of the following claims.

What is claimed is:

1. A method comprising:

representing at least one variable with at least one cell value

in a memory, wherein each variable is associated with
one or more of the cell values; and

defining multiple states of the atleast one variable, wherein

each of the multiple states of the at least one variable
comprises a current store value for each variable and at
least one previous store value for the variable, and at
least one single cell value influences the current store
value and previous store value of the at least one vari-
able.

2. The method of claim 1 comprising:

writing n first cell values to n cells of a memory, each of the

n cells comprising a plurality of possible cell states
sequentially ordered from a lowest cell state to a highest
cell state, each of the n first cell values corresponding to
one of the plurality of possible cell states, the n first cell
values jointly representing a first plurality of store values
of a variable, the first plurality of store values compris-
ing a first store value of the variable and one or more
previous store values of the variable, at least one of the n
first cell values comprising an individual cell value
based at least in part on more than one of the first plu-
rality of store values; and

writing n second cell values to the n cells of the memory,

each ofthe n second cell values corresponding to one of
the plurality of possible cell states, each of the n cells of
the memory either remaining in its previous cell state or
progressing to a cell state higher than its previous cell
state, the n second cell values jointly representing a
second plurality of store values of a variable, the second
plurality of store values comprising a new store value of
the variable and one or more previous store values of the
variable.

3. The method of claim 2, wherein the second plurality of
store values includes the first store value of the variable.

4. The method of claim 3, wherein the first plurality of store
values and the second plurality of store values each comprises
two store values, the one or more previous store values com-
prising a most recent store value of the variable.

5. The method of claim 3, wherein the second plurality of
store values further comprises at least one of the one or more
previous store values of the variable included in the first
plurality of store values.

6. The method of claim 3, wherein the first plurality of store
values and the second plurality of store values each comprises
r store values, r comprising a value greater than one, the
second plurality of store values comprising r-1 of the first
plurality of store values.

5

—

0

—

5

25

35

40

45

50

55

60

65

16

7. The method of claim 6, wherein the n second cell values
are determined based at least in part on an algorithm, the
algorithm having inputs comprising the second store value of
the variable.

8. The method of claim 7, wherein:

the variable comprises two possible store values, each of

the first plurality of store values and each of the second
plurality of store values corresponding to one of the two
possible store values;
each of'the n cells comprises q possible cell states, each of
the n first cell values and each of the n second cell values
corresponding to one of the q possible cell states; and

for a given set of values of r, n, and q, the algorithm
substantially maximizes a minimum number of times
that the variable can be updated in the memory, under a
constraint that, when updating the variable in the
memory, each of the n cells of the memory either
remains in its previous cell state or progresses to a cell
state higher than its previous cell state.

9. The method of claim 7, wherein:

the variable comprises two possible store values, each of

the first plurality of store values and each of the second
plurality of store values corresponding to one of the two
possible store values;
each of'the n cells comprises q possible cell states, each of
the n first cell values and each of the n second cell values
corresponding to one of the q possible cell states; and

the algorithm substantially allowing the variable to be
updated in the memory at least a number of times com-
prising:

[q/27~1]+r-2 times;
(q-1)(m-2r+1)+r-1 times; or

(q-1)(m-2)+1 times;

under a constraint that, when updating the variable in the
memory, each of the n cells of the memory either
remains in its previous cell state or progresses to a cell
state higher than its previous cell state.

10. The method of claim 2, wherein the memory comprises
a plurality of memory blocks, each of the memory blocks
comprising a plurality of cells, a particular one of the memory
blocks comprising at least a portion of the n cells, the method
further comprising performing an operation to lower the state
of'each cell of the particular memory block to the lowest cell
state.

11. The method of claim 10, wherein the operation to lower
the state of each cell of the particular memory block to the
lowest cell state is performed at some time after one or more
of'the plurality of variables can no longer be updated under a
condition that each ofthe n cells of the memory either remains
in its previous cell state or progresses to a higher cell state.

12. The method of claim 2, wherein each of the plurality of
possible cell states is defined by a quantity of charge stored in
one of the n cells of the memory.

13. The method of claim 2, further comprising detecting
one or more cell values, each of the one or more detected cell
values corresponding to a cell state of a particular one of the
n cells of the memory.

14. The method of claim 2, each of the n cells of the
memory having two possible cell states, each of the n first cell
values and each of the n second cell values corresponding to
one of the two possible cell states.

15. A method comprising:

identifying n first cell values for storage in n cells of a

memory, each of the n cells comprising a plurality of
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possible cell states sequentially ordered from a lowest
cell state to a highest cell state; and

writing the n first cell values to the n cells of the memory,

each of the n first cell values corresponding to one of the
plurality of possible cell states, the n first cell values
jointly representing a first plurality of store values of k
variables, the first plurality of store values comprising a
first store value of each of the k variables and one or
more previous store values of each of the k variables, at
least one of the n first cell values comprising an indi-
vidual cell value based at least in part on more than one
of the store values.

16. The method of claim 15, further comprising:

writing n second cell values to the n cells of the memory,

each ofthe n second cell values corresponding to one of
the plurality of possible cell states, the n second cell
values jointly representing a second plurality of store
values, the second plurality of store values comprising a
second store value of at least one of the k variables and
the first store value of at the least one of the k variables,
each of the n cells of the memory either remaining in its
previous cell state or progressing to a cell state higher
than its previous cell state.

17. An article comprising a computer-readable medium
storing instructions operable to cause data processing appa-
ratus to perform operations comprising:

receiving data for storage in a memory;

writing n first cell values comprising the received data to n

cells of the memory, each of the n cells comprising a
plurality of possible cell states sequentially ordered
from a lowest cell state to a highest cell state, each of the
n first cell values corresponding to one of the plurality of
possible cell states, the n first cell values jointly repre-
senting a first plurality of store values of a variable, the
first plurality of store values comprising a first store
value of the variable and one or more previous store
values of the variable, at least one of the n first cell values
comprising an individual cell value based at least in part
on more than one of the first plurality of store values.

18. The article of claim 17, the operations further compris-
ing:

writing n second cell values to the n cells of the memory,

each ofthe n second cell values corresponding to one of
the plurality of possible cell states, each of the n cells of
the memory either remaining in its previous cell state or
progressing to a cell state higher than its previous cell
state, the n second cell values representing a second
plurality of store values of the variable, the second plu-
rality of store values comprising a second store value
and the first current store value.
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19. The article of claim 18, the first plurality of store values
and the second plurality of store values each comprising r
store values, r comprising greater than one, the second plu-
rality of store values comprising r—1 of the first plurality of
store values.

20. The article of claim 19, wherein the n second cell values
are determined based at least in part on an algorithm, the
algorithm having inputs comprising the second store value of
the variable.

21. The article of claim 20, wherein:

the variable comprises two possible store values, each of
the first plurality of store values and each of the second
plurality of store values corresponding to one of the two
possible store values;

writing n second cell values to the n cells of the memory
comprises updating the variable in the memory;

each of'the n cells comprises q possible cell states, each of
the n first cell values and each of the n second cell values
corresponding to one of the q possible cell states; and

for a given set of values of r, n, and q, the algorithm
substantially maximizing a minimum number of times
that the variable can be updated in the memory, under a
constraint that, when updating the variable in the
memory, each of the n cells of the memory either
remains in its previous cell state or progresses to a cell
state higher than its previous cell state.

22. A system comprising:

a memory comprising a plurality of cells, each of the plu-
rality of cells comprising a plurality of possible cell
states sequentially ordered from a lowest cell state to a
highest cell state; and

aprocessor adapted to write n first cell values to the n cells,
each of the n first cell values corresponding to one of the
plurality of possible cell states, the n first cell values
jointly representing a first plurality of store values of a
variable, the first plurality of store values comprising a
first store value of the variable and one or more previous
store values of the variable, at least one of the n first cell
values comprising an individual cell value based at least
in part on more than one of the first plurality of store
values.

23. The system of claim 22, the memory comprising at least
one of an optically encoded memory, a flash memory, a hard
drive of a computer, a write asymmetric memory, or a write
once memory.

24. The system of claim 22, the memory comprising a
plurality of memory blocks, each of the memory blocks com-
prising its own plurality of cells.
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