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Outline 

• NAND Flash Basics 

• SLC/MLC Read/Write Processes 

• Noise Sources 
– Endurance & Retention 

–Write Induced 

–Read Induced 

–Pattern Induced 
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Introduction 

• In an effort to reduce the cost of NAND flash-
based storage devices, NAND manufacturers have 
aggressively scaled down their process. 

• This scaling has exceeded the rate predicted by 
Moore’s Law and has reduced the price/GB from 
> $100 in 2008 to < $1 today. 

• Unfortunately, scaling down the feature size of 
NAND flash cells acts to exacerbate many of its 
noise sources. 

• To design reliable NAND-based storage systems, 
these noise sources must be well-understood. 
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NAND Process/Cost Evolution (MLC) 
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Storage Device Architecture 
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NAND Flash Basics 

• Information is stored in a NAND flash cell by 
raising its floating-gate voltage to one of a 
discrete set of values. 
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• SLC: 1 bit/cell 

 

• MLC: 2 bits/cell 

 

• TLC: 3 bits/cell 

 



SLC/LSB Write Process 

All cells start in 
erased level 

voltage 
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SLC/LSB Write Process 

All cells start in 
erased level 

voltage 
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SLC/LSB Read Process 

• A reference voltage (Vread) is specified by a 
NAND register. 

– Cells w/ threshold voltages < (>) Vread read 1 (0). 
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SLC/LSB Read Process 

• A reference voltage (Vread) is specified by a 
NAND register. 

– Cells w/ threshold voltages < (>) Vread read 1 (0). 
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MLC (MSB) Write Process 
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MLC (MSB) Write Process 
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MLC (MSB) Write Process 
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MLC (MSB) Read Process 

voltage 

11 10 00 01 

• Two reference voltages (VreadA & VreadC) specified. 

• Two reads are conducted and the output is: 

– 0:  VreadA ≤ Vth ≤ VreadC 

– 1:  Vth < VreadA  or Vth  VreadC 
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MLC (MSB) Read Process 

voltage 

11 10 00 01 

• Two reference voltages (VreadA & VreadC) specified. 
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– 0:  VreadA ≤ Vth ≤ VreadC 
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Noise Sources 

• Endurance & Retention (single cell) 

• NAND Array Based Noise 

– The Write Process 

• Capacitive Coupling 

• Program Disturb 

– The Read Process 

• Read Disturb 

• Read Noise (RTN) 

– Data Pattern 

• Back Pattern Effect 
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Single Cell Program/Erase 

• Program/erase operations force charge on/off the 
floating-gates of NAND cells through Fowler-
Nordheim (FN) tunneling.  

𝐽𝐹𝑁 = 𝐴𝑡 × 𝐸𝑜𝑥
2 × 𝑒

−
𝐵𝑡

𝐸𝑜𝑥
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Cycling/Retention Effects 

• As a cell is cycled the tunneling oxide forms traps 
– Broken atomic bonds in oxide matrix due to tunneling. 

• Electrons can more easily leak from the FG to the channel by 
Trap Assisted Tunneling (TAT) . 

• When filled with electrons, traps can increase the potential 
barrier, reducing the tunneling current and increase Vth. 
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3m Retention 
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12m Retention 
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Mitigating Endurance/Retention 

• Endurance: 
– Reduce the amount of data written to the NAND 

• Data Compression. 
• Reduce write amplification = NAND writes/host writes. 

– Wear-Leveling: Ensure all blocks are used equally 
• All blocks reach EOL at the same time. 

• Retention: 
– Refreshing old blocks. 

• Background media scan. 

• Both: 
– Stronger ECC. 
– Better Signal processing. 
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WRITING TO THE NAND ARRAY 
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The Write Process ISPP 
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The Write Process ISPP 
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The Write Process ISPP 
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The Write Process ISPP 
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CAPACITIVE COUPLING  

44 



Wli+1

WLi

Wli-1

BLj,e BLj,o BLj+1,e BLj+1,oBLj-1,e BLj-1,o

Capacitive Coupling 

• Each floating gate is coupled to its neighbors. 

– Writing adds voltage to adjacent cells. 
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– 𝛼 depends on geometry (distance) and process. 
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Actual LSB Write (Pg2 after Pg2 Write) 
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Actual LSB Write (Pg2 after Pg3 Write) 
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Actual LSB Write (Pg2 after Pg3 Write) 
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Actual LSB Write (Pg2 after Pg7 Write) 
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Write Sequence 

• The sequence in which pages are written 
affects the induced capacitive coupling. 

 

– LSB applies ~0/2.5 volts. 
 

– MSB applies ~0/1.25 volts. 
 

• The overall goal is to degrade the final 
distributions (after MSB) minimally. 

• Write sequence acts to minimize this effect. 
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Even/Odd Bit Line (EOBL) Writing 
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Final Distributions (Cond. on Pg 3 &4) 
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Mitigating Capacitive Coupling 

• Many manufacturers are adopting all bitline 
(ABL) structure to minimize the number of 
aggressors. 

• Capacitive coupling is inter-symbol 
interference (ISI), i.e. largely deterministic. 

• Traditional methods for handling ISI 

– Write-precompensation? 

– Signal processing methods (ISI cancellation)? 
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PROGRAM DISTURB 
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• After each cell reaches 
its PV level, it is 
inhibited (as shown). 

• An inhibited cell has its 
channel voltage raised, 
thus reducing the 
voltage difference to its 
control gate.  
 
 

Program Disturb 
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Program Disturb 

• Although the inhibit process acts to reduce the 
electric field in the tunneling oxide, it does not 
eliminate it. 

• Some excess charge will be transferred to the 
floating-gate of inhibited cells. 

• This is most severe for cells in the erased level 
since they are inhibited throughout the write 
process. 

– Receive the most write-pulses after being inhibited. 
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Program Disturb (Experiment) 

• Continually re-write a single LSB page bringing 
successive bytes to the “0” level, i.e. 

• Remaining bytes read with Vread = 0. 
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00000000 11111111 11111111 … 11111111 11111111

00000000 00000000 11111111 … 11111111 11111111

00000000 00000000 00000000 … 11111111 11111111

00000000 00000000 00000000 … 00000000 11111111

...

1)
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3)

n)

Read

Read

Read

Read



Experimental Results 
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Program Disturb (Experiment) 

• All P/E cycles are affected by program-disturb 
at similar rates (lower P/E is affected slightly 
more). 

a) Higher P/E cycled pages require less pulses to 
program (minimizing program disturb). 

b) Higher P/E cycled pages will more readily take on 
excess charge (maximizing program disturb). 

• The effect of a) outweighs the effect of b). 
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Mitigating Program Disturb 

• Changing the write strategy by increasing 
Vpass will boost the channel voltage, lessening 
its effects. 

– Increasing Vpass increases pass disturb. 

• The effects of program disturb are primarily 
on the lowest level. 

– Can be taken into account when data is processed. 

• Pages are only programmed a single time. 
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READING FROM THE NAND ARRAY 
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Reading from the NAND Array 
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Read Process (WL2) 
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Read Process 

• Bitline (Istring) current operates in 1 of 3 regions: 

– A) Addressed cell not conductive (Vth < Vread) 

– B) Vread makes addressed cell conductive (Vth > Vread) 

– C) Cell is completely on, series resistance of pass 
transistors saturates current (Vth >> Vread).  

97 

Istring

Vread
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A 

B C 

• In practice, NAND 
currents of ~10nA 
must be read. 

• Capacitors used to  
integrate current to 
make sensing possible. 



READ DISTURB 
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Read Disturb 

• Unselected wordlines 
have Vpass applied to 
CG. 

• Selected wordline has 
Vread applied to CG. 

• Applied voltages 
cause unintended 
tunneling of charge. 

• Since Vread < Vpass, 
unselected wordlines 
are most severely 
affected. 
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Read Disturb 

• The total stress time for wordline j depends on 
the total reads to other wordlines. 

𝑀𝑎𝑥𝑆𝑇 𝑗 = 𝑇𝑟𝑒𝑎𝑑 ×  𝑁𝑟𝑒𝑎𝑑(𝑖)

63

𝑖=0,𝑖≠𝑗

 

• Wordline read the fewest (most) times in a block 
incurs the most (least) read-disturb. 

• Incidental tunneling is endurance dependent. 

• Read disturb most severely affects lowest levels. 
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0 P/E 
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1k P/E 
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2.5k P/E 
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5k P/E 
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Mitigating Read Disturb 

• In general, read-disturb is difficult to detect 
during normal read operations. 

– Page being read is minimally disturbed. 

– Since only lowest level affected, only MSB will be 
affected. 

• Continually reading the same page (LBA) will not 
show signs of read-disturb.  

• Read counters can be cumbersome to implement 
(firmware overhead) and expensive to store. 
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READ NOISE 
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Read Noise (RTN) 

• Traps that reside in the tunneling oxide near 
the channel can easily gain/lose electrons. 

• Cell voltage fluctuates in discrete states as this 
happens.  

107 

FG

CG



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Vth

P
M

F

Read Noise 

• To analyze the read-noise in 2ynm NAND, a 
page was read 100x at each read-threshold. 
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• To analyze the read-noise in 2ynm NAND, a 
page was read 100x at each read-threshold. 
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4 States 
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• To analyze the read-noise in 2ynm NAND, a 
page was read 100x at each read-threshold. 
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Vth=13 



Read Noise 
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Mitigating Read Noise 

• Signal processing techniques such as read-
averaging can be used to mitigate its effects. 

– Particularly since multiple reads (i.e. read-shifts) 
are often used to recover data. 

• Useful for randomizing error locations. 

– This randomization helps to reduce error-floors for 
some coding methodologies (i.e. LDPC). 
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BACK PATTERN EFFECT 
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SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Back Pattern Effect 

• During the read-
process, Vpass is 
applied to all non-
selected wordlines. 

• Cells along these 
wordlines are 
(ideally) set to pass. 
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Selected Wordline (k) 



SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Idealized Selection 

• In the ideal case, 
pass cells behave as 
short circuits. 

• The string-current 
(Istring), thus, is only a 
function of the 
selected cell. 

• Selected cells begins 
to conduct when 
Vread exceeds Vth. 
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SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

R0,0 R0,1 R0,2 R0,3 R0,n-1

R1,0 R1,1 R1,2 R1,3 R1,n-1

R61,0 R61,1 R61,2 R61,3 R61,n-1

R62,0 R62,1 R62,2 R62,3 R62,n-1

R63,0 R63,1 R63,2 R63,3 R63,n-1

Realistic Selection 

• Each transistor has a 
resistance which is a 
function of its 
threshold voltage 
and control gate 
voltage, i.e., 

 

𝑅𝑖,𝑗 ∝
1

𝑉𝑇𝐻
𝑖,𝑗
− 𝑉𝐺𝑆

𝑖,𝑗
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Back Pattern Effect 

• Total resistance for bit-line j, 

𝑅𝐵𝑗 ∝ 𝑅
1

𝑉𝑇𝐻
𝑘,𝑗

− 𝑉𝑟𝑒𝑎𝑑
+  𝑅

1

𝑉𝑇𝐻
𝑖,𝑗
− 𝑉𝑝𝑎𝑠𝑠

64

𝑖=0,𝑖≠𝑘

 

 

• Bit-line current depends on threshold voltages 
(i.e. data) of every cell the bit-string, 

𝐼𝐵𝑗 =
𝑉𝑏𝑙

𝑅𝐵𝑗
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Back Pattern Effect 

• To demonstrate, a block was written as follows 
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SA,0

Vbl

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

(b0,1) (b1,1) (b2,1) (b3,1) (bn-1,1)

(b0,1) (b1,1) (b2,1) (b3,1) (bn-1,1)

(b0,1) (b1,1) (b2,1) (b3,1) (bn-1,1)

(b0,1) (b1,1) (b2,1) (b3,1) (bn-1,1)

Random Patterns 

Repeated LSB, 
MSB = 1 

(only “11” and 
“01” levels) 
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WL1 Histogram (After 1st 2 wordlines) 
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WL1 After Block Completion 
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Repeated "10"

Repeated "11"

WL1After Block Completion (Conditional) 
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Mitigating Back Pattern Effect 

• To avoid the read-back dependence of a page 
on the data written to the remainder of the 
block, the data must be properly randomized. 

• Since user-data pattern may be repeated 
within a block, data scrambling must be used. 

• Scrambler pattern must ensure sufficient 
randomization is achieved in all cases. 
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SUMMARY 
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Write Noise 

124 
SA,0

Vpass

Vpass

Vpass

Vpass
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Vcc
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GND
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GND

GND

GND

Vpgm



Write Noise 
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GND
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Pass Disturb 



Write Noise 
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GND
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Write Noise 

127 
SA,0
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Vcc
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SA,1

GND

SA,2

Vcc

SA,n-1

GND

SA,3

GND

GND
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Pass Disturb 

Capacitive 
Coupling 

Program 
Disturb 



SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Noise 
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SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Noise 
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Read Disturb 



SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Noise 
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Read Disturb 

Read Noise 
(RTN) 



SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Noise 
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Read Disturb 

Read Noise 
(RTN) 

Back Pattern 
Effect 



Conclusion 

• There are many noise sources present in 
NAND flash memory. 
– Some are properties of the NAND flash cell. 

– Some are inherent to the array structure. 

• Many of these noise sources are exacerbated 
by the reduction in process. 

• By understanding these noise sources, 
algorithms can be utilized to maintain 
reliability through this process scaling. 
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Outline 

 Error Correction Codes 
 Constrained Codes 
 Rewriting Codes 
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SLC, MLC and TLC Flash 

High Voltage 

Low Voltage 

1 Bit Per Cell 
2 States 

SLC Flash 

011 
010 
000 
001 
101 
100 
110 
111 

01 

00 

10 

11 

0 

1 

High Voltage 

Low Voltage 

2 Bits Per 
Cell 

4 States 

MLC Flash 

High Voltage 

Low Voltage 

3 Bits Per 
Cell 

8 States 

TLC Flash 
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Flash Memory Structure 

 A group of cells constitute a page 
 A group of pages constitute a block 

• In SLC flash, a typical block layout is as follows 
 

page 0 page 1 
page 2 page 3 
page 4 page 5 

. 

. 

. 

. 

. 

. 
page 62 page 63 
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 In MLC flash the two bits within a cell DO NOT 
belong to the same page – MSB page and LSB page 

 Given a group of cells, all the MSB’s constitute one 
page and all the LSB’s constitute another page 

Row 
index 

MSB of first 
214 cells 

LSB of first 
214 cells 

MSB of last 
214 cells 

LSB of last 
214 cells 

0 page 0 page 4 page 1 page 5 
1 page 2 page 8 page 3 page 9 
2  page 6 page 12 page 7 page 13 
3  page 10 page 16 page 11 page 17 
 
⋮ 

 
⋮ 

 
⋮ 

 
⋮ 

 
⋮ 

30 page 118 page 124 page 119 page 125 
31 page 122 page 126 page 123 page 127 

01 

10 

00 

11 

MSB/LSB 
Flash Memory Structure 
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Row 
index 

MSB of 
first 216 

cells 

CSB of 
first 216 

cells 

LSB of 
first 216 

cells 

MSB of 
last 216 

cells 

CSB of 
last 216 

cells 

LSB of 
last 216 

cells 
0 page 0 page 1 
1 page 2 page 6 page 12 page 3 page 7 page 13 
2  page 4 page 10 page 18 page 5 page 11 page 19 
3  page 8 page 16 page 24 page 9 page 17 page 25 
4 page 14 page 22 page 30 page 15 page 23 page 31 
 
⋮ 

 
⋮ 

 
⋮ 

 
⋮ 

 
⋮ 

62 page 362 page 370 page 378 page 363 page 371 page 379 
63 page 368 page 376 page 369 page 377 
64 page 374 page 382 page 375 page 383 
65 page 380 page 381 

MSB Page   CSB Page   LSB Page    MSB Page   CSB Page   LSB Page 

TLC Structure 
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Shannon Capacity 

Every communication channel is 
characterized by a single number C, called 
the channel capacity.  
It is possible to transmit information over 
this channel reliably (with probability of 
error → 0) if and only if: 
  

C<
#

=R
def

use channel
bits ninformatio 

Marcus Marrow, SK Hynix Memory Solutions  
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Shannon Capacity 

0 0 

1 1 

1-p 

1-p 

p 

p 

           General Channel                                Discrete Channel 
 

 
 
 

Capacity (maximized by uniform P(X) for binary input symmetric channel) 

Marcus Marrow, SK Hynix Memory Solutions  
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Error Correction Codes 

 How does an Error Correction Code (ECC) work? 

page i redundancy 

Encoder 
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Error Correction Codes 

 How does an Error Correction Code (ECC) work? 

page i redundancy 

Decoder 

page i 
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Error Correction Codes 
 Code Rate =             #info. bits            g 

        #info. Bits + # redun. bits 
 Tradeoff: 

 
 

 Many ECCs: BCH, RS, Turbo, LDPC, Polar codes… 
 Question: What ECC to use…? 

BER Rate 

Complexity 
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Error Characterization 

 We tested several blocks of SLC/MLC/TLC chips 
 For each block the following steps were repeated: 

• The block is erased. 
• Pseudo-random data are programmed to the block. 
• The data are read and errors are identified. 

 
 

 Disclaimers: 
• We measured many more P/E cycles than the manufacturer’s 

guaranteed lifetime of the device 
• The experiments were done in laboratory conditions and related 

factors such as temperature change, intervals between erasures, 
or multiple readings before erasures were not considered. 
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 BCH Codes 
 LDPC Codes 

• Gallager codes (3,k)-regular, R=0.8, 0.9, 0.925, length 216 

• AR4JA protograph-based codes, R=0.8, lengths 1280, 5120, 
20480 

• MacKay codes variable-regular degree (3 or 4) ;  no 4-cycles, 
R=0.82, 0.87, 0.93; lengths 4095, 16383, 32000 

• IEEE 802.3an* (10Gb/s Ethernet), R ≈0.84, length 2048 
 BCH decoder: corrects error patterns with up to t 

errors; detects and leaves unchanged more than t errors 
 LDPC decoders: assume binary symmetric channel model 

BSC(p), with empirical error probability p 

* Djurdjevic et al., IEEE Commun. Letters, July 2003 

ECC Comparison for TLC flash 
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LDPC Decoders 
 Sum-product algorithm (SPA) 

• Floating-point, max iterations 200 
• (5+1)-bit quasi-uniform quantization 

 Min-sum algorithm (MSA) 
• No LLR limits, max iterations 200 

 Linear programming (LP) decoding 
• Alternating Direction Method of Multipliers 

(ADMM)* with new fast “projection step” 
 
 

 
* Barman, et al.,  Proc. 46th Allerton Conference,  Sept. 2011.   
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R≈0.8, LDPC with SPA Decoding 
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R≈0.82, LDPC with SPA Decoding 
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R≈0.9, LDPC with SPA Decoding  
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RAW BER

DJCM-3 MSA (R=0.82)

DJCM-4 MSA (R=0.82)

802.3an MSA (R=0.84)

DJCM-3 SPA (R=0.82)

DJCM-4 SPA (R=0.82)
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R≈0.8, MSA vs. SPA Decoding  
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R≈0.925, LP vs. SPA Decoding  
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General Observations 
 Best LDPC performance surpasses BCH at all 

code rates R≈ 0.8, 0.9, 0.925 
 MSA was inferior to SPA decoding at R≈0.8 
 LP-ADMM was comparable to SPA decoding at 

R≈0.925, with slightly steeper slope 
 (5+1)-bit quasi-uniform quantized SPA (not 

optimized) matches floating-point SPA 
 Soft Vs. Hard input 
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Error Correction Codes 

 Question: Is it possible to construct 
better ECCs? 

 Answer: Yes! If there is better knowledge 
on the error model 
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BER per page - MLC 

×105 

×10-3 

Pages, colored the 

same, behave similarly 

01 
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00 

11 

MSB/LSB 
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011 
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000 
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110 
111 

M/C/L 
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Bit Error Map in SLC 

 We checked how the errors behave per bit 
 For a small window of iterations, 1.5-1.6×106 

iterations (BER is roughly fixed), we 
measured the number of times each bit was 
in error 
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Bit Error Map for Odd Pages in SLC 

Calculate the number of times 

each bit is in error 

Errors are clustered in 

columns rather than rows 

×104 

×104 
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Cell-based ECC 

 Experiments have shown that certain 
specific cell-error types are dominant in 
MLC and TLC flash memories 

 The dominant cell errors in MLC involved 
a change in cell voltage by only one level:  
10 to 00  or 00 to 01 

 An algebraic code that targets such 
errors by sharing redundancy between 
MSB and LSB pages showed improved 
BER vs. P/E 

01 

10 

00 

11 
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ECC Scheme for TLC Flash 

 If a TLC cell is in error, then with high 
probability only one of the three bits in 
the cell is in error 

 The probability of a bit being in error 
does not depend on the target cell level 

 Algebraic coding schemes that target 
such errors offer potential BER 
improvements 

011 
010 
000 
001 
101 
100 
110 
111 

voltage  
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MLC (MSB) Write Process 

voltage 

voltage PV1 PV2 PV3 

LSB=1 

MSB=1 
LSB=1 

MSB=0 

LSB=0 

MSB=0 
LSB=0 

MSB=1 

LSB=1 LSB=0 

Vread 

LSB=1 LSB=0 
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ECC Scheme for TLC Flash 

 If a TLC cell is in error, then with high 
probability only one of the three bits in 
the cell is in error 

 The probability of a bit being in error 
does not depend on the target cell level 

 Algebraic coding schemes that target 
such errors offer potential BER 
improvements 

011 
010 
000 
001 
101 
100 
110 
111 

voltage  
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BER for Cell-based Code for TLC Flash 
R≈0.9 R≈0.925 
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Limited Magnitude Error-
Correcting Codes 

 Many storage applications, e.g. flash 
memories, phase-change memories and more, 
share the following common properties: 
• Cells have multiple levels: 0,1,…,q-1 
• Errors have an asymmetric behavior 
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Limited Magnitude Error-
Correcting Codes 

 Many storage applications, e.g. flash 
memories, phase-change memories and more, 
share the following common properties: 
• Cells have multiple levels: 0,1,…,q-1 
• Errors have an asymmetric behavior 
• If a cell error occurs, then the cell level increases 

(or decreases) by at most l levels 
 

 
33 



Limited Magnitude Error-
Correcting Codes 

 Many storage applications, e.g. flash 
memories, phase-change memories and more, 
share the following common properties: 
• Cells have multiple levels: 0,1,…,q-1 
• Errors have an asymmetric behavior 
• If a cell error occurs, then the cell level increases 

(or decreases) by at most l levels 
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 Flash memories 
• Cells increase their level during the programming 

process due to over-shooting 
• Cells decrease their level due to data retention 
• Errors become more prominent as the device is 

cycled 
 Phase change memories 

• The drift in these memories changes the cells’ levels 
in one direction 

Limited Magnitude Error-
Correcting Codes 
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MLC  Data Retention 

 

 

Cycle chip to 400% of 
lifetime 
 
Bake at 125oC for 
9hrs20mins per year of 
aging 

01 

10 

00 

11 
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Cell Drift in PCM 

Figure from: N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. 

Breitwisch, C. Lam, and E. Eleftheriou, “Drift-Tolerant Multilevel Phase-

Change Memory”, 3rd IEEE Memory Workshop, May 2011 

 Time evolution of programmed resistance distributions of 200 kcells due to 
drift: (a) as programmed, and (b) 40µs, (c) 1000s, (d) 46,000s after 
programming. 
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Constrained Codes 

 Codes designed to prevent specific data patterns 
• Ex. Run Length Limited codes RLL (d,k) 
• Number of 0s b/w consecutive 1s is at least d and at most k 
• Used in telecommunications and storage systems for 

synchronization purposes 
 What are the typical constraints in flash? 

 
 

 
38 



• Mitigate inter-cell interference    101 is forbidden 

Inter-Cell Interference (ICI) 

Program 

Interference 

Interference 

ci ci+1 ci−1 ci−2 

Program 

Avoid 101 

0 

1 

Read 
Threshold 

1 0 1 1 
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Balanced Codes 

0 1 1 0 1 0 1 0 

fixed 
threshold  
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0 1 1 0 1 0 1 0 
0 0 1 0 0 0 0 0 fixed 

Balanced Codes 

fixed 
threshold  
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• Write only balanced words: #0s = #1s 
• In reading: the n/2 low cells are read as 0 
      the n/2 high cells are read as 1 
• Relative ranking is most likely preserved 

0 1 1 0 1 0 1 0 

dynamic 
threshold  

0 0 1 0 0 0 0 0 
0 1 1 0 1 0 1 0 

fixed 
dynamic 

fixed 
threshold  

Balanced Codes 
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• Array of cells, made of floating gate transistors 
─ Each cell can store q different levels 
─ Today, q typically ranges between 2 and 16 
─ The levels are represented by the number of electrons  
─ The cell’s level is increased by pulsing electrons 
─ To reduce a cell level, all cells in its containing block 

must first be reset to level 0 
  A VERY EXPENSIVE OPERATION 

Rewriting Codes 
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Rewriting Codes 

 Problem: Cannot rewrite the memory 
without an erasure 

 However… It is still possible to rewrite if 
only cells in low level are programmed 
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From Wikipedia: 
One limitation of flash memory is that, although it can be read or 

programmed a byte or a word at a time in a random access fashion, it can 

only be erased a "block" at a time. This generally sets all bits in the block 

to 1. Starting with a freshly erased block, any location within that block 

can be programmed. However, once a bit has been set to 0, only by 
erasing the entire block can it be changed back to 1. In other words, 

flash memory (specifically NOR flash) offers random-access read and 

programming operations, but does not offer arbitrary random-access 

rewrite or erase operations. A location can, however, be rewritten as 
long as the new value's 0 bits are a superset of the over-written 
values. For example, a nibble value may be erased to 1111, then written 

e.g. as 1110. Successive writes to that nibble can change it to 1010, then 

0010, and finally 0000. Essentially, erasure sets all bits to 1, and 

programming can only clear bits to 0. File systems designed for flash 

devices can make use of this capability, for example to represent sector 

metadata. 
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 Problem: Cannot rewrite the memory 
without an erasure 

 However… It is still possible to rewrite if 
only cells in low level are programmed 

 Naive Example: 
• First write: program only  

the even pages 
• Second write: program only  

the odd pages 

page 0 page 1 
page 2 page 3 
page 4 page 5 

. 

. 

. 

. 

. 

. 

page 62 page 63 

Rewriting Codes 
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 One of the most efficient schemes to decrease 
the number of block erasures 

 Floating Codes  
 Buffer Codes 
 Trajectory Codes 
 Rank Modulation Codes 
 WOM Codes 

Rewriting Codes 
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Write-Once Memories (WOM) 
 Introduced by Rivest and Shamir, “How to reuse a 

write-once memory”, 1982 
 The memory elements represent  

bits (2 levels) and are irreversibly                                 
programmed from ‘0’ to ‘1’ 

1st  
Write 

2nd  
Write 
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WOM Implementation in SLC Flash 
 A scheme for storing two bits twice using 

only three cells before erasing the cells 
 The cells only increase their level 
 How to implement? (in SLC block) 

• Each page stores 2KB/1.5 = 4/3KB per write 

• A page can be written twice before erasing 
• Pages are encoded using the WOM code 
• When the block has to be rewritten, mark its 

pages as invalid 
• Again write pages using the WOM code without 

erasing 
• Read before write at the second write 

 

data 1st write 2nd write 

00 000 111 

01 100 011 

10 010 101 

11 001 110 

⋮ 

00.11.01.10.11 … 10 

WOM 
ENCODER 

000.001.100.010.001 … 010 

000.001.100.010.001 … 010 
01.10.00.10.11 … 11 

100.010.000.010.001 … 001 

100.010.000.010.001 … 001 
100.100.000.001.010 … 000 

000.010.001.100.000 … 010 
001.010.100.000.100 … 010 

01.11.10.00.01 … 00 

011.001.101.111.011 … 111 

011.001.101.111.011 … 111 
00.11.00.01.11 … 10 

111.110.000.011.001 … 101 

111.110.000.011.001 … 101 
101.100.101.101.110 … 000 

000.110.111.111.110 … 010 
111.110.100.101.101 … 110 
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BER for the First and Second Write 
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Write-Once Memories (WOM) 
 Introduced by Rivest and Shamir, “How to reuse a 

write-once memory”, 1982 
 The memory elements represent  

bits (2 levels) and are irreversibly                                 
programmed from ‘0’ to ‘1’ 

 The problem: 
 What is the total number of bits 

that is possible to write in n cells in 
t writes? 

1st  
Write 

2nd  
Write 
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Binary WOM-Codes  

  k1,…,kt:the number of bits on each write 
• n cells and t writes  

 The sum-rate of the WOM-code is  
  R = (Σ1

t ki)/n 
• Rivest Shamir:   R = (2+2)/3 = 1.333 

 Fixed-rate and Unrestricted-rate WOM-codes 
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Capacity and Constructions  
 Capacity region (Heegard ’86, Fu and Han Vinck ’99) 
 Ct-WOM={(R1,…,Rt)| R1    ≤ h(p1), 
         R2   ≤ (1–p1)h(p2),…, 
       Rt-1≤ (1–p1)(1–pt–2)h(pt–1) 
       Rt   ≤ (1–p1)(1–pt–2)(1–pt–1)} 
 Maximum achievable sum-rate is log(t+1) 
 Constructions: 

Rivest, Shamir ’82  
Wolf, Wyner, Ziv, Korner ’84 
Merkx ’84 
Cohen, Godlewski, and Merkx ’86 
Wu and Jiang ’09 
Wu ’10 
Yaakobi, Kayser, Siegel, Vardy, Wolf ’10 
Kayser, Yaakobi, Siegel, Vardy, Wolf ’10  
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Results: Unrestricted-rate 
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Results: Fixed-rate 
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Recent Results 

 Shpilka, “New constructions of WOM codes using the 
Wozencraft ensemble”, ’12 

• Capacity achieving construction 
• 3-write WOM codes of sum-rate 1.81 

 Burshtein, Strugatski, “Polar write once memory codes”, ’12 
 Yaakobi, Shpilka, “High sum-rate three-write and non-binary 

WOM codes ”, ’12 
• 3-write WOM codes of sum-rate 1.88 

 Shpilka, “Capacity Achieving Multiwrite WOM Codes”, ’12 
 The Challenge: Constructing WOM codes with high sum-rate 

and low encoding/decoding complexities  
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Why/When to Use WOM Codes? 

 Disadvantage: sacrifice a large amount of 
the capacity 
• Ex: Two write WOM codes 

– The best sum-rate is log3≈1.58 
– Can write (at most) only 0.79n bits so there is a lost of 

(at least) 21% of the capacity  

 Advantage: Can increase the lifetime of the 
memory and reduce the write amplification 
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Why/When to Use WOM Codes? 

 Advantage: Can increase the lifetime of the 
memory and reduce the write amplification 

 Example: 
• User has 3GB of flash with lifetime 100 P/E  
• Each day the user writes 2GB of new data (no need 

to store the old data) 
• Without WOM, the memory lasts 3/2*100=150 days 
• With WOM (the Rivest Shamir scheme) 

every two days the memory is erased once 
 the memory lasts 2*100=200 days 
• Can improve if there is dependency between the data 

written on every day  
58 



Write Amplification for t=2 WOM Codes 

q=2 

4 
8 

1024 

Write amplification 

decreases for increasing q 
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Non-Binary WOM 

 Many constructions 
• Huang, Lin, and Abdel-Ghaffar ’10 
• Gabrys and Dolecek ’11 
• Jiang, Zhou, Bruck ’11 
• Gabrys, Yaakobi, Dolecek, Siegel, Vardy, and Wolf ’11 
• Kurkoski ’11, Kurkosi ‘12 
• Haymaker, Kelley ’12 
• Burshtein, Strugatski ’12 
• Cassuto, Yaakobi ’12 
• Yaakobi, Shpilka ’12 
• Bhatia, Iyengar, Siegel ’12 

 Might be harder to implement in real flash 
devices 

01 

10 

00 

11 

MSB/LSB 

 
60 



Thanks 

Aman Bhatia 
Brian Butler 
Yuval Cassuto 
Lara Dolecek 
Ryan Gabrys 
Laura Grupp 
Aravind Iyengar 
 
 
 
 

Andrew Jiang 
Scott Kayser 
Young-Han Kim 
Brian Kurkoski 
Jing Ma 
Minghai Qin 
Amir Shpilka 

Paul Siegel 
Steven Swanson 
Alexander Vardy 
Lele Wang 
Jack Wolf 
Luojie Xiang 
Xiaojie Zhang 

 
61 



Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Signal Processing and Coding for Non-Volatile Memories

Part III: Emerging Coding Methods

Anxiao (Andrew) Jiang

Department of Computer Science and Engineering
Texas A&M University

Tutorial at Non-Volatile Memories Workshop (NVMW), March 3, 2013
Joint Presentation with Eitan Yaakobi and Jason Bellorado

1 / 78



Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions
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Summary and future directions.
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Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Basic Problem for Write-Once Memory

Let us recall the basic question for Write-Once Memory (WOM):

Suppose you have n binary cells. Every cell can change its
value only from 0 to 1, not from 1 to 0.
How can you write data, and then rewrite, rewrite, rewrite · · ·
the data?
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Review: Write Once Memory (WOM) [1]

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

[1] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” in Information and Control, vol. 55, pp.

1-19, 1982.
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Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10
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Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10
2nd write: 01
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Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10
2nd write: 01

Sum rate: 2
3 + 2

3 = 1.33
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Review: Write-Once Memory Code

This kind of code is called Write-Once Memory (WOM) code.

It is potentially a powerful technology for Flash Memories.
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Review: Capacity of WOM [1][2]

For WOM of q-level cells and t rewrites, the capacity (maximum
achievable sum rate) is

log2

(
t + q − 1

q − 1

)
.

bits per cell.

[1] C. Heegard, On the capacity of permanent memory, in IEEE Trans. Information Theory, vol. IT-31, pp. 34-42,
1985.
[2] F. Fu and A. J. Han Vinck, On the capacity of generalized write-once memory with state transitions described

by an arbitrary directed acyclic graph, in IEEE Trans. Information Theory, vol. 45, no. 1, pp. 308-313, 1999.
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Recent Developments

How to design good WOM codes?

Two capacity-achieving codes were published in 2012 – the same
year!:

A. Shpilka, Capacity achieving multiwrite WOM codes, 2012.

D. Burshtein and A. Strugatski, Polar write once memory
codes, 2012.
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Two Parameters: α and ε

For a t-write WOM code, consider one of its t writes.

There are two important parameters for this write:

α: The fraction of cells that are 0 before this write.

ε: For the cells of level 0 before this write, ε is the fraction of
them that are changed to 1 in this write.

For t-write WOM codes, the optimal values of α and ε are known
for each of the t writes.
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Polar WOM Code [1]

Idea of Burshtein and Strugatski: See a write as the decoding of a
polar code:

See the cells’ state BEFORE the write as a noisy Polar
codeword.

See the cells’ state AFTER the write as the correct (i.e.,
error-free) Polar codeword.

More precisely, they see the write as lossy data compression, using
the method presented by Korada and Urbanke [2].

[1] D. Burshtein and A. Strugatski, Polar Write Once Memory Codes, in Proc. ISIT, 2012.

[2] S. Korada and R. Urbanke, Polar Codes Are Optimal For Lossy Source Coding, in IEEE Transactions on

Information Theory, vol. 56, no. 4, pp. 1751–1768, 2010.
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Polar WOM Code

Smart Idea by Burshtein and Strugatski:

1 Add dither to cell:

Let s ∈ {0, 1} be the level of a cell.
Let g ∈ {0, 1} be a pseudo-random number known to the
encoder and decoder.
Let v = s ⊕ g be called the value of the cell.

2 Build a test channel for the write, which we shall call the WOM channel:

require s�i,j ≥ si,j. Let ci,j ∈ {0, 1} denote the level of the i-th
cell at any time after the j-th write and before the (j + 1)-
th write, when reading of the message Mj can happen. The
error ci,j ⊕ s�i,j ∈ {0, 1} is the error in the i-th cell caused by
the noise channel BSC(p). (Here ⊕ is an XOR function.) For
j = 1, 2, · · · , t, the encoding function

Ej : {0, 1}N × {0, 1}Mj → {0, 1}N

changes the cell levels from sj = (s1,j, s2,j, · · · , sN,j) to
s�j = (s�1,j, s�2,j, · · · , s�N,j) given the initial cell state sj and
the message to store Mj. (Namely, Ej(sj, Mj) = s�j.) When
the reading of Mj happens, the decoding function

Dj : {0, 1}N → {0, 1}Mj

recovers the message Mj given the noisy cell state cj =
(c1,j, c2,j, · · · , cN,j). (Namely, Dj(cj) = Mj.)

For j = 1, · · · , t, Rj =
Mj
N is called the rate of the j-

th write. Rsum = ∑t
j=1 Rj is called the sum-rate of the code.

When there is no noise, the maximum sum-rate of WOM code
is known to be log2(t + 1); however, for noisy WOM, the
maximum sum-rate is still largely unknown [6].

B. Polar codes

We give a short introduction to polar codes due to its
relevance to our code construction. A polar code is a linear
block error correcting code proposed by Arıkan [1]. It is the
first known code with an explicit construction that provably
achieves the channel capacity of symmetric binary-input dis-
crete memoryless channels (B-DMC). The encoder of a polar
code transforms N input bits u = (u1, u2, · · · , uN) to N
codeword bits x = (x1, x2, · · · , xN) through a linear trans-

formation. (In [1], x = uG⊗m
2 where G2 =

�
1 0
1 1

�
, and

G⊗m
2 is the m-th Kronecker product of G2.) The N codeword

bits (x1, x2, · · · , xN) are transmitted through N independent
copies of a B-DMC. For decoding, N transformed binary
input channels {W(1)

N , W(2)
N , · · · , W(N)

N } can be synthesized
for u1, u2, · · · , uN , respectively. The channels are polarized
such that for large N, the fraction of indices i for which
I(W(i)

N ) is nearly 1 approaches the capacity of the B-DMC [1],
while the values of I(W(i)

N ) for the remaining indices i are
nearly 0. The latter set of indices are called the frozen set.
For error correction, the ui’s with i in the frozen set take
fixed values, and the other ui’s are used as information bits.
A successive cancellation (SC) decoding algorithm achieves
diminishing block error probability as N increases.

Polar code can also be used for optimal lossy source
coding [8], which has various applications. In particular, in [3],
the idea was used to build capacity achieving WOM codes.

Our code analysis uses the concept of upgrading and de-
grading channels, defined based on frozen sets. As in [13],
a channel W � : X → Z is called "degraded with respect to
a channel W : X → Y” if an equivalent channel of W � can
be constructed by concatenating W with an additional channel

Q : Y → Z, where the inputs of Q are linked with the outputs
of W. That is,

W �(z|x) = ∑
y∈Y

W(y|x)Q(z|y)

We denote it by W � � W. Equivalently, the channel W is
called “an upgrade with respect to W �”, denoted by W � W �.

III. CODE CONSTRUCTION

In this section, we introduce our code construction that
combines rewriting with error correction.

A. Basic code construction with a nested structure

1) Basic concepts: First, let us consider a single rewrite
step (namely, one of the t writes). Let s = (s1, s2, · · · , sN) ∈
{0, 1}N and s� = (s�1, s�2, · · · , s�N) ∈ {0, 1}N denote the cell
levels right before and after this rewrite, respectively. Let g =
(g1, g2, · · · , gn) be a pseudo-random bit sequence with i.i.d.
bits that are uniformly distributed. The value of g is known
to both the encoder and the decoder, and g is called a dither.

For i = 1, 2, · · · , N, let vi = si ⊕ gi ∈ {0, 1} and v�i =
s�i ⊕ gi ∈ {0, 1} be the value of the i-th cell before and after
the rewrite, respectively. As in [3], we build the WOM channel
in Figure 1 for this rewrite, denoted by WOM(α, �). Here

0

1

(1, 0)

(1, 1)

(0, 0)

(0, 1)

1 − α

1 − α

α(1 − �)

α(1 − �)

α�

α�
v� (s, v)

Fig. 1. The WOM channel WOM(α, �).

α ∈ [0, 1] and � ∈ [0, 1
2 ] are given parameters, with α =

1− ∑N
i=1

si
N representing the fraction of cells at level 0 before

the rewrite, and � =
∑N

i=1 s�i−si

N−∑N
i=1 si

representing the fraction of
cells that are changed from level 0 to level 1 by the rewrite.
Let FWOM(α,�) ⊆ {1, 2, · · · , N} be the frozen set of the polar
code corresponding to this channel WOM(α, �). It is known

that limN→∞
|FWOM(α,�) |

N = α H(�). [3]
For the noise channel BSC(p), let FBSC(p) ⊆ {1, 2, · · · , N}

be the frozen set of the polar code corresponding to the channel
BSC(p). It is known that limN→∞

|FBSC(p) |
|N| = H(p).

In this subsection, we assume FBSC(p) ⊆ FWOM(α,�). It is
as illustrated in Figure 2(a). In this case, the code has a nice
nested structure: for any message M ∈ {0, 1}M, the set of
cell values VM ⊆ {0, 1}N that represent the message M is
a linear subspace of a linear error correcting code (ECC) for
the noise channel BSC(p), and {VM|M ∈ {0, 1}M} form a

(s,v): level and value 
of a cell before the write.

v': value of a cell 
after the write.
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For Rewriting to be used in flash memories, it is CRITICAL to
combine it with Error-Correcting Codes.
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Some Codes for Joint Rewriting and Error Correction

Previous results are for correcting a few (up to 3) errors:

G. Zemor and G. D. Cohen, Error-Correcting WOM-Codes, in
IEEE Transactions on Information Theory, vol. 37, no. 3, pp.
730–734, 1991.

E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf, Multiple
Error-Correcting WOM-Codes, in IEEE Transactions on
Information Theory, vol. 58, no. 4, pp. 2220–2230, 2012.
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New Code for Joint Rewriting and Error Correction

We now present a joint coding scheme for rewriting and error
correction, which can correct a substantial number of errors and
supports any number of rewrites.

A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, Joint
Rewriting and Error Correction in Write-Once Memories, 2013.
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Model of Rewriting and Noise

1st 
write BSC(p) 2nd 

write BSC(p) t-th
write BSC(p)
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Two Channels

Consider one write.

Consider two channels:

1 WOM channel. Let its frozen set be FWOM(α,ε).

2 BSC channel. Let its frozen set be FBSC(p).
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General Coding Scheme
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Data
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Rate of the Code

Analyze the rate of a single write step:

Let N →∞ be the size of the polar code.
The size of FWOM(α,ε) (the frozen set for the WOM channel)
is αH(ε)N.
The size of FBSC(p) (the frozen set for the BSC) is H(p)N.
The number of bits in the written data is
|FWOM(α,ε) − FBSC(p)|.
The number of additional cells we use to store the value in
FBSC(p) − FWOM(α,ε) is

|FBSC(p)−FWOM(α,ε)|
1−H(p) .

For i = 1, 2, · · · , t, let Mi be the number of bits written in the
ith write, and let Nadditional ,i be the number of additional cells
we use to store the value in FBSC(p) − FWOM(α,ε) in the ith
write. Then the sum-rate is

Rsum =

∑t
i=1 Mi

N +
∑t

i=1 Nadditional ,i

.
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When is FBSC (p) a subset of FWOM(α,ε)?

V. EXTENSIONS

We now consider more general noise models. For simplicity,
we discuss it for an erasure channel. But it can be easily
extended to other noise models. Let the noise be a BEC with
erasure probability p, denoted by BEC(p). After a rewrite,
noise appears in some cell levels (both level 0 and level 1)
and changes them to erasures. An erasure represents a noisy
cell level between 0 and 1. We handle erasures this way: before
a rewrite, we first increase all the erased cell levels to 1, and
then perform rewriting as before.

Note that although the noise for cell levels is BEC(p),
when rewriting happens, the equivalent noise channel for the
cell value v = s ⊕ g is a BSC( p

2 ), because all the erased
cell levels have been pushed to level 1, and dither has a
uniform distribution. Therefore, the code construction and its
performance analysis can be carried out the same way as
before, except that we replace p by p

2 .
The code can also be extended to multi-level cells (MLC),

by using q-ary polar codes. We skip the details for simplicity.

VI. EXPERIMENTAL RESULTS

In this section, we study the achievable rates of our error
correcting WOM code, using polar codes of finite lengths. In
the following, we assume the noise channel is BSC(p), and
search for good parameters �1, �2, · · · , �t that achieve high
sum-rate for rewriting. We also study when the code can have
a nested structure, which simplifies the code construction.

A. Finding BSCs satisfying FBSC(p) ⊆ FWOM(α,�)

The first question we endeavor to answer is when BSC(p)
satisfies the condition FBSC(p) ⊆ FWOM(α,�), which leads to
an elegant nested code structure. We search for the answer
experimentally. Let N = 8192. Let the polar codes be
constructed using the method in [13]. To obtain the frozen sets,
we let |FWOM(α,�)| = N(α H(�) − ∆R), where ∆R = 0.025
is a rate loss we considered for the polar code of the WOM
channel [3]; and let FBSC(p) be chosen with the target block
error rate 10−5.

The results are shown in Figure 8. The four curves corre-
spond to α = 0.4, 0.6, 0.8, and 1.0, respectively. The x-axis
is �, and the y-axis is the maximum value of p we found that
satisfies FBSC(p) ⊆ FWOM(α,�). Clearly, the maximum value
of p increases with both α and �. And it has nontrivial values
(namely, it is comparable to or higher than the typical error
probabilities in memories).

B. Achievable sum-rates for nested code
We search for the achievable sum-rates of codes with

a nested structure, namely, when the condition FBSC(p) ⊆
FWOM(αj−1,�j)

is satisfied for all j = 1, 2, · · · , t. Given p, we
search for �1, �2, · · · , �t that maximize the sum-rate Rsum.

We show the results for t-write error-correcting WOM
codes—for t = 2, 3, 4, 5—in Figure 9. (In the experiments,
we let N = 8192, ∆R = 0.025, and the target block error rate
be 10−5.) The x-axis is p, and the y-axis is the maximum sum-
rate found in our algorithmic search. We see that the achievable
sum-rate increases with the number of rewrites t.
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Fig. 8. The maximum value of p found for which FBSC(p) ⊆ FWOM(α,�).
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C. Achievable sum-rates for general code

We now search for the achievable sum-rates of the gen-
eral code, when FBSC(p) is not necessarily a subset of
FWOM(αj−1,�j)

. When p is given, the general code can search
a larger solution space for �1, �2, · · · , �t than the nested-code
case, and therefore achieve higher sum-rates. However, for
relatively small p (e.g. p < 0.016), the gain in rate obtained
in the experiments is quite small. This means the nested
code is already performing well for this parameter range. For
simplicity, we skip the details.

Note that the lower bound to sum-rate Rsum in Figure 6
is actually higher than the rates we have found through
experiments by now. This is because the lower bound is for
N → ∞, while the codes in our experiments are still short so
far and consider the rate loss ∆R. Better rates can be expected
as we increase the code length and further improve our search
algorithm due to the results indicated by the lower bound.
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It is interesting to know how much FWOM(α,ε) and FBSC(p)

intersects.
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IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α ) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α ). Therefore FWOM(α, p

α ) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α ). Therefore, FWOM(α, p

α ) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.
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Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α )
|

N = α H( p
α ).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α )

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α )

and BSC(α�). Here p ≤ α�.
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IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α ) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α ). Therefore FWOM(α, p

α ) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α ). Therefore, FWOM(α, p

α ) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.
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Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α )
|

N = α H( p
α ).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α )

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α )

and BSC(α�). Here p ≤ α�.
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IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α ) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α ). Therefore FWOM(α, p

α ) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α ). Therefore, FWOM(α, p

α ) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.
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Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α )
|

N = α H( p
α ).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α )

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α )

and BSC(α�). Here p ≤ α�.
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IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α ) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α ). Therefore FWOM(α, p

α ) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α ). Therefore, FWOM(α, p

α ) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.
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Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α )
|

N = α H( p
α ).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α )

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α )

and BSC(α�). Here p ≤ α�.
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is

Mj =|FWOM(αj−1,�j)
| − |FWOM(αj−1,�j)

∩ FBSC(p)|
=Nαj−1 H(�j) − xj|FBSC(p)|
=N(αj−1 H(�j) − xj H(p))

and the number of additional cells we use to store the bits in
FBSC(p) − FWOM(αj−1,�j)

is

Nadditional,j =
N H(p)(1 − xj)

1 − H(p)

Therefore, the sum-rate is Rsum � ∑t
j=1 Mj

N+∑t
j=1 Nadditional,j

=
∑t

j=1 αj−1 H(�j) − H(p) ∑t
j=1 xj

1 + H(p)
1−H(p) ∑t

j=1(1 − xj)

=
(1 − H(p)) ∑t

j=1 αj−1 H(�j) − H(p)(1 − H(p)) ∑t
j=1 xj

(1 − H(p) + H(p)t) − H(p) ∑t
j=1 xj

=(1 − H(p)) ·
1

H(p) ∑t
j=1 αj−1 H(�j) − ∑t

j=1 xj

1−H(p)+H(p)t
H(p)

− ∑t
j=1 xj

.

Let γj � max

�
αj−1 H(

p
αj−1

)

H(p)
,

αj−1 H(�j)+H(p)−H(αj−1�j)

H(p)

�
.

Lemma 5. Let 0 < p ≤ αj−1�j. Then xj ≥ γj.

Proof: By Lemma 3, we have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1, p

αj−1
)|

|FBSC(p)|
=

αj−1 H( p
αj−1

)

H(p)
.

By Lemma 4, we also have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1,�j)

| + |FBSC(p)| − |FBSC(αj−1�j)
|

|FBSC(p)|

=
αj−1 H(�j) + H(p) − H(αj−1�j)

H(p)
.

Theorem 6 Let 0 < p ≤ αj−1�j for j = 1, 2, · · · , t. If
∑t

j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, then the sum-rate
Rsum is lower bounded by

(1 − H(p))
∑t

j=1
�
αj−1 H(�j) − H(p)γj

�

1 − H(p) + H(p)t − H(p) ∑t
j=1 γj

.

If ∑t
j=1 αj−1 H(�j) < 1 − H(p) + H(p)t, and H(p) ≤

αj−1 H(�j) for j = 1, 2, · · · , t, then Rsum is lower bounded
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p. Here each rewriting step writes the same number of bits.

by �
t

∑
j=1

αj−1 H(�j)

�
− H(p)t.

Proof: If ∑t
j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, the

sum-rate is minimized when xj (j = 1, 2, · · · , t) takes the
minimum value, and we have xj ≥ γj. Otherwise, the sum-
rate is minimized when xj takes the maximum value 1.

We show some numerical results of the lower bound to sum-
rate Rsum in Figure 6, where we let �i = 1

2+t−i . The curve
for p = 0 is the optimal sum-rate for noiseless WOM code.
The other four curves are the lower bounds for noisy WOM
with p = 0.001, p = 0.005, p = 0.010 and p = 0.016,
respectively, given by Theorem 6. Note that it is possible to
further increase the lower bound values by optimizing �i. We
also show in Figure 7 the lower bound to sum-rate when each
step writes the same number of bits.
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Definition of Rank Modulation [1-2]

Rank Modulation:

We use the relative order of cell
levels (instead of their absolute
values) to represent data.

[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for Flash Memories,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1731–1735, July 2008.

[2] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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Examples and Extensions of Rank Modulation

Example: Use 2 cells to store 1 bit.

Relative order: (1,2)
Value of data: 0

cell 1 cell 2

Relative order: (2,1)
Value of data: 1

cell 1 cell 2

Example: Use 3 cells to store log2 6 bits. The relative orders
(1, 2, 3), (1, 3, 2), · · · , (3, 2, 1) are mapped to data 0, 1, · · · , 5.

In general, k cells can represent log2(k!) bits.
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Rank Modulation using Multi-set Permutation

Extension: Let each rank have m cells.

Example

Let m = 4. The following is a multi-set permutation

({2, 4, 6, 9}, {1, 5, 10, 12}, {3, 7, 8, 11}) .

1

2

3

4

5

6

7 8

9

10

11

12

Analog level of cells

Rank 1

Rank 2

Rank 3
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Error Correcting Codes for Rank Modulation

41 / 78



Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Error Models and Distance between Permutations

Based on the error model, there are various reasonable choices for
the distance between permutations:

Kendall-tau distance. (To be introduced in detail.)

L∞ distance.

Gaussian noise based distance.

Distance defined based on asymmetric errors or inter-cell
interference.

We should choose the distance appropriately based on the type and
magnitude of errors.
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Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(a1, · · · , ai−1, ai , ai+1︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an)

Example:

(2,1,5,3,4) (2,1,3,5,4)

Original Cell Levels Noisy Cell Levels

We can extend the concept to multiple such “local exchanges” (for larger
errors).
[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(a1, · · · , ai−1, ai , ai+1, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai , ai+2, · · · , an)

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, dτ (A,B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that dτ (A,B) = dτ (B,A).)

If the minimum Kendall-tau distance of a code is 2t+1, then it can

correct t adjacent transposition errors.
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Kendall-tau Distance for Rank Modulation ECC

Definition (State Diagram)

Vertices are permutations. There is an undirected edge between
two permutations A,B ∈ Sn iff dτ (A,B) = 1.

Example: The state diagram for n = 3 cells is

(1,2,3)
(2,1,3)

(1,3,2)

(2,3,1)

(3,1,2)
(3,2,1)
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Kendall-tau Distance for Rank Modulation ECC

Example: The state diagram for n = 4 cells is

1234 

2134 

3124 

4123 

3214 

4213 

1324 

2314 

4312 

1423 

2413 

3412 

4321 

3421 

4132 4231 

1432 

2431 2143 

3142 

1243 

3241 

1342 

2341 
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One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

Definition (Inversion Vector)

Given a permutation (a1, a2, · · · , an), its inversion vector
(x1, x2, · · · , xn−1) ∈ {0, 1} × {0, 1, 2} × · · · × {0, 1, · · · , n − 1} is
determined as follows:

For i = 1, 2, · · · , n− 1, xi is the number of elements in {1, 2, · · · , i}
that are behind i + 1 in the permutation (a1, · · · , an).

Example: The inversion vector for (1, 2, 3, 4) is (0, 0, 0). The inversion for

(4, 3, 2, 1) is (1, 2, 3). The inversion vector for (2, 4, 3, 1) is (1, 1, 2).
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One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n − 1)-dimensional space.

Fact: For any two permutations A,B ∈ Sn, dτ (A,B) is no less
than their L1 distance in the (n − 1)-dimensional space.

Idea: We can construct a code of minimum L1 distance D in the
(n− 1)-dimensional array of size 2× 3× · · · × n. Then it is a code
of Kendall-tau distance at least D for the permutations.

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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One-Error-Correcting Code

Example: When n = 3 or n = 4, the embedding is as follows. (Only
the solid edges are the edges in the state graph of permutations.)
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!"#$%& '9 -../+012345 .: ;4/783230.15# 21+ 47,4++01< 3=4 2+>2*41*? </2;= .: ;4/783230.15# G# 01 3=4 2 × 3 × · · · × n 2//2?# Ln9 @1 3=4 3A. 2//2?5# 3=4 5.B0+
B0145 2/4 3=4 4+<45 01 ,.3= G 21+ Ln# 21+ 3=4 +.334+ B0145 2/4 3=4 4+<45 .1B? 01 Ln9 !2$ -../+012345 .: ;4/783230.15 :./ n = 39 !,$ C7,4++01< G 01 Ln :./
n = 39 !*$ -../+012345 .: ;4/783230.15 :./ n = 49 !+$ C7,4++01< G 01 Ln :./ n = 49

D9 EFGC -FHCI JKH LFMKHI

@3 =25 ,441 5=.A1 3=23 3=4 501<B4N4//./N*.//4*301< *.+4 ,80B3
,? -.153/8*30.1 O =25 2 50P4 A03=01 =2B: .: .;3072B9 Q=4/4 4R053
*.+4 *.153/8*30.15 3=23 *21 ,80B+ B2/<4/ *.+45 01 721? *25459
S4 /4;./3 =4/4 5.74 4//./N*.//4*301< *.+45 ,80B3 8501< 2+
=.* *.153/8*30.15# 21+ *.7;2/4 3=47 A03= 3=4 5;=4/4N;2*T01<
8;;4/ ,.81+ 21+ 3=4 =2B:N.;3072B *.+4U

• S=41 n = 3# 2 501<B4N4//./N*.//4*301< *.+4 A03= 3A.
*.+4A./+5 V [1, 2, 3] 21+ [3, 2, 1] V *21 ,4 4250B? :.81+9
Q=4 5274 *.+4 05 ,80B3 ,? -.153/8*30.1 O# 21+ 3=4 50P4
74435 3=4 5;=4/4N;2*T01< 8;;4/ ,.81+9

• S=41 n = 4# 21 2+ =.* *.153/8*30.1 <414/2345 2 501<B4N
4//./N*.//4*301< *.+4 A03= !W4 *.+4A./+5U [1, 2, 4, 3]#
[3, 1, 4, 2]# [3, 2, 4, 1]# [4, 1, 3, 2] 21+ [4, 2, 3, 1]9 Q=4 *.+4
.83;83 ,? -.153/8*30.1 O =25 50P4 49 Q=4 5;=4/4N;2*T01<
,.81+ 05 69 @3 *21 ,4 5=.A1 3=23 3=4 *.+4 .: 50P4 5 05
.;3072B9

• S=41 n = 5, 6, 7# 21 2+ =.* *.153/8*30.1 <414/2345
501<B4N4//./N*.//4*301< *.+45 A03= %O# X"# 21+ Y&Z *.+4N
A./+5# /45;4*30W4B?9 Q=4 *.+45 .83;83 ,? -.153/8*30.1 O
=2W4 50P4 %)# ZZ# 21+ 'OO# /45;4*30W4B?9 Q=4 5;=4/4N
;2*T01< 8;;4/ ,.81+ 05 &)# %&"# 21+ [&"# /45;4*30W4B?9

• S=41 n = 5, 6, 7# 3=4/4 4R053 3A.N4//./N*.//4*301< *.+45
.: 50P4 Z# &'# 21+ %%"# 3=/44N4//./N*.//4*301< *.+45 .: 50P4
&# %"# ')# 21+ :.8/ 4//./N*.//4*301< *.+45 .: 50P4 &# )# 21+
%)# /45;4*30W4B?9 JBB 3=4 2,.W4 *.+45 =2W4 2 50P4 3=23 05
23 B4253 .14 =2B: .: 3=4 .;3072B 50P49

D@9 -FK-\MI@FK
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25?7743/0* 4//./59 J /21TN7.+8B230.1 5*=474 8545 2 14A
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05 5;2/54/ 3=21 3=4 2//2? Ln9 JB34/1230W4 47,4++01< .: 3=4
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One-Error-Correcting Code

Construction (One-Error-Correcting Rank Modulation Code)

Let C1,C2 ⊆ Sn denote two rank modulation codes constructed as
follows. Let A ∈ Sn be a general permutation whose inversion vector is
(x1, x2, · · · , xn−1). Then A is a codeword in C1 iff the following equation
is satisfied:

n−1∑

i=1

ixi ≡ 0 (mod 2n − 1)

A is a codeword in C2 iff the following equation is satisfied:

n−2∑

i=1

ixi + (n − 1) · (−xn−1) ≡ 0 (mod 2n − 1)

Between C1 and C2, choose the code with more codewords as the final
output.
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One-Error-Correcting Code

For the above code, it can be proved that:

The code can correct one Kendall error.

The size of the code is at least (n−1)!
2 .

The size of the code is at least half of optimal.
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Codes Correcting More Errors [1]

The above code can be generalized to correct more errors.

C = {(x1, x2, · · · , xn−1) |
n−1∑

i=1

hixi ≡ 0 mod m}

Let A(n, d) be the maximum number of permutations in Sn

with minimum Kendall-tau distance d . We call

C (d) = lim
n→∞

ln A(n, d)

ln n!

capacity of rank modulation ECC of Kendall-tau distance d .

C (d) =





1 if d = O(n)

1− ε if d = Θ(n1+ε), 0 < ε < 1

0 if d = Θ(n2)

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” ISIT’10.
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Variable Level Cell (VLC)
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What is the right number of levels?

Performance of SLC, MLC and TLC:

SLC: 2 levels, endurance of ∼ 106 Program/Erase cycles.

MLC: 4 levels, endurance of ∼ 105 Program/Erase cycles.

TLC: 8 levels, endurance of ∼ 104 Program/Erase cycles.

Question: Is there a way to adaptively choose the number of levels,
based on the cells’ quality and random programming performance?
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Variable Level Cell (VLC) [1]

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

[1] A. Jiang, H. Zhou and J. Bruck, Variable-level cells for nonvolatile memories, in Proc. ISIT, pp. 2489-2493,

2011.
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Existing Technology: Fixed Thresholds and Levels

level 0 level 1 level 2 level 3 level 4 level 5 level 6 level 7

Cell-level Distribution of TLC
T1 T2 T3 T4 T5 T6 T7

Cell-level Distribution of TLC
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Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0

Cell-level Distribution of  VLC
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Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
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Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
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Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2
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Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1 level 2

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2
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Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1 level 2

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2 T3
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Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

0 1 2 3 4 5 6 7 8 9

T8 T9
Cell-level Distribution of VLC
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Variable Level Cell (VLC)

VLC is more adaptive compared to current schemes.

Programming is more robust to

Cell quality degradation/variance;

Probabilistic charge injection behavior.

Multiple levels can be programmed in parallel for higher speed.
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Storing Data in VLC

How to store data? One solution for one-write storage:

level 0

Cell-level Distribution of VLC

n cells
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Storing Data in VLC

Level 1 can store nH(x1) bits.

Reading these nH(x1) bits will require two threshold comparisons.

level 0 level 1

Cell-level Distribution of VLC

n(1-x1) cells

nx1 cells
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Storing Data in VLC

Level 2 can store n(1− x1)H(x2) bits.

Reading these n(1− x1)H(x2) bits will require one additional
threshold comparison.

level 0 level 1 level 2

Cell-level Distribution of VLC

n(1-x1)(1-x2) cells

nx1 cells
n(1-x1)x2 cells
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Capacity of VLC

Assume

Level 1 can be programmed with probability p1;

Level 2 can be programmed with probability p1p2;

Level 3 can be programmed with probability p1p2p3;

· · · ;
Level q can be programmed with probability p1p2 · · · pq,
where q is the maximum possible level number.

68 / 78



Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Capacity of VLC

Define A1,A2, · · · ,Aq−1 recursively:

Let Aq−1 = 2pq−1 ;

For i = q − 2, q − 3, · · · , 1, let Ai = (1 + Ai+1)pi .

Theorem

The capacity (expected value) of VLC is

CVLC = log2 A1

bits per cell.

For the capacity region of rewriting codes, see:
[1] A. Jiang, H. Zhou and J. Bruck, Variable-level cells for nonvolatile memories, in Proc. ISIT, pp. 2489-2493,

2011.
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Comparison of Capacity between VLC and MLC

For i = 1, · · · , q − 1, let Pi be the probability that level i can be
programmed.
Let s be a constant. Let Pi = 1

1+2(i−8)s for i = 1, 2, · · · , 16.
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Comparison of Capacity between VLC and MLC

Assume MLC uses levels that can be programmed with probability 0.99
or more.
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Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting
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