
Signal Processing and Coding
for Non-Volatile Memories

1

Non-Volatile Memory Workshop
Center for Magnetic Recoding Research (CMRR)

University of California, San Diego

March 3rd, 2013

Part I: Noise Sources in NAND Flash Memory
Jason Bellorado, Ph.D.

SK Hynix Memory Solutions

Part II: Error-Correction and Rewriting Codes
for Non-Volatile Memories

Eitan Yaakobi, Ph.D.
California Institute of Technology

Part III: Emerging Coding Methods
Andrew Jiang, Ph.D.

Texas A&M University

2

Part I: Noise Sources in NAND
Flash Memory

Jason Bellorado, Ph.D.
SK Hynix Memory Solutions

3

Outline

• NAND Flash Basics

• SLC/MLC Read/Write Processes

• Noise Sources
– Endurance & Retention

–Write Induced

–Read Induced

–Pattern Induced

4

Introduction

• In an effort to reduce the cost of NAND flash-
based storage devices, NAND manufacturers have
aggressively scaled down their process.

• This scaling has exceeded the rate predicted by
Moore’s Law and has reduced the price/GB from
> $100 in 2008 to < $1 today.

• Unfortunately, scaling down the feature size of
NAND flash cells acts to exacerbate many of its
noise sources.

• To design reliable NAND-based storage systems,
these noise sources must be well-understood.

5

NAND Process/Cost Evolution (MLC)

6
2006 2007 2008 2009 2010 2011 2012 2013

10
1

10
2

10
3

P
ro

c
e

s
s
 N

o
d
e

 (
n
m

)

10
-1

10
0

10
1

10
2

10
3

C
o

s
t/

G
B

 (
$

)

Storage Device Architecture

7

NAND

Controller

Host

NAND

NAND

NAND

NAND

...

...

...

...

...

...
...
...
...

...
......

package

Die

Block

Page Buffer,0

BSLe

BSLo

WLo

WL1

WL2

WL63

WL62

WL61

BL0,e BL0,o

SSL

Page Buffer,1

BL1,e BL1,o

Page Buffer,2

BL2,e BL2,o

Page Buffer,n-1

BLn-1,e BLn-1,o

Page Buffer,3

BL3,e BL3,o

GSL

CSL

NAND Flash Block

8

Page Buffer,0

BSLe

BSLo

WLo

WL1

WL2

WL63

WL62

WL61

BL0,e BL0,o

SSL

Page Buffer,1

BL1,e BL1,o

Page Buffer,2

BL2,e BL2,o

Page Buffer,n-1

BLn-1,e BLn-1,o

Page Buffer,3

BL3,e BL3,o

GSL

CSL

NAND Flash Block

9

Data
Block

Page Buffer,0

BSLe

BSLo

WLo

WL1

WL2

WL63

WL62

WL61

BL0,e BL0,o

SSL

Page Buffer,1

BL1,e BL1,o

Page Buffer,2

BL2,e BL2,o

Page Buffer,n-1

BLn-1,e BLn-1,o

Page Buffer,3

BL3,e BL3,o

GSL

CSL

NAND Flash Block

10

Bit-Line

Page Buffer,0

BSLe

BSLo

WLo

WL1

WL2

WL63

WL62

WL61

BL0,e BL0,o

SSL

Page Buffer,1

BL1,e BL1,o

Page Buffer,2

BL2,e BL2,o

Page Buffer,n-1

BLn-1,e BLn-1,o

Page Buffer,3

BL3,e BL3,o

GSL

CSL

NAND Flash Block

11

Word-Line

Page Buffer,0

BSLe

BSLo

WLo

WL1

WL2

WL63

WL62

WL61

BL0,e BL0,o

SSL

Page Buffer,1

BL1,e BL1,o

Page Buffer,2

BL2,e BL2,o

Page Buffer,n-1

BLn-1,e BLn-1,o

Page Buffer,3

BL3,e BL3,o

GSL

CSL

NAND Flash Block

12

Even Page

Page Buffer,0

BSLe

BSLo

WLo

WL1

WL2

WL63

WL62

WL61

BL0,e BL0,o

SSL

Page Buffer,1

BL1,e BL1,o

Page Buffer,2

BL2,e BL2,o

Page Buffer,n-1

BLn-1,e BLn-1,o

Page Buffer,3

BL3,e BL3,o

GSL

CSL

NAND Flash Block

13

Odd Page

NAND Flash Basics

• Information is stored in a NAND flash cell by
raising its floating-gate voltage to one of a
discrete set of values.

14

voltage

voltage

voltage

• SLC: 1 bit/cell

• MLC: 2 bits/cell

• TLC: 3 bits/cell

SLC/LSB Write Process

All cells start in
erased level

voltage

15

SLC/LSB Write Process

All cells start in
erased level

voltage

16

LSB=0

voltage

LSB=1

PV0

SLC/LSB Read Process

• A reference voltage (Vread) is specified by a
NAND register.

– Cells w/ threshold voltages < (>) Vread read 1 (0).

17

voltage

SLC/LSB Read Process

• A reference voltage (Vread) is specified by a
NAND register.

– Cells w/ threshold voltages < (>) Vread read 1 (0).

18

voltage

Vread

LSB=1 LSB=0

MLC (MSB) Write Process

voltage

LSB=1 LSB=0

19

MLC (MSB) Write Process

voltage

LSB=1 LSB=0

Vread

LSB=1 LSB=0

20

MLC (MSB) Write Process

voltage

voltage PV1 PV2 PV3

LSB=1
MSB=1

LSB=1
MSB=0

LSB=0
MSB=0

LSB=0
MSB=1

LSB=1 LSB=0

21

MLC (MSB) Read Process

voltage

11 10 00 01

• Two reference voltages (VreadA & VreadC) specified.

• Two reads are conducted and the output is:

– 0: VreadA ≤ Vth ≤ VreadC

– 1: Vth < VreadA or Vth VreadC

22

MLC (MSB) Read Process

voltage

11 10 00 01

• Two reference voltages (VreadA & VreadC) specified.

• Two reads are conducted and the output is:

– 0: VreadA ≤ Vth ≤ VreadC

– 1: Vth < VreadA or Vth VreadC

VreadA

MSB=1

VreadC

MSB=1 MSB=0

23

Noise Sources

• Endurance & Retention (single cell)

• NAND Array Based Noise

– The Write Process

• Capacitive Coupling

• Program Disturb

– The Read Process

• Read Disturb

• Read Noise (RTN)

– Data Pattern

• Back Pattern Effect

24

Single Cell Program/Erase

• Program/erase operations force charge on/off the
floating-gates of NAND cells through Fowler-
Nordheim (FN) tunneling.

𝐽𝐹𝑁 = 𝐴𝑡 × 𝐸𝑜𝑥
2 × 𝑒

−
𝐵𝑡

𝐸𝑜𝑥

25

Floating Gate

Control Gate

20V

CCG

CTOX

CSi

Channel

(0V) Body

Drain Source

Floating Gate

Control Gate

0V

(18V)

CCG

CTOX

CSi

Program Erase

Cycling/Retention Effects

• As a cell is cycled the tunneling oxide forms traps
– Broken atomic bonds in oxide matrix due to tunneling.

• Electrons can more easily leak from the FG to the channel by
Trap Assisted Tunneling (TAT) .

• When filled with electrons, traps can increase the potential
barrier, reducing the tunneling current and increase Vth.

26

V
T

(V
o

lt
s)

P/E Cycles

Vth Programmed State
Vth Erased State

FG

CG

ITOX-LEAK SILC (TAT)

Fresh Cell Cycled Cell

0m Retention

27 20 40 60 80 100 120
10

0

10
1

10
2

10
3

10
4

10
5

0m

P/E = 1k

P/E = 2k

P/E = 5k

3m Retention

28 20 40 60 80 100 120
10

0

10
1

10
2

10
3

10
4

10
5

3m

P/E = 1k

P/E = 2k

P/E = 5k

12m Retention

29 20 40 60 80 100 120
10

0

10
1

10
2

10
3

10
4

10
5

12m

P/E = 1k

P/E = 2k

P/E = 5k

Mitigating Endurance/Retention

• Endurance:
– Reduce the amount of data written to the NAND

• Data Compression.
• Reduce write amplification = NAND writes/host writes.

– Wear-Leveling: Ensure all blocks are used equally
• All blocks reach EOL at the same time.

• Retention:
– Refreshing old blocks.

• Background media scan.

• Both:
– Stronger ECC.
– Better Signal processing.

30

WRITING TO THE NAND ARRAY

31

SA,0

WL0

WL1

WL2

WL63

WL62

WL61

BL0,e

SSL

SA,1

BL1,e

SA,2

BL2,e

SA,n-1

BLn-1,e

SA,3

BL3,e

GSL

CSL

Writing to the NAND Array

32

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

GND

Vcc

SA,1

GND

SA,2

GND

SA,n-1

GND

SA,3

GND

GND

GND

Vpgm

Programmed Wordline

Vpass ~8-10V
Vpgm ~20-25V

Writing to the NAND Array

33

Floating Gate (12V)

Control Gate (20V)

Vpgm

(0V)

(0V)

CCG

CTOX

CSi

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vcc

Vcc

SA,1

GND

SA,2

Vcc

SA,n-1

GND

SA,3

GND

GND

GND

Vpgm

• Inhibited bitlines raised
to Vcc, SSL → off.

• Wordline voltages cause
the channel voltage to
capacitively raise
(channel boosting).

• Effective program
voltage Vpgm-Vch.

Self-Boosting Program Inhibit

34

Floating Gate (12V)

Control Gate (20V)

Vpgm

(6V)

(0V)

CCG

CTOX

CSi

The Write Process ISPP

35

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

The Write Process ISPP

36

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

Verified Cells

The Write Process ISPP

37

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

VIN VIN VIN VIN VIN 0V 0V 0V 0V 0V 0V

The Write Process ISPP

38

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

VIN VIN VIN VIN VIN 0V 0V 0V 0V 0V 0V

Verify

The Write Process ISPP

39

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

VIN VIN VIN VIN VIN 0V 0V 0V 0V 0V 0V

Verify

The Write Process ISPP

40

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

VIN VIN VIN VIN VIN 0V 0V 0V 0V 0V 0V

Verify

The Write Process ISPP

41

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

VIN VIN VIN VIN VIN 0V 0V 0V 0V 0V 0V

Verify

The Write Process ISPP

42

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

VIN VIN VIN VIN VIN 0V 0V VIN VIN VIN 0V

Verify

The Write Process ISPP

43

Vth

PV0

0 0 1 0 1 1 1 0 0 0 1 Data

VIN VIN VIN VIN VIN VIN VIN VIN VIN VIN VIN

Verify

CAPACITIVE COUPLING

44

Wli+1

WLi

Wli-1

BLj,e BLj,o BLj+1,e BLj+1,oBLj-1,e BLj-1,o

Capacitive Coupling

• Each floating gate is coupled to its neighbors.

– Writing adds voltage to adjacent cells.

𝑉𝐴𝑑𝑑,𝑉𝑖𝑐𝑡𝑖𝑚 ∝ 𝛼 × 𝑉𝐸𝑛𝑑,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 − 𝑉𝑆𝑡𝑎𝑟𝑡,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟

– 𝛼 depends on geometry (distance) and process.

45

Wli+1

WLi

Wli-1

BLj,e BLj,o BLj+1,e BLj+1,oBLj-1,e BLj-1,o

Capacitive Coupling

• Each floating gate is coupled to its neighbors.

– Writing adds voltage to adjacent cells.

𝑉𝐴𝑑𝑑,𝑉𝑖𝑐𝑡𝑖𝑚 ∝ 𝛼 × 𝑉𝐸𝑛𝑑,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 − 𝑉𝑆𝑡𝑎𝑟𝑡,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟

– 𝛼 depends on geometry (distance) and process.

46 Victim Page

Wli+1

WLi

Wli-1

BLj,e BLj,o BLj+1,e BLj+1,oBLj-1,e BLj-1,o

Capacitive Coupling

• Each floating gate is coupled to its neighbors.

– Writing adds voltage to adjacent cells.

𝑉𝐴𝑑𝑑,𝑉𝑖𝑐𝑡𝑖𝑚 ∝ 𝛼 × 𝑉𝐸𝑛𝑑,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 − 𝑉𝑆𝑡𝑎𝑟𝑡,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟

– 𝛼 depends on geometry (distance) and process.

47 Victim Page

Wli+1

WLi

Wli-1

BLj,e BLj,o BLj+1,e BLj+1,oBLj-1,e BLj-1,o

Capacitive Coupling

• Each floating gate is coupled to its neighbors.

– Writing adds voltage to adjacent cells.

𝑉𝐴𝑑𝑑,𝑉𝑖𝑐𝑡𝑖𝑚 ∝ 𝛼 × 𝑉𝐸𝑛𝑑,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 − 𝑉𝑆𝑡𝑎𝑟𝑡,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟

– 𝛼 depends on geometry (distance) and process.

48 Victim Page

Wli+1

WLi

Wli-1

BLj,e BLj,o BLj+1,e BLj+1,oBLj-1,e BLj-1,o

Capacitive Coupling

• Each floating gate is coupled to its neighbors.

– Writing adds voltage to adjacent cells.

𝑉𝐴𝑑𝑑,𝑉𝑖𝑐𝑡𝑖𝑚 ∝ 𝛼 × 𝑉𝐸𝑛𝑑,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 − 𝑉𝑆𝑡𝑎𝑟𝑡,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟

– 𝛼 depends on geometry (distance) and process.

49 Victim Page

Actual LSB Write (Pg2 after Pg2 Write)

50 0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

C
e
lls

Voltage

Actual LSB Write (Pg2 after Pg3 Write)

51 0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

C
e
lls

Voltage

0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

C
e
lls

Voltage

Actual LSB Write (Pg2 after Pg3 Write)

52

0 Pg3 neighbors
written to 0

1 Pg3 neighbor
written to 0

2 Pg3 neighbors
written to 0

Actual LSB Write (Pg2 after Pg7 Write)

53 0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

C
e
lls

Voltage

Write Sequence

• The sequence in which pages are written
affects the induced capacitive coupling.

– LSB applies ~0/2.5 volts.

– MSB applies ~0/1.25 volts.

• The overall goal is to degrade the final
distributions (after MSB) minimally.

• Write sequence acts to minimize this effect.

54

voltage 1 0

voltage 11 10 00 01

Even/Odd Bit Line (EOBL) Writing

55

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

wordline

bitline

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

56

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

57

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

58

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

59

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

60

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

61

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

62

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

4 4 4 4 4

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

63

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

4 4 4 4 4 5 5 5 5

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

64

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

4 4 4 4 4 5 5 5 5

2 2 2 2 2

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

65

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

4 4 4 4 4 5 5 5 5

2 2 2 2 2 3 3 3 3

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

66

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

4 4 4 4 4 5 5 5 5

2 2 2 2 2 3 3 3 3

6 6 6 6 6

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

67

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

4 4 4 4 4 5 5 5 5

2 2 2 2 2 3 3 3 3

6 6 6 6 6 7 7 7 7

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

68

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

4 4 4 4 4 5 5 5 5

2 2 2 2 2 3 3 3 3

6 6 6 6 6 7 7 7 7

4 4 4 4 4

LSB Written

LSB & MSB Written

Erased Page

Even/Odd Bit Line (EOBL) Writing

69

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 wordline

bitline

1 1 1 1

2 2 2 2 2 3 3 3 3

0 0 0 0 0 1 1 1 1

4 4 4 4 4 5 5 5 5

2 2 2 2 2 3 3 3 3

6 6 6 6 6 7 7 7 7

4 4 4 4 4 5 5 5 5

LSB Written

LSB & MSB Written

Erased Page

70

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

71

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0

72

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

73

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

74

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

75

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

76

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

77

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

78

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

5 5 5 5

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

79

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

5 5 5 5

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage
0 50 100 150 200 250

10
0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

2 2 2 2 2

80

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

5 5 5 5

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage
0 50 100 150 200 250

10
0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

81

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

5 5 5 5

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage
0 50 100 150 200 250

10
0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

6 6 6 6 6

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

82

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

5 5 5 5

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage
0 50 100 150 200 250

10
0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

6 6 6 6 6

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

7 7 7 7

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

83

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

5 5 5 5

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage
0 50 100 150 200 250

10
0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

6 6 6 6 6

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

7 7 7 7

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage
0 50 100 150 200 250

10
0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

84

0 1 0 0 1 1 0 0 1

2 3 2 2 3 3 2 2 3

4 5 4 4 5 5 4 4 5

6 7 6 6 7 7 6 6 7

0 0 0 0 0 1 1 1 1

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 0 0 0 0

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

1 1 1 1

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

5 5 5 5

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage
0 50 100 150 200 250

10
0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

2 2 2 2 2

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

3 3 3 3

6 6 6 6 6

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

7 7 7 7

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage
0 50 100 150 200 250

10
0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

4 4 4 4 4

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

5 5 5 5

Final Distributions (Cond. on Pg 3 &4)

85 0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

P
a

g
e
 2

 C
e
lls

Voltage

0 Aggressors

1 Aggressor

2 Aggressors

Mitigating Capacitive Coupling

• Many manufacturers are adopting all bitline
(ABL) structure to minimize the number of
aggressors.

• Capacitive coupling is inter-symbol
interference (ISI), i.e. largely deterministic.

• Traditional methods for handling ISI

– Write-precompensation?

– Signal processing methods (ISI cancellation)?

86

PROGRAM DISTURB

87

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vcc

Vcc

SA,1

GND

SA,2

Vcc

SA,n-1

GND

SA,3

GND

GND

GND

Vpgm

• After each cell reaches
its PV level, it is
inhibited (as shown).

• An inhibited cell has its
channel voltage raised,
thus reducing the
voltage difference to its
control gate.

Program Disturb

88

Floating Gate (Vth)

Control Gate (20V)

Vpgm

(6V)

(0V)

CCG

CTOX

CSi

Program Disturb

• Although the inhibit process acts to reduce the
electric field in the tunneling oxide, it does not
eliminate it.

• Some excess charge will be transferred to the
floating-gate of inhibited cells.

• This is most severe for cells in the erased level
since they are inhibited throughout the write
process.

– Receive the most write-pulses after being inhibited.

89

Program Disturb (Experiment)

• Continually re-write a single LSB page bringing
successive bytes to the “0” level, i.e.

• Remaining bytes read with Vread = 0.

90

00000000 11111111 11111111 … 11111111 11111111

00000000 00000000 11111111 … 11111111 11111111

00000000 00000000 00000000 … 11111111 11111111

00000000 00000000 00000000 … 00000000 11111111

...

1)

2)

3)

n)

Read

Read

Read

Read

Experimental Results

91 0 100 200 300 400 500 600 700 800 900 1000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Bytes Written

F
ra

c
ti
o
n
 o

f
1
's

 R
e
a

d
 a

s
 0

's

5k P/E Cycles

2.5k P/E Cycles

1k P/E Cycles

0 P/E Cycles

Program Disturb (Experiment)

• All P/E cycles are affected by program-disturb
at similar rates (lower P/E is affected slightly
more).

a) Higher P/E cycled pages require less pulses to
program (minimizing program disturb).

b) Higher P/E cycled pages will more readily take on
excess charge (maximizing program disturb).

• The effect of a) outweighs the effect of b).

92

Mitigating Program Disturb

• Changing the write strategy by increasing
Vpass will boost the channel voltage, lessening
its effects.

– Increasing Vpass increases pass disturb.

• The effects of program disturb are primarily
on the lowest level.

– Can be taken into account when data is processed.

• Pages are only programmed a single time.

93

READING FROM THE NAND ARRAY

94

SA,0

WL0

WL1

WL2

WL63

WL62

WL61

BL0,e

SSL

SA,1

BL1,e

SA,2

BL2,e

SA,n-1

BLn-1,e

SA,3

BL3,e

GSL

CSL

Reading from the NAND Array

95

Read Process (WL2)

96

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

VreadIsolated Wordline

Vpass ~4-5V > Vthmax

Read Process

• Bitline (Istring) current operates in 1 of 3 regions:

– A) Addressed cell not conductive (Vth < Vread)

– B) Vread makes addressed cell conductive (Vth > Vread)

– C) Cell is completely on, series resistance of pass
transistors saturates current (Vth >> Vread).

97

Istring

Vread

Isat

Vth

A

B C

• In practice, NAND
currents of ~10nA
must be read.

• Capacitors used to
integrate current to
make sensing possible.

READ DISTURB

98

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Disturb

• Unselected wordlines
have Vpass applied to
CG.

• Selected wordline has
Vread applied to CG.

• Applied voltages
cause unintended
tunneling of charge.

• Since Vread < Vpass,
unselected wordlines
are most severely
affected.

99

Read Disturb

• The total stress time for wordline j depends on
the total reads to other wordlines.

𝑀𝑎𝑥𝑆𝑇 𝑗 = 𝑇𝑟𝑒𝑎𝑑 × 𝑁𝑟𝑒𝑎𝑑(𝑖)

63

𝑖=0,𝑖≠𝑗

• Wordline read the fewest (most) times in a block
incurs the most (least) read-disturb.

• Incidental tunneling is endurance dependent.

• Read disturb most severely affects lowest levels.

100

0 P/E

101 0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

0 P/E

500k Reads

1000k Reads

1500k Reads

2000k Reads

1k P/E

102 0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

1k P/E

500k Reads

1000k Reads

1500k Reads

2000k Reads

2.5k P/E

103 0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

2.5k P/E

500k Reads

1000k Reads

1500k Reads

2000k Reads

5k P/E

104 0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

5k P/E

500k Reads

1000k Reads

1500k Reads

2000k Reads

Mitigating Read Disturb

• In general, read-disturb is difficult to detect
during normal read operations.

– Page being read is minimally disturbed.

– Since only lowest level affected, only MSB will be
affected.

• Continually reading the same page (LBA) will not
show signs of read-disturb.

• Read counters can be cumbersome to implement
(firmware overhead) and expensive to store.

105

READ NOISE

106

Read Noise (RTN)

• Traps that reside in the tunneling oxide near
the channel can easily gain/lose electrons.

• Cell voltage fluctuates in discrete states as this
happens.

107

FG

CG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Vth

P
M

F

Read Noise

• To analyze the read-noise in 2ynm NAND, a
page was read 100x at each read-threshold.

108

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Vth

P
M

F

Read Noise

• To analyze the read-noise in 2ynm NAND, a
page was read 100x at each read-threshold.

109

4 States

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Vth

P
M

F

Read Noise

• To analyze the read-noise in 2ynm NAND, a
page was read 100x at each read-threshold.

110

Vth=13

Read Noise

111
0 2 4 6 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of States

P
M

F

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Delta Vth

P
M

F

0 P/E

1k P/E

2.5k P/E

5k P/E

Mitigating Read Noise

• Signal processing techniques such as read-
averaging can be used to mitigate its effects.

– Particularly since multiple reads (i.e. read-shifts)
are often used to recover data.

• Useful for randomizing error locations.

– This randomization helps to reduce error-floors for
some coding methodologies (i.e. LDPC).

112

BACK PATTERN EFFECT

113

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Back Pattern Effect

• During the read-
process, Vpass is
applied to all non-
selected wordlines.

• Cells along these
wordlines are
(ideally) set to pass.

114

Selected Wordline (k)

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Idealized Selection

• In the ideal case,
pass cells behave as
short circuits.

• The string-current
(Istring), thus, is only a
function of the
selected cell.

• Selected cells begins
to conduct when
Vread exceeds Vth.

115

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

R0,0 R0,1 R0,2 R0,3 R0,n-1

R1,0 R1,1 R1,2 R1,3 R1,n-1

R61,0 R61,1 R61,2 R61,3 R61,n-1

R62,0 R62,1 R62,2 R62,3 R62,n-1

R63,0 R63,1 R63,2 R63,3 R63,n-1

Realistic Selection

• Each transistor has a
resistance which is a
function of its
threshold voltage
and control gate
voltage, i.e.,

𝑅𝑖,𝑗 ∝
1

𝑉𝑇𝐻
𝑖,𝑗
− 𝑉𝐺𝑆

𝑖,𝑗

116

Back Pattern Effect

• Total resistance for bit-line j,

𝑅𝐵𝑗 ∝ 𝑅
1

𝑉𝑇𝐻
𝑘,𝑗

− 𝑉𝑟𝑒𝑎𝑑
+ 𝑅

1

𝑉𝑇𝐻
𝑖,𝑗
− 𝑉𝑝𝑎𝑠𝑠

64

𝑖=0,𝑖≠𝑘

• Bit-line current depends on threshold voltages
(i.e. data) of every cell the bit-string,

𝐼𝐵𝑗 =
𝑉𝑏𝑙

𝑅𝐵𝑗

117

BL

Rd

Rs

WL(k+1)~63

WL0~(k-1)

Rcell

Back Pattern Effect

• To demonstrate, a block was written as follows

118

SA,0

Vbl

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

(b0,1) (b1,1) (b2,1) (b3,1) (bn-1,1)

(b0,1) (b1,1) (b2,1) (b3,1) (bn-1,1)

(b0,1) (b1,1) (b2,1) (b3,1) (bn-1,1)

(b0,1) (b1,1) (b2,1) (b3,1) (bn-1,1)

Random Patterns

Repeated LSB,
MSB = 1

(only “11” and
“01” levels)

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

WL1 Histogram (After 1st 2 wordlines)

119

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

WL1 After Block Completion

120

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

Repeated "10"

Repeated "11"

WL1After Block Completion (Conditional)

121

Mitigating Back Pattern Effect

• To avoid the read-back dependence of a page
on the data written to the remainder of the
block, the data must be properly randomized.

• Since user-data pattern may be repeated
within a block, data scrambling must be used.

• Scrambler pattern must ensure sufficient
randomization is achieved in all cases.

122

SUMMARY

123

Write Noise

124
SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vcc

Vcc

SA,1

GND

SA,2

Vcc

SA,n-1

GND

SA,3

GND

GND

GND

Vpgm

Write Noise

125
SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vcc

Vcc

SA,1

GND

SA,2

Vcc

SA,n-1

GND

SA,3

GND

GND

GND

Vpgm

Pass Disturb

Write Noise

126
SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vcc

Vcc

SA,1

GND

SA,2

Vcc

SA,n-1

GND

SA,3

GND

GND

GND

Vpgm

Pass Disturb

Capacitive
Coupling

Write Noise

127
SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vcc

Vcc

SA,1

GND

SA,2

Vcc

SA,n-1

GND

SA,3

GND

GND

GND

Vpgm

Pass Disturb

Capacitive
Coupling

Program
Disturb

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Noise

128

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Noise

129

Read Disturb

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Noise

130

Read Disturb

Read Noise
(RTN)

SA,0

Vpass

Vpass

Vpass

Vpass

Vpass

Vbl

Vcc

SA,1

Vbl

SA,2

Vbl

SA,n-1

Vbl

SA,3

Vbl

Vcc

0V

Vread

Read Noise

131

Read Disturb

Read Noise
(RTN)

Back Pattern
Effect

Conclusion

• There are many noise sources present in
NAND flash memory.
– Some are properties of the NAND flash cell.

– Some are inherent to the array structure.

• Many of these noise sources are exacerbated
by the reduction in process.

• By understanding these noise sources,
algorithms can be utilized to maintain
reliability through this process scaling.

132

Part II: Error-Correction and
Rewriting Codes for Non-Volatile

Memories
Eitan Yaakobi, Ph.D.

California Institute of Technology

1

Outline

 Error Correction Codes
 Constrained Codes
 Rewriting Codes

2

SLC, MLC and TLC Flash

High Voltage

Low Voltage

1 Bit Per Cell
2 States

SLC Flash

011
010
000
001
101
100
110
111

01

00

10

11

0

1

High Voltage

Low Voltage

2 Bits Per
Cell

4 States

MLC Flash

High Voltage

Low Voltage

3 Bits Per
Cell

8 States

TLC Flash

3

Flash Memory Structure

 A group of cells constitute a page
 A group of pages constitute a block

• In SLC flash, a typical block layout is as follows

page 0 page 1
page 2 page 3
page 4 page 5

.

.

.

.

.

.
page 62 page 63

4

 In MLC flash the two bits within a cell DO NOT
belong to the same page – MSB page and LSB page

 Given a group of cells, all the MSB’s constitute one
page and all the LSB’s constitute another page

Row
index

MSB of first
214 cells

LSB of first
214 cells

MSB of last
214 cells

LSB of last
214 cells

0 page 0 page 4 page 1 page 5
1 page 2 page 8 page 3 page 9
2 page 6 page 12 page 7 page 13
3 page 10 page 16 page 11 page 17

⋮

⋮

⋮

⋮

⋮

30 page 118 page 124 page 119 page 125
31 page 122 page 126 page 123 page 127

01

10

00

11

MSB/LSB
Flash Memory Structure

5

Row
index

MSB of
first 216

cells

CSB of
first 216

cells

LSB of
first 216

cells

MSB of
last 216

cells

CSB of
last 216

cells

LSB of
last 216

cells
0 page 0 page 1
1 page 2 page 6 page 12 page 3 page 7 page 13
2 page 4 page 10 page 18 page 5 page 11 page 19
3 page 8 page 16 page 24 page 9 page 17 page 25
4 page 14 page 22 page 30 page 15 page 23 page 31

⋮

⋮

⋮

⋮

⋮

62 page 362 page 370 page 378 page 363 page 371 page 379
63 page 368 page 376 page 369 page 377
64 page 374 page 382 page 375 page 383
65 page 380 page 381

MSB Page CSB Page LSB Page MSB Page CSB Page LSB Page

TLC Structure

6

Shannon Capacity

Every communication channel is
characterized by a single number C, called
the channel capacity.
It is possible to transmit information over
this channel reliably (with probability of
error → 0) if and only if:

C<
#

=R
def

use channel
bits ninformatio

Marcus Marrow, SK Hynix Memory Solutions
7

Shannon Capacity

0 0

1 1

1-p

1-p

p

p

 General Channel Discrete Channel

Capacity (maximized by uniform P(X) for binary input symmetric channel)

Marcus Marrow, SK Hynix Memory Solutions
8

Error Correction Codes

 How does an Error Correction Code (ECC) work?

page i redundancy

Encoder

9

Error Correction Codes

 How does an Error Correction Code (ECC) work?

page i redundancy

Decoder

page i

10

Error Correction Codes
 Code Rate = #info. bits g

 #info. Bits + # redun. bits
 Tradeoff:

 Many ECCs: BCH, RS, Turbo, LDPC, Polar codes…
 Question: What ECC to use…?

BER Rate

Complexity

11

Error Characterization

 We tested several blocks of SLC/MLC/TLC chips
 For each block the following steps were repeated:

• The block is erased.
• Pseudo-random data are programmed to the block.
• The data are read and errors are identified.

 Disclaimers:
• We measured many more P/E cycles than the manufacturer’s

guaranteed lifetime of the device
• The experiments were done in laboratory conditions and related

factors such as temperature change, intervals between erasures,
or multiple readings before erasures were not considered.

12

13

 BCH Codes
 LDPC Codes

• Gallager codes (3,k)-regular, R=0.8, 0.9, 0.925, length 216

• AR4JA protograph-based codes, R=0.8, lengths 1280, 5120,
20480

• MacKay codes variable-regular degree (3 or 4) ; no 4-cycles,
R=0.82, 0.87, 0.93; lengths 4095, 16383, 32000

• IEEE 802.3an* (10Gb/s Ethernet), R ≈0.84, length 2048
 BCH decoder: corrects error patterns with up to t

errors; detects and leaves unchanged more than t errors
 LDPC decoders: assume binary symmetric channel model

BSC(p), with empirical error probability p

* Djurdjevic et al., IEEE Commun. Letters, July 2003

ECC Comparison for TLC flash

14

LDPC Decoders
 Sum-product algorithm (SPA)

• Floating-point, max iterations 200
• (5+1)-bit quasi-uniform quantization

 Min-sum algorithm (MSA)
• No LLR limits, max iterations 200

 Linear programming (LP) decoding
• Alternating Direction Method of Multipliers

(ADMM)* with new fast “projection step”

* Barman, et al., Proc. 46th Allerton Conference, Sept. 2011.

15

R≈0.8, LDPC with SPA Decoding

0 5000 10000 15000
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Program/Erase Cycle

B
E

R
BER of Different Codes of Rate ≈ 0.8

RAW BER

BCH 65536(R=0.8)

802.3an (R=0.84)

DJCM-3 (R=0.82)

DJCM-4 (R=0.82)

AR4JA 1280 (R=0.8)

16

0 5000 10000 15000
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Program/Erase Cycle

B
E

R
BER of Different Codes of Rate ≈ 0.8

RAW BER

BCH 65536(R=0.8)

802.3an (R=0.84)

AR4JA 1280 (R=0.8)

AR4JA 5120 (R=0.8)

AR4JA 20480 (R=0.8)

R≈0.82, LDPC with SPA Decoding

17

R≈0.9, LDPC with SPA Decoding

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Program/Erase Cycle

B
E

R
BER of Different Codes of Rate ≈ 0.8

RAW BER

DJCM-3 MSA (R=0.82)

DJCM-4 MSA (R=0.82)

802.3an MSA (R=0.84)

DJCM-3 SPA (R=0.82)

DJCM-4 SPA (R=0.82)

802.3an SPA (R=0.84)

R≈0.8, MSA vs. SPA Decoding

19

R≈0.925, LP vs. SPA Decoding

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Program/Erase Cycle

B
E

R
BER of Different Codes of Rate ~0.925

RAW BER

M4376 LP (R=0.94)

M4376 quantized SPA (R=0.94)

Gallager (R=0.925)

BCH (R=0.925)

DJCM-4 LP(R=0.93)

DJCM-4 ft-SPA(R=0.93)

DJCM-4 quantized SPA(R=0.93)

20

General Observations
 Best LDPC performance surpasses BCH at all

code rates R≈ 0.8, 0.9, 0.925
 MSA was inferior to SPA decoding at R≈0.8
 LP-ADMM was comparable to SPA decoding at

R≈0.925, with slightly steeper slope
 (5+1)-bit quasi-uniform quantized SPA (not

optimized) matches floating-point SPA
 Soft Vs. Hard input

21

Error Correction Codes

 Question: Is it possible to construct
better ECCs?

 Answer: Yes! If there is better knowledge
on the error model

22

BER per page - MLC

×105

×10-3

Pages, colored the

same, behave similarly

01

10

00

11

MSB/LSB

23

011
010
000
001
101
100
110
111

M/C/L

24

Bit Error Map in SLC

 We checked how the errors behave per bit
 For a small window of iterations, 1.5-1.6×106

iterations (BER is roughly fixed), we
measured the number of times each bit was
in error

25

Bit Error Map for Odd Pages in SLC

Calculate the number of times

each bit is in error

Errors are clustered in

columns rather than rows

×104

×104

26

Cell-based ECC

 Experiments have shown that certain
specific cell-error types are dominant in
MLC and TLC flash memories

 The dominant cell errors in MLC involved
a change in cell voltage by only one level:
10 to 00 or 00 to 01

 An algebraic code that targets such
errors by sharing redundancy between
MSB and LSB pages showed improved
BER vs. P/E

01

10

00

11

27

ECC Scheme for TLC Flash

 If a TLC cell is in error, then with high
probability only one of the three bits in
the cell is in error

 The probability of a bit being in error
does not depend on the target cell level

 Algebraic coding schemes that target
such errors offer potential BER
improvements

011
010
000
001
101
100
110
111

voltage
28

MLC (MSB) Write Process

voltage

voltage PV1 PV2 PV3

LSB=1

MSB=1
LSB=1

MSB=0

LSB=0

MSB=0
LSB=0

MSB=1

LSB=1 LSB=0

Vread

LSB=1 LSB=0

29

ECC Scheme for TLC Flash

 If a TLC cell is in error, then with high
probability only one of the three bits in
the cell is in error

 The probability of a bit being in error
does not depend on the target cell level

 Algebraic coding schemes that target
such errors offer potential BER
improvements

011
010
000
001
101
100
110
111

voltage
30

BER for Cell-based Code for TLC Flash
R≈0.9 R≈0.925

31

Limited Magnitude Error-
Correcting Codes

 Many storage applications, e.g. flash
memories, phase-change memories and more,
share the following common properties:
• Cells have multiple levels: 0,1,…,q-1
• Errors have an asymmetric behavior

32

Limited Magnitude Error-
Correcting Codes

 Many storage applications, e.g. flash
memories, phase-change memories and more,
share the following common properties:
• Cells have multiple levels: 0,1,…,q-1
• Errors have an asymmetric behavior
• If a cell error occurs, then the cell level increases

(or decreases) by at most l levels

33

Limited Magnitude Error-
Correcting Codes

 Many storage applications, e.g. flash
memories, phase-change memories and more,
share the following common properties:
• Cells have multiple levels: 0,1,…,q-1
• Errors have an asymmetric behavior
• If a cell error occurs, then the cell level increases

(or decreases) by at most l levels

34

 Flash memories
• Cells increase their level during the programming

process due to over-shooting
• Cells decrease their level due to data retention
• Errors become more prominent as the device is

cycled
 Phase change memories

• The drift in these memories changes the cells’ levels
in one direction

Limited Magnitude Error-
Correcting Codes

35

MLC Data Retention

Cycle chip to 400% of
lifetime

Bake at 125oC for
9hrs20mins per year of
aging

01

10

00

11

36

Cell Drift in PCM

Figure from: N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M.

Breitwisch, C. Lam, and E. Eleftheriou, “Drift-Tolerant Multilevel Phase-

Change Memory”, 3rd IEEE Memory Workshop, May 2011

 Time evolution of programmed resistance distributions of 200 kcells due to
drift: (a) as programmed, and (b) 40µs, (c) 1000s, (d) 46,000s after
programming.

37

Constrained Codes

 Codes designed to prevent specific data patterns
• Ex. Run Length Limited codes RLL (d,k)
• Number of 0s b/w consecutive 1s is at least d and at most k
• Used in telecommunications and storage systems for

synchronization purposes
 What are the typical constraints in flash?

38

• Mitigate inter-cell interference 101 is forbidden

Inter-Cell Interference (ICI)

Program

Interference

Interference

ci ci+1 ci−1 ci−2

Program

Avoid 101

0

1

Read
Threshold

1 0 1 1

39

Balanced Codes

0 1 1 0 1 0 1 0

fixed
threshold

40

0 1 1 0 1 0 1 0
0 0 1 0 0 0 0 0 fixed

Balanced Codes

fixed
threshold

41

• Write only balanced words: #0s = #1s
• In reading: the n/2 low cells are read as 0
 the n/2 high cells are read as 1
• Relative ranking is most likely preserved

0 1 1 0 1 0 1 0

dynamic
threshold

0 0 1 0 0 0 0 0
0 1 1 0 1 0 1 0

fixed
dynamic

fixed
threshold

Balanced Codes

42

• Array of cells, made of floating gate transistors
─ Each cell can store q different levels
─ Today, q typically ranges between 2 and 16
─ The levels are represented by the number of electrons
─ The cell’s level is increased by pulsing electrons
─ To reduce a cell level, all cells in its containing block

must first be reset to level 0
 A VERY EXPENSIVE OPERATION

Rewriting Codes

43

Rewriting Codes

 Problem: Cannot rewrite the memory
without an erasure

 However… It is still possible to rewrite if
only cells in low level are programmed

44

From Wikipedia:
One limitation of flash memory is that, although it can be read or

programmed a byte or a word at a time in a random access fashion, it can

only be erased a "block" at a time. This generally sets all bits in the block

to 1. Starting with a freshly erased block, any location within that block

can be programmed. However, once a bit has been set to 0, only by
erasing the entire block can it be changed back to 1. In other words,

flash memory (specifically NOR flash) offers random-access read and

programming operations, but does not offer arbitrary random-access

rewrite or erase operations. A location can, however, be rewritten as
long as the new value's 0 bits are a superset of the over-written
values. For example, a nibble value may be erased to 1111, then written

e.g. as 1110. Successive writes to that nibble can change it to 1010, then

0010, and finally 0000. Essentially, erasure sets all bits to 1, and

programming can only clear bits to 0. File systems designed for flash

devices can make use of this capability, for example to represent sector

metadata.

45

 Problem: Cannot rewrite the memory
without an erasure

 However… It is still possible to rewrite if
only cells in low level are programmed

 Naive Example:
• First write: program only

the even pages
• Second write: program only

the odd pages

page 0 page 1
page 2 page 3
page 4 page 5

.

.

.

.

.

.

page 62 page 63

Rewriting Codes

46

 One of the most efficient schemes to decrease
the number of block erasures

 Floating Codes
 Buffer Codes
 Trajectory Codes
 Rank Modulation Codes
 WOM Codes

Rewriting Codes

47

Write-Once Memories (WOM)
 Introduced by Rivest and Shamir, “How to reuse a

write-once memory”, 1982
 The memory elements represent

bits (2 levels) and are irreversibly
programmed from ‘0’ to ‘1’

1st
Write

2nd
Write

48

WOM Implementation in SLC Flash
 A scheme for storing two bits twice using

only three cells before erasing the cells
 The cells only increase their level
 How to implement? (in SLC block)

• Each page stores 2KB/1.5 = 4/3KB per write

• A page can be written twice before erasing
• Pages are encoded using the WOM code
• When the block has to be rewritten, mark its

pages as invalid
• Again write pages using the WOM code without

erasing
• Read before write at the second write

data 1st write 2nd write

00 000 111

01 100 011

10 010 101

11 001 110

⋮

00.11.01.10.11 … 10

WOM
ENCODER

000.001.100.010.001 … 010

000.001.100.010.001 … 010
01.10.00.10.11 … 11

100.010.000.010.001 … 001

100.010.000.010.001 … 001
100.100.000.001.010 … 000

000.010.001.100.000 … 010
001.010.100.000.100 … 010

01.11.10.00.01 … 00

011.001.101.111.011 … 111

011.001.101.111.011 … 111
00.11.00.01.11 … 10

111.110.000.011.001 … 101

111.110.000.011.001 … 101
101.100.101.101.110 … 000

000.110.111.111.110 … 010
111.110.100.101.101 … 110

49

BER for the First and Second Write

50

Write-Once Memories (WOM)
 Introduced by Rivest and Shamir, “How to reuse a

write-once memory”, 1982
 The memory elements represent

bits (2 levels) and are irreversibly
programmed from ‘0’ to ‘1’

 The problem:
 What is the total number of bits

that is possible to write in n cells in
t writes?

1st
Write

2nd
Write

51

Binary WOM-Codes

 k1,…,kt:the number of bits on each write
• n cells and t writes

 The sum-rate of the WOM-code is
 R = (Σ1

t ki)/n
• Rivest Shamir: R = (2+2)/3 = 1.333

 Fixed-rate and Unrestricted-rate WOM-codes

52

Capacity and Constructions
 Capacity region (Heegard ’86, Fu and Han Vinck ’99)
 Ct-WOM={(R1,…,Rt)| R1 ≤ h(p1),
 R2 ≤ (1–p1)h(p2),…,
 Rt-1≤ (1–p1)(1–pt–2)h(pt–1)
 Rt ≤ (1–p1)(1–pt–2)(1–pt–1)}
 Maximum achievable sum-rate is log(t+1)
 Constructions:

Rivest, Shamir ’82
Wolf, Wyner, Ziv, Korner ’84
Merkx ’84
Cohen, Godlewski, and Merkx ’86
Wu and Jiang ’09
Wu ’10
Yaakobi, Kayser, Siegel, Vardy, Wolf ’10
Kayser, Yaakobi, Siegel, Vardy, Wolf ’10

53

Results: Unrestricted-rate

54

Results: Fixed-rate

55

Recent Results

 Shpilka, “New constructions of WOM codes using the
Wozencraft ensemble”, ’12

• Capacity achieving construction
• 3-write WOM codes of sum-rate 1.81

 Burshtein, Strugatski, “Polar write once memory codes”, ’12
 Yaakobi, Shpilka, “High sum-rate three-write and non-binary

WOM codes ”, ’12
• 3-write WOM codes of sum-rate 1.88

 Shpilka, “Capacity Achieving Multiwrite WOM Codes”, ’12
 The Challenge: Constructing WOM codes with high sum-rate

and low encoding/decoding complexities

56

Why/When to Use WOM Codes?

 Disadvantage: sacrifice a large amount of
the capacity
• Ex: Two write WOM codes

– The best sum-rate is log3≈1.58
– Can write (at most) only 0.79n bits so there is a lost of

(at least) 21% of the capacity

 Advantage: Can increase the lifetime of the
memory and reduce the write amplification

57

Why/When to Use WOM Codes?

 Advantage: Can increase the lifetime of the
memory and reduce the write amplification

 Example:
• User has 3GB of flash with lifetime 100 P/E
• Each day the user writes 2GB of new data (no need

to store the old data)
• Without WOM, the memory lasts 3/2*100=150 days
• With WOM (the Rivest Shamir scheme)

every two days the memory is erased once
 the memory lasts 2*100=200 days
• Can improve if there is dependency between the data

written on every day
58

Write Amplification for t=2 WOM Codes

q=2

4
8

1024

Write amplification

decreases for increasing q

59

Non-Binary WOM

 Many constructions
• Huang, Lin, and Abdel-Ghaffar ’10
• Gabrys and Dolecek ’11
• Jiang, Zhou, Bruck ’11
• Gabrys, Yaakobi, Dolecek, Siegel, Vardy, and Wolf ’11
• Kurkoski ’11, Kurkosi ‘12
• Haymaker, Kelley ’12
• Burshtein, Strugatski ’12
• Cassuto, Yaakobi ’12
• Yaakobi, Shpilka ’12
• Bhatia, Iyengar, Siegel ’12

 Might be harder to implement in real flash
devices

01

10

00

11

MSB/LSB

60

Thanks

Aman Bhatia
Brian Butler
Yuval Cassuto
Lara Dolecek
Ryan Gabrys
Laura Grupp
Aravind Iyengar

Andrew Jiang
Scott Kayser
Young-Han Kim
Brian Kurkoski
Jing Ma
Minghai Qin
Amir Shpilka

Paul Siegel
Steven Swanson
Alexander Vardy
Lele Wang
Jack Wolf
Luojie Xiang
Xiaojie Zhang

61

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Signal Processing and Coding for Non-Volatile Memories

Part III: Emerging Coding Methods

Anxiao (Andrew) Jiang

Department of Computer Science and Engineering
Texas A&M University

Tutorial at Non-Volatile Memories Workshop (NVMW), March 3, 2013
Joint Presentation with Eitan Yaakobi and Jason Bellorado

1 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Outline of this talk

We will learn about

Joint rewriting and error correction scheme,

Rank modulation scheme,

Variable-level cell scheme,

Summary and future directions.

2 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Outline of this talk

We will learn about

Joint rewriting and error correction scheme,

Rank modulation scheme,

Variable-level cell scheme,

Summary and future directions.

2 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Outline of this talk

We will learn about

Joint rewriting and error correction scheme,

Rank modulation scheme,

Variable-level cell scheme,

Summary and future directions.

2 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Outline of this talk

We will learn about

Joint rewriting and error correction scheme,

Rank modulation scheme,

Variable-level cell scheme,

Summary and future directions.

2 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Joint rewriting and error correction scheme

3 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Basic Problem for Write-Once Memory

Let us recall the basic question for Write-Once Memory (WOM):

Suppose you have n binary cells. Every cell can change its
value only from 0 to 1, not from 1 to 0.
How can you write data, and then rewrite, rewrite, rewrite · · ·
the data?

4 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Write Once Memory (WOM) [1]

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

[1] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” in Information and Control, vol. 55, pp.

1-19, 1982.

5 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10

6 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10
2nd write: 01

7 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10
2nd write: 01

Sum rate: 2
3 + 2

3 = 1.33

8 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Write-Once Memory Code

This kind of code is called Write-Once Memory (WOM) code.

It is potentially a powerful technology for Flash Memories.

9 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Capacity of WOM [1][2]

For WOM of q-level cells and t rewrites, the capacity (maximum
achievable sum rate) is

log2

(
t + q − 1

q − 1

)
.

bits per cell.

[1] C. Heegard, On the capacity of permanent memory, in IEEE Trans. Information Theory, vol. IT-31, pp. 34-42,
1985.
[2] F. Fu and A. J. Han Vinck, On the capacity of generalized write-once memory with state transitions described

by an arbitrary directed acyclic graph, in IEEE Trans. Information Theory, vol. 45, no. 1, pp. 308-313, 1999.

10 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Review: Capacity of WOM

11 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Recent Developments

How to design good WOM codes?

Two capacity-achieving codes were published in 2012 – the same
year!:

A. Shpilka, Capacity achieving multiwrite WOM codes, 2012.

D. Burshtein and A. Strugatski, Polar write once memory
codes, 2012.

12 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Two Parameters: α and ε

For a t-write WOM code, consider one of its t writes.

There are two important parameters for this write:

α: The fraction of cells that are 0 before this write.

ε: For the cells of level 0 before this write, ε is the fraction of
them that are changed to 1 in this write.

For t-write WOM codes, the optimal values of α and ε are known
for each of the t writes.

13 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Polar WOM Code [1]

Idea of Burshtein and Strugatski: See a write as the decoding of a
polar code:

See the cells’ state BEFORE the write as a noisy Polar
codeword.

See the cells’ state AFTER the write as the correct (i.e.,
error-free) Polar codeword.

More precisely, they see the write as lossy data compression, using
the method presented by Korada and Urbanke [2].

[1] D. Burshtein and A. Strugatski, Polar Write Once Memory Codes, in Proc. ISIT, 2012.

[2] S. Korada and R. Urbanke, Polar Codes Are Optimal For Lossy Source Coding, in IEEE Transactions on

Information Theory, vol. 56, no. 4, pp. 1751–1768, 2010.

14 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Polar WOM Code

Smart Idea by Burshtein and Strugatski:

1 Add dither to cell:

Let s ∈ {0, 1} be the level of a cell.
Let g ∈ {0, 1} be a pseudo-random number known to the
encoder and decoder.
Let v = s ⊕ g be called the value of the cell.

2 Build a test channel for the write, which we shall call the WOM channel:

require s�i,j ≥ si,j. Let ci,j ∈ {0, 1} denote the level of the i-th
cell at any time after the j-th write and before the (j + 1)-
th write, when reading of the message Mj can happen. The
error ci,j ⊕ s�i,j ∈ {0, 1} is the error in the i-th cell caused by
the noise channel BSC(p). (Here ⊕ is an XOR function.) For
j = 1, 2, · · · , t, the encoding function

Ej : {0, 1}N × {0, 1}Mj → {0, 1}N

changes the cell levels from sj = (s1,j, s2,j, · · · , sN,j) to
s�j = (s�1,j, s�2,j, · · · , s�N,j) given the initial cell state sj and
the message to store Mj. (Namely, Ej(sj, Mj) = s�j.) When
the reading of Mj happens, the decoding function

Dj : {0, 1}N → {0, 1}Mj

recovers the message Mj given the noisy cell state cj =
(c1,j, c2,j, · · · , cN,j). (Namely, Dj(cj) = Mj.)

For j = 1, · · · , t, Rj =
Mj
N is called the rate of the j-

th write. Rsum = ∑t
j=1 Rj is called the sum-rate of the code.

When there is no noise, the maximum sum-rate of WOM code
is known to be log2(t + 1); however, for noisy WOM, the
maximum sum-rate is still largely unknown [6].

B. Polar codes

We give a short introduction to polar codes due to its
relevance to our code construction. A polar code is a linear
block error correcting code proposed by Arıkan [1]. It is the
first known code with an explicit construction that provably
achieves the channel capacity of symmetric binary-input dis-
crete memoryless channels (B-DMC). The encoder of a polar
code transforms N input bits u = (u1, u2, · · · , uN) to N
codeword bits x = (x1, x2, · · · , xN) through a linear trans-

formation. (In [1], x = uG⊗m
2 where G2 =

�
1 0
1 1

�
, and

G⊗m
2 is the m-th Kronecker product of G2.) The N codeword

bits (x1, x2, · · · , xN) are transmitted through N independent
copies of a B-DMC. For decoding, N transformed binary
input channels {W(1)

N , W(2)
N , · · · , W(N)

N } can be synthesized
for u1, u2, · · · , uN , respectively. The channels are polarized
such that for large N, the fraction of indices i for which
I(W(i)

N) is nearly 1 approaches the capacity of the B-DMC [1],
while the values of I(W(i)

N) for the remaining indices i are
nearly 0. The latter set of indices are called the frozen set.
For error correction, the ui’s with i in the frozen set take
fixed values, and the other ui’s are used as information bits.
A successive cancellation (SC) decoding algorithm achieves
diminishing block error probability as N increases.

Polar code can also be used for optimal lossy source
coding [8], which has various applications. In particular, in [3],
the idea was used to build capacity achieving WOM codes.

Our code analysis uses the concept of upgrading and de-
grading channels, defined based on frozen sets. As in [13],
a channel W � : X → Z is called "degraded with respect to
a channel W : X → Y” if an equivalent channel of W � can
be constructed by concatenating W with an additional channel

Q : Y → Z, where the inputs of Q are linked with the outputs
of W. That is,

W �(z|x) = ∑
y∈Y

W(y|x)Q(z|y)

We denote it by W � � W. Equivalently, the channel W is
called “an upgrade with respect to W �”, denoted by W � W �.

III. CODE CONSTRUCTION

In this section, we introduce our code construction that
combines rewriting with error correction.

A. Basic code construction with a nested structure

1) Basic concepts: First, let us consider a single rewrite
step (namely, one of the t writes). Let s = (s1, s2, · · · , sN) ∈
{0, 1}N and s� = (s�1, s�2, · · · , s�N) ∈ {0, 1}N denote the cell
levels right before and after this rewrite, respectively. Let g =
(g1, g2, · · · , gn) be a pseudo-random bit sequence with i.i.d.
bits that are uniformly distributed. The value of g is known
to both the encoder and the decoder, and g is called a dither.

For i = 1, 2, · · · , N, let vi = si ⊕ gi ∈ {0, 1} and v�i =
s�i ⊕ gi ∈ {0, 1} be the value of the i-th cell before and after
the rewrite, respectively. As in [3], we build the WOM channel
in Figure 1 for this rewrite, denoted by WOM(α, �). Here

0

1

(1, 0)

(1, 1)

(0, 0)

(0, 1)

1 − α

1 − α

α(1 − �)

α(1 − �)

α�

α�
v� (s, v)

Fig. 1. The WOM channel WOM(α, �).

α ∈ [0, 1] and � ∈ [0, 1
2] are given parameters, with α =

1− ∑N
i=1

si
N representing the fraction of cells at level 0 before

the rewrite, and � =
∑N

i=1 s�i−si

N−∑N
i=1 si

representing the fraction of
cells that are changed from level 0 to level 1 by the rewrite.
Let FWOM(α,�) ⊆ {1, 2, · · · , N} be the frozen set of the polar
code corresponding to this channel WOM(α, �). It is known

that limN→∞
|FWOM(α,�) |

N = α H(�). [3]
For the noise channel BSC(p), let FBSC(p) ⊆ {1, 2, · · · , N}

be the frozen set of the polar code corresponding to the channel
BSC(p). It is known that limN→∞

|FBSC(p) |
|N| = H(p).

In this subsection, we assume FBSC(p) ⊆ FWOM(α,�). It is
as illustrated in Figure 2(a). In this case, the code has a nice
nested structure: for any message M ∈ {0, 1}M, the set of
cell values VM ⊆ {0, 1}N that represent the message M is
a linear subspace of a linear error correcting code (ECC) for
the noise channel BSC(p), and {VM|M ∈ {0, 1}M} form a

(s,v): level and value
of a cell before the write.

v': value of a cell
after the write.

15 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Polar WOM Code: Process of A Write: Encode

Polar
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value
before the write

frozen set
for WOM
channel

16 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Polar WOM Code: Process of A Write: Encode

Polar
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value
before the write

frozen set
for WOM
channel

Known
Data

17 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Polar WOM Code: Process of A Write: Encode

Polar
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value
before the write

frozen set
for WOM
channel

Known
Data

Computed
18 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Polar WOM Code: Process of A Write: Encode

Polar
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value
before the write

frozen set
for WOM
channel

Known
Data

Computed Computed
19 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Polar WOM Code: Process of A Write: Decode

Polar
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value
before the write

frozen set
for WOM
channel

Known
20 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Polar WOM Code: Process of A Write: Decode

Polar
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value
before the write

frozen set
for WOM
channel

Known

Recovered

21 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

For Rewriting to be used in flash memories, it is CRITICAL to
combine it with Error-Correcting Codes.

22 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Some Codes for Joint Rewriting and Error Correction

Previous results are for correcting a few (up to 3) errors:

G. Zemor and G. D. Cohen, Error-Correcting WOM-Codes, in
IEEE Transactions on Information Theory, vol. 37, no. 3, pp.
730–734, 1991.

E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf, Multiple
Error-Correcting WOM-Codes, in IEEE Transactions on
Information Theory, vol. 58, no. 4, pp. 2220–2230, 2012.

23 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

New Code for Joint Rewriting and Error Correction

We now present a joint coding scheme for rewriting and error
correction, which can correct a substantial number of errors and
supports any number of rewrites.

A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, Joint
Rewriting and Error Correction in Write-Once Memories, 2013.

24 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Model of Rewriting and Noise

1st
write BSC(p) 2nd

write BSC(p) t-th
write BSC(p)

25 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Two Channels

Consider one write.

Consider two channels:

1 WOM channel. Let its frozen set be FWOM(α,ε).

2 BSC channel. Let its frozen set be FBSC(p).

26 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

General Coding Scheme

Polar
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write)frozen set
for WOM
channel

frozen set
for BSC
channel

27 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

General Coding Scheme

Polar
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write)frozen set
for WOM
channel

frozen set
for BSC
channel

Data

0's

Use additional
cells to store

its value

28 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Rate of the Code

Analyze the rate of a single write step:

Let N →∞ be the size of the polar code.
The size of FWOM(α,ε) (the frozen set for the WOM channel)
is αH(ε)N.
The size of FBSC(p) (the frozen set for the BSC) is H(p)N.
The number of bits in the written data is
|FWOM(α,ε) − FBSC(p)|.
The number of additional cells we use to store the value in
FBSC(p) − FWOM(α,ε) is

|FBSC(p)−FWOM(α,ε)|
1−H(p) .

For i = 1, 2, · · · , t, let Mi be the number of bits written in the
ith write, and let Nadditional ,i be the number of additional cells
we use to store the value in FBSC(p) − FWOM(α,ε) in the ith
write. Then the sum-rate is

Rsum =

∑t
i=1 Mi

N +
∑t

i=1 Nadditional ,i

.

29 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

When is FBSC (p) a subset of FWOM(α,ε)?

V. EXTENSIONS

We now consider more general noise models. For simplicity,
we discuss it for an erasure channel. But it can be easily
extended to other noise models. Let the noise be a BEC with
erasure probability p, denoted by BEC(p). After a rewrite,
noise appears in some cell levels (both level 0 and level 1)
and changes them to erasures. An erasure represents a noisy
cell level between 0 and 1. We handle erasures this way: before
a rewrite, we first increase all the erased cell levels to 1, and
then perform rewriting as before.

Note that although the noise for cell levels is BEC(p),
when rewriting happens, the equivalent noise channel for the
cell value v = s ⊕ g is a BSC(p

2), because all the erased
cell levels have been pushed to level 1, and dither has a
uniform distribution. Therefore, the code construction and its
performance analysis can be carried out the same way as
before, except that we replace p by p

2 .
The code can also be extended to multi-level cells (MLC),

by using q-ary polar codes. We skip the details for simplicity.

VI. EXPERIMENTAL RESULTS

In this section, we study the achievable rates of our error
correcting WOM code, using polar codes of finite lengths. In
the following, we assume the noise channel is BSC(p), and
search for good parameters �1, �2, · · · , �t that achieve high
sum-rate for rewriting. We also study when the code can have
a nested structure, which simplifies the code construction.

A. Finding BSCs satisfying FBSC(p) ⊆ FWOM(α,�)

The first question we endeavor to answer is when BSC(p)
satisfies the condition FBSC(p) ⊆ FWOM(α,�), which leads to
an elegant nested code structure. We search for the answer
experimentally. Let N = 8192. Let the polar codes be
constructed using the method in [13]. To obtain the frozen sets,
we let |FWOM(α,�)| = N(α H(�) − ∆R), where ∆R = 0.025
is a rate loss we considered for the polar code of the WOM
channel [3]; and let FBSC(p) be chosen with the target block
error rate 10−5.

The results are shown in Figure 8. The four curves corre-
spond to α = 0.4, 0.6, 0.8, and 1.0, respectively. The x-axis
is �, and the y-axis is the maximum value of p we found that
satisfies FBSC(p) ⊆ FWOM(α,�). Clearly, the maximum value
of p increases with both α and �. And it has nontrivial values
(namely, it is comparable to or higher than the typical error
probabilities in memories).

B. Achievable sum-rates for nested code
We search for the achievable sum-rates of codes with

a nested structure, namely, when the condition FBSC(p) ⊆
FWOM(αj−1,�j)

is satisfied for all j = 1, 2, · · · , t. Given p, we
search for �1, �2, · · · , �t that maximize the sum-rate Rsum.

We show the results for t-write error-correcting WOM
codes—for t = 2, 3, 4, 5—in Figure 9. (In the experiments,
we let N = 8192, ∆R = 0.025, and the target block error rate
be 10−5.) The x-axis is p, and the y-axis is the maximum sum-
rate found in our algorithmic search. We see that the achievable
sum-rate increases with the number of rewrites t.

10-4

10-3

10-2

10-1

100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
a
xi

m
u
m

 E
rr

o
r

P
ro

b
a
b
ili

ty
 p

ε

α = 1.0
α = 0.8
α = 0.6
α = 0.4

Fig. 8. The maximum value of p found for which FBSC(p) ⊆ FWOM(α,�).

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

M
a

xi
m

u
m

 S
u

m
-r

a
te

 R
su

m

BSC’s Error Probability p

t = 2
t = 3
t = 4
t = 5

Fig. 9. Sum-rates for different t obtained in experimental search using code
length N = 8192, when FBSC(p) ⊆ FWOM(α,�).

C. Achievable sum-rates for general code

We now search for the achievable sum-rates of the gen-
eral code, when FBSC(p) is not necessarily a subset of
FWOM(αj−1,�j)

. When p is given, the general code can search
a larger solution space for �1, �2, · · · , �t than the nested-code
case, and therefore achieve higher sum-rates. However, for
relatively small p (e.g. p < 0.016), the gain in rate obtained
in the experiments is quite small. This means the nested
code is already performing well for this parameter range. For
simplicity, we skip the details.

Note that the lower bound to sum-rate Rsum in Figure 6
is actually higher than the rates we have found through
experiments by now. This is because the lower bound is for
N → ∞, while the codes in our experiments are still short so
far and consider the rate loss ∆R. Better rates can be expected
as we increase the code length and further improve our search
algorithm due to the results indicated by the lower bound.

30 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Theoretical Analysis

It is interesting to know how much FWOM(α,ε) and FBSC(p)

intersects.

31 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Degrading WOM Channel to BSC

IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α). Therefore FWOM(α, p

α) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α). Therefore, FWOM(α, p

α) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.

0

1

1 − α

1 − α

1

1

1

1

α(1 − �∗)

α(1 − �∗)

α�∗

α�∗

α�∗

α�∗

Fig. 3. Degrading the channel WOM(α, �∗) to BSC(α�∗). The two channels
on the left and on the right are equivalent.

0

1

1 − α 1 − α

1 − α1 − α

1

1

α(1 − p

α
)

α(1 − p

α
)

p

p

α(1 − �)

α(1 − �)

α�

α�

1 − z

1 − z

z

z

Fig. 4. Degrading channel WOM(α, p
α) to WOM(α, �). Here z = α�−p

α−2p .
The two channels on the left and on the right are equivalent.

Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α)
|

N = α H(p
α).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α)

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α)

and BSC(α�). Here p ≤ α�.

32 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Degrading WOM Channel to Another WOM Channel

IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α). Therefore FWOM(α, p

α) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α). Therefore, FWOM(α, p

α) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.

0

1

1 − α

1 − α

1

1

1

1

α(1 − �∗)

α(1 − �∗)

α�∗

α�∗

α�∗

α�∗

Fig. 3. Degrading the channel WOM(α, �∗) to BSC(α�∗). The two channels
on the left and on the right are equivalent.

0

1

1 − α 1 − α

1 − α1 − α

1

1

α(1 − p

α
)

α(1 − p

α
)

p

p

α(1 − �)

α(1 − �)

α�

α�

1 − z

1 − z

z

z

Fig. 4. Degrading channel WOM(α, p
α) to WOM(α, �). Here z = α�−p

α−2p .
The two channels on the left and on the right are equivalent.

Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α)
|

N = α H(p
α).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α)

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α)

and BSC(α�). Here p ≤ α�.

33 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Common Upgrading/Degrading of WOM-channel and BSC

IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α). Therefore FWOM(α, p

α) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α). Therefore, FWOM(α, p

α) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.

0

1

1 − α

1 − α

1

1

1

1

α(1 − �∗)

α(1 − �∗)

α�∗

α�∗

α�∗

α�∗

Fig. 3. Degrading the channel WOM(α, �∗) to BSC(α�∗). The two channels
on the left and on the right are equivalent.

0

1

1 − α 1 − α

1 − α1 − α

1

1

α(1 − p

α
)

α(1 − p

α
)

p

p

α(1 − �)

α(1 − �)

α�

α�

1 − z

1 − z

z

z

Fig. 4. Degrading channel WOM(α, p
α) to WOM(α, �). Here z = α�−p

α−2p .
The two channels on the left and on the right are equivalent.

Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α)
|

N = α H(p
α).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α)

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α)

and BSC(α�). Here p ≤ α�.

34 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Common Upgrading/Degrading of WOM-channel and BSC

IV. CODE ANALYSIS FOR BSC

In this section, we prove the correctness of the above code
construction, and analyze its performance.

A. Correctness of the code

We first prove the correctness of our code. First, the encoder
in Algorithm 1 works similarly to the WOM code encoder
in [3], with an exception that the bits in FWOM(α,�) are not all
occupied by the message M; instead, the bits in its subset
FWOM(α,�) ∩ FBSC(p) are set to be constant values: all 0s.
Therefore, it successfully rewrites data in the same way as
the code in [3]. Next, the decoder in Algorithm 2 recovers the
cell values from noise in the same way as the standard polar
ECC. Then, the stored message M is extracted from it.

One important thing to note is that although the physical
noise acts on the cell levels s = (s1, s2, · · · , sN), the error cor-
recting code we use in our construction is actually for the cell
values v = (v1, v2, · · · , vn) = (s1 ⊕ g1, s2 ⊕ g2, · · · , sN ⊕
gN). However, the pseudo-random dither g has independent
and uniformly distributed elements; so when the noise channel
for s is BSC(p), the corresponding noise channel for v is also
BSC(p).

B. The size of FWOM(α,�) ∩ FBSC(p)

We have seen that if FBSC(p) ⊆ FWOM(α,�), the code has
a very interesting nested structure. In general, it is also inter-
esting to understand how large the intersection FWOM(α,�) ∩
FBSC(p) can be. For convenience of presentation, we consider
one rewrite as in Section III-A, where the parameters are α
and � (instead of αj−1, �j).

Lemma 1. When H(p) ≤ α H(�), limN→∞
|FBSC(p) |

N ≤
limN→∞

|FWOM(α,�) |
N .

Proof: limN→∞
|FBSC(p) |

N = H(p) ≤ α H(�) =

limN→∞
|FWOM(α,�) |

N .

Lemma 2. When p ≤ α�,

FWOM(α, p
α) ⊆

�
FBSC(p) ∩ FWOM(α,�)

�
,

and
�

FWOM(α,�) ∪ FBSC(p)

�
⊆ FBSC(α�).

Proof: (1) In Figure 3, by setting �∗ = p
α , we see that

BSC(p) � WOM(α, p
α). Therefore FWOM(α, p

α) ⊆ FBSC(p).
(2) In Figure 4, we can see that WOM(α, �) �

WOM(α, p
α). Therefore, FWOM(α, p

α) ⊆ FWOM(α,�).
(3) In Figure 3, by setting �∗ = �, we see that BSC(α�) �

WOM(α, �). Therefore FWOM(α,�) ⊆ FBSC(α�).
(4) Since p ≤ α�, clearly BSC(α�) � BSC(p). Therefore

FBSC(p) ⊆ FBSC(α�).
We illustrate the meaning of Lemma 2 in Figure 5.

0

1

1 − α

1 − α

1

1

1

1

α(1 − �∗)

α(1 − �∗)

α�∗

α�∗

α�∗

α�∗

Fig. 3. Degrading the channel WOM(α, �∗) to BSC(α�∗). The two channels
on the left and on the right are equivalent.

0

1

1 − α 1 − α

1 − α1 − α

1

1

α(1 − p

α
)

α(1 − p

α
)

p

p

α(1 − �)

α(1 − �)

α�

α�

1 − z

1 − z

z

z

Fig. 4. Degrading channel WOM(α, p
α) to WOM(α, �). Here z = α�−p

α−2p .
The two channels on the left and on the right are equivalent.

Lemma 3. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|F
WOM(α, p

α)
|

N = α H(p
α).

Lemma 4. When p ≤ α�, limN→∞
|FWOM(α,�)∩FBSC(p) |

N ≥
limN→∞

|FWOM(α,�) |+|FBSC(p) |−|FBSC(α�) |
N = α H(�) + H(p) −

H(α�).

Proof: |FWOM(α,�) ∩ FBSC(p)| = |FWOM(α,�)| +
|FBSC(p)| − |FWOM(α,�) ∪ FBSC(p)| ≥ |FWOM(α,�)| +
|FBSC(p)| − |FBSC(α�)| (by Lemma 2).

C. Lower bound to sum-rate

We now analyze the sum-rate of our general code construc-

tion as N → ∞. Let xj �
|FWOM(αj−1,�j)

∩FBSC(p) |
|FBSC(p) | ≤ 1. For

j = 1, 2, · · · , t, the number of bits written in the j-th rewrite

{1, 2, · · · , N}

FWOM(α,�)

FBSC(α�)

FBSC(p)

FWOM(α, p
α)

Fig. 5. The frozen sets for channels BSC(p), WOM(α, �), WOM(α, p
α)

and BSC(α�). Here p ≤ α�.

35 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Lower Bound to Achievable Sum-Rate

is

Mj =|FWOM(αj−1,�j)
| − |FWOM(αj−1,�j)

∩ FBSC(p)|
=Nαj−1 H(�j) − xj|FBSC(p)|
=N(αj−1 H(�j) − xj H(p))

and the number of additional cells we use to store the bits in
FBSC(p) − FWOM(αj−1,�j)

is

Nadditional,j =
N H(p)(1 − xj)

1 − H(p)

Therefore, the sum-rate is Rsum � ∑t
j=1 Mj

N+∑t
j=1 Nadditional,j

=
∑t

j=1 αj−1 H(�j) − H(p) ∑t
j=1 xj

1 + H(p)
1−H(p) ∑t

j=1(1 − xj)

=
(1 − H(p)) ∑t

j=1 αj−1 H(�j) − H(p)(1 − H(p)) ∑t
j=1 xj

(1 − H(p) + H(p)t) − H(p) ∑t
j=1 xj

=(1 − H(p)) ·
1

H(p) ∑t
j=1 αj−1 H(�j) − ∑t

j=1 xj

1−H(p)+H(p)t
H(p)

− ∑t
j=1 xj

.

Let γj � max

�
αj−1 H(

p
αj−1

)

H(p)
,

αj−1 H(�j)+H(p)−H(αj−1�j)

H(p)

�
.

Lemma 5. Let 0 < p ≤ αj−1�j. Then xj ≥ γj.

Proof: By Lemma 3, we have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1, p

αj−1
)|

|FBSC(p)|
=

αj−1 H(p
αj−1

)

H(p)
.

By Lemma 4, we also have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1,�j)

| + |FBSC(p)| − |FBSC(αj−1�j)
|

|FBSC(p)|

=
αj−1 H(�j) + H(p) − H(αj−1�j)

H(p)
.

Theorem 6 Let 0 < p ≤ αj−1�j for j = 1, 2, · · · , t. If
∑t

j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, then the sum-rate
Rsum is lower bounded by

(1 − H(p))
∑t

j=1
�
αj−1 H(�j) − H(p)γj

�

1 − H(p) + H(p)t − H(p) ∑t
j=1 γj

.

If ∑t
j=1 αj−1 H(�j) < 1 − H(p) + H(p)t, and H(p) ≤

αj−1 H(�j) for j = 1, 2, · · · , t, then Rsum is lower bounded

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

Lo
w

er
 B

ou
nd

 to
 A

ch
ie

va
bl

e
S

um
-r

at
e

t

Noiseless
p = 0.001
p = 0.005
p = 0.010
p = 0.016

Fig. 6. Lower bound to achievable sum-rates for different error probability
p.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 1 2 3 4 5 6 7 8 9 10

Lo
w

er
 B

ou
nd

 to
 A

ch
ie

va
bl

e
S

um
-r

at
e

t

Noiseless
p = 0.001
p = 0.005
p = 0.010
p = 0.016

Fig. 7. Lower bound to achievable sum-rates for different error probability
p. Here each rewriting step writes the same number of bits.

by �
t

∑
j=1

αj−1 H(�j)

�
− H(p)t.

Proof: If ∑t
j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, the

sum-rate is minimized when xj (j = 1, 2, · · · , t) takes the
minimum value, and we have xj ≥ γj. Otherwise, the sum-
rate is minimized when xj takes the maximum value 1.

We show some numerical results of the lower bound to sum-
rate Rsum in Figure 6, where we let �i = 1

2+t−i . The curve
for p = 0 is the optimal sum-rate for noiseless WOM code.
The other four curves are the lower bounds for noisy WOM
with p = 0.001, p = 0.005, p = 0.010 and p = 0.016,
respectively, given by Theorem 6. Note that it is possible to
further increase the lower bound values by optimizing �i. We
also show in Figure 7 the lower bound to sum-rate when each
step writes the same number of bits.

36 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Rank Modulation

37 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Definition of Rank Modulation [1-2]

Rank Modulation:

We use the relative order of cell
levels (instead of their absolute
values) to represent data.

[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for Flash Memories,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1731–1735, July 2008.

[2] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

38 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Examples and Extensions of Rank Modulation

Example: Use 2 cells to store 1 bit.

Relative order: (1,2)
Value of data: 0

cell 1 cell 2

Relative order: (2,1)
Value of data: 1

cell 1 cell 2

Example: Use 3 cells to store log2 6 bits. The relative orders
(1, 2, 3), (1, 3, 2), · · · , (3, 2, 1) are mapped to data 0, 1, · · · , 5.

In general, k cells can represent log2(k!) bits.

39 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Examples and Extensions of Rank Modulation

Example: Use 2 cells to store 1 bit.

Relative order: (1,2)
Value of data: 0

cell 1 cell 2

Relative order: (2,1)
Value of data: 1

cell 1 cell 2

Example: Use 3 cells to store log2 6 bits. The relative orders
(1, 2, 3), (1, 3, 2), · · · , (3, 2, 1) are mapped to data 0, 1, · · · , 5.

In general, k cells can represent log2(k!) bits.

39 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Examples and Extensions of Rank Modulation

Example: Use 2 cells to store 1 bit.

Relative order: (1,2)
Value of data: 0

cell 1 cell 2

Relative order: (2,1)
Value of data: 1

cell 1 cell 2

Example: Use 3 cells to store log2 6 bits. The relative orders
(1, 2, 3), (1, 3, 2), · · · , (3, 2, 1) are mapped to data 0, 1, · · · , 5.

In general, k cells can represent log2(k!) bits.

39 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Rank Modulation using Multi-set Permutation

Extension: Let each rank have m cells.

Example

Let m = 4. The following is a multi-set permutation

({2, 4, 6, 9}, {1, 5, 10, 12}, {3, 7, 8, 11}) .

1

2

3

4

5

6

7 8

9

10

11

12

Analog level of cells

Rank 1

Rank 2

Rank 3

40 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Error-Correcting Codes for Rank Modulation

Error Correcting Codes for Rank Modulation

41 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Error Models and Distance between Permutations

Based on the error model, there are various reasonable choices for
the distance between permutations:

Kendall-tau distance. (To be introduced in detail.)

L∞ distance.

Gaussian noise based distance.

Distance defined based on asymmetric errors or inter-cell
interference.

We should choose the distance appropriately based on the type and
magnitude of errors.

42 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(a1, · · · , ai−1, ai , ai+1︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an)

Example:

(2,1,5,3,4) (2,1,3,5,4)

Original Cell Levels Noisy Cell Levels

We can extend the concept to multiple such “local exchanges” (for larger
errors).
[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

43 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(a1, · · · , ai−1, ai , ai+1︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an)

Example:

(2,1,5,3,4) (2,1,3,5,4)

Original Cell Levels Noisy Cell Levels

We can extend the concept to multiple such “local exchanges” (for larger
errors).
[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

43 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(a1, · · · , ai−1, ai , ai+1︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai︸ ︷︷ ︸
adjacent pair

, ai+2, · · · , an)

Example:

(2,1,5,3,4) (2,1,3,5,4)

Original Cell Levels Noisy Cell Levels

We can extend the concept to multiple such “local exchanges” (for larger
errors).
[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

43 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(a1, · · · , ai−1, ai , ai+1, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai , ai+2, · · · , an)

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, dτ (A,B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that dτ (A,B) = dτ (B,A).)

If the minimum Kendall-tau distance of a code is 2t+1, then it can

correct t adjacent transposition errors.

44 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(a1, · · · , ai−1, ai , ai+1, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai , ai+2, · · · , an)

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, dτ (A,B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that dτ (A,B) = dτ (B,A).)

If the minimum Kendall-tau distance of a code is 2t+1, then it can

correct t adjacent transposition errors.

44 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(a1, · · · , ai−1, ai , ai+1, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai , ai+2, · · · , an)

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, dτ (A,B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that dτ (A,B) = dτ (B,A).)

If the minimum Kendall-tau distance of a code is 2t+1, then it can

correct t adjacent transposition errors.

44 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC

Definition (State Diagram)

Vertices are permutations. There is an undirected edge between
two permutations A,B ∈ Sn iff dτ (A,B) = 1.

Example: The state diagram for n = 3 cells is

(1,2,3)
(2,1,3)

(1,3,2)

(2,3,1)

(3,1,2)
(3,2,1)

45 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Kendall-tau Distance for Rank Modulation ECC

Example: The state diagram for n = 4 cells is

1234

2134

3124

4123

3214

4213

1324

2314

4312

1423

2413

3412

4321

3421

4132 4231

1432

2431 2143

3142

1243

3241

1342

2341

46 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

Definition (Inversion Vector)

Given a permutation (a1, a2, · · · , an), its inversion vector
(x1, x2, · · · , xn−1) ∈ {0, 1} × {0, 1, 2} × · · · × {0, 1, · · · , n − 1} is
determined as follows:

For i = 1, 2, · · · , n− 1, xi is the number of elements in {1, 2, · · · , i}
that are behind i + 1 in the permutation (a1, · · · , an).

Example: The inversion vector for (1, 2, 3, 4) is (0, 0, 0). The inversion for

(4, 3, 2, 1) is (1, 2, 3). The inversion vector for (2, 4, 3, 1) is (1, 1, 2).

47 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

Definition (Inversion Vector)

Given a permutation (a1, a2, · · · , an), its inversion vector
(x1, x2, · · · , xn−1) ∈ {0, 1} × {0, 1, 2} × · · · × {0, 1, · · · , n − 1} is
determined as follows:

For i = 1, 2, · · · , n− 1, xi is the number of elements in {1, 2, · · · , i}
that are behind i + 1 in the permutation (a1, · · · , an).

Example: The inversion vector for (1, 2, 3, 4) is (0, 0, 0). The inversion for

(4, 3, 2, 1) is (1, 2, 3). The inversion vector for (2, 4, 3, 1) is (1, 1, 2).

47 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

Definition (Inversion Vector)

Given a permutation (a1, a2, · · · , an), its inversion vector
(x1, x2, · · · , xn−1) ∈ {0, 1} × {0, 1, 2} × · · · × {0, 1, · · · , n − 1} is
determined as follows:

For i = 1, 2, · · · , n− 1, xi is the number of elements in {1, 2, · · · , i}
that are behind i + 1 in the permutation (a1, · · · , an).

Example: The inversion vector for (1, 2, 3, 4) is (0, 0, 0). The inversion for

(4, 3, 2, 1) is (1, 2, 3). The inversion vector for (2, 4, 3, 1) is (1, 1, 2).

47 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n − 1)-dimensional space.

Fact: For any two permutations A,B ∈ Sn, dτ (A,B) is no less
than their L1 distance in the (n − 1)-dimensional space.

Idea: We can construct a code of minimum L1 distance D in the
(n− 1)-dimensional array of size 2× 3× · · · × n. Then it is a code
of Kendall-tau distance at least D for the permutations.

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

48 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n − 1)-dimensional space.

Fact: For any two permutations A,B ∈ Sn, dτ (A,B) is no less
than their L1 distance in the (n − 1)-dimensional space.

Idea: We can construct a code of minimum L1 distance D in the
(n− 1)-dimensional array of size 2× 3× · · · × n. Then it is a code
of Kendall-tau distance at least D for the permutations.

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

48 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n − 1)-dimensional space.

Fact: For any two permutations A,B ∈ Sn, dτ (A,B) is no less
than their L1 distance in the (n − 1)-dimensional space.

Idea: We can construct a code of minimum L1 distance D in the
(n− 1)-dimensional array of size 2× 3× · · · × n. Then it is a code
of Kendall-tau distance at least D for the permutations.

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

48 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code

Example: When n = 3 or n = 4, the embedding is as follows. (Only
the solid edges are the edges in the state graph of permutations.)

!"#"#"$

!"#"#%$

!"#"#&$

!"#"#'$

!%#"#"$

!%#%#"$

!%#&#"$

!%#&#%$

!%#&#&$

!%#&#'$

!"#%#'$

!"#&#'$%(&('()

%(&()('

%('(&()

%('()(&

%()(&('

%()('(&

&(%('()

&(%()('

&('(%()

&('()(%

&()(%('

!"#"#"$

!"#"#%$

!"#%#"$

!"#%#%$

!"#"#&$

!"#%#&$

!%#"#"$

!%#"#%$

!%#%#"$

!%#%#%$

!%#"#&$

!%#%#&$&()('(%

!*$!+$!,$

!"#%$

!"#"$!%#"$

!%#%$

!"#&$!%#&$

!"#"#'$

!"#%#'$

!%#"#'$

!"#&#'$

!%#%#'$

!%#&#'$

'(%(&()

'(%()(&

'(&(%()

'(&()(%

'()(%(&

'()(&(%

)(%(&('

)(%('(&

!%#&#&$

-../+01234564/783230.1

!%#&$

!"#&$

!%#%$

!%#"$

!"#%$

!"#"$%(&('

%('(&

&(%('

&('(%

'(%(&

'(&(%
!2$

!"#&#"$

!"#&#%$

!%#&#"$

!%#&#%$

!"#&#&$

)(&(%('

)('(%(&

)(&('(%

)('(&(%

-../+01234564/783230.1 -../+01234564/783230.1

!"#$%& '9 -../+012345 .: ;4/783230.15# 21+ 47,4++01< 3=4 2+>2*41*? </2;= .: ;4/783230.15# G# 01 3=4 2 × 3 × · · · × n 2//2?# Ln9 @1 3=4 3A. 2//2?5# 3=4 5.B0+
B0145 2/4 3=4 4+<45 01 ,.3= G 21+ Ln# 21+ 3=4 +.334+ B0145 2/4 3=4 4+<45 .1B? 01 Ln9 !2$ -../+012345 .: ;4/783230.15 :./ n = 39 !,$ C7,4++01< G 01 Ln :./
n = 39 !*$ -../+012345 .: ;4/783230.15 :./ n = 49 !+$ C7,4++01< G 01 Ln :./ n = 49

D9 EFGC -FHCI JKH LFMKHI

@3 =25 ,441 5=.A1 3=23 3=4 501<B4N4//./N*.//4*301< *.+4 ,80B3
,? -.153/8*30.1 O =25 2 50P4 A03=01 =2B: .: .;3072B9 Q=4/4 4R053
*.+4 *.153/8*30.15 3=23 *21 ,80B+ B2/<4/ *.+45 01 721? *25459
S4 /4;./3 =4/4 5.74 4//./N*.//4*301< *.+45 ,80B3 8501< 2+
=.* *.153/8*30.15# 21+ *.7;2/4 3=47 A03= 3=4 5;=4/4N;2*T01<
8;;4/ ,.81+ 21+ 3=4 =2B:N.;3072B *.+4U

• S=41 n = 3# 2 501<B4N4//./N*.//4*301< *.+4 A03= 3A.
*.+4A./+5 V [1, 2, 3] 21+ [3, 2, 1] V *21 ,4 4250B? :.81+9
Q=4 5274 *.+4 05 ,80B3 ,? -.153/8*30.1 O# 21+ 3=4 50P4
74435 3=4 5;=4/4N;2*T01< 8;;4/ ,.81+9

• S=41 n = 4# 21 2+ =.* *.153/8*30.1 <414/2345 2 501<B4N
4//./N*.//4*301< *.+4 A03= !W4 *.+4A./+5U [1, 2, 4, 3]#
[3, 1, 4, 2]# [3, 2, 4, 1]# [4, 1, 3, 2] 21+ [4, 2, 3, 1]9 Q=4 *.+4
.83;83 ,? -.153/8*30.1 O =25 50P4 49 Q=4 5;=4/4N;2*T01<
,.81+ 05 69 @3 *21 ,4 5=.A1 3=23 3=4 *.+4 .: 50P4 5 05
.;3072B9

• S=41 n = 5, 6, 7# 21 2+ =.* *.153/8*30.1 <414/2345
501<B4N4//./N*.//4*301< *.+45 A03= %O# X"# 21+ Y&Z *.+4N
A./+5# /45;4*30W4B?9 Q=4 *.+45 .83;83 ,? -.153/8*30.1 O
=2W4 50P4 %)# ZZ# 21+ 'OO# /45;4*30W4B?9 Q=4 5;=4/4N
;2*T01< 8;;4/ ,.81+ 05 &)# %&"# 21+ [&"# /45;4*30W4B?9

• S=41 n = 5, 6, 7# 3=4/4 4R053 3A.N4//./N*.//4*301< *.+45
.: 50P4 Z# &'# 21+ %%"# 3=/44N4//./N*.//4*301< *.+45 .: 50P4
&# %"# ')# 21+ :.8/ 4//./N*.//4*301< *.+45 .: 50P4 &#)# 21+
%)# /45;4*30W4B?9 JBB 3=4 2,.W4 *.+45 =2W4 2 50P4 3=23 05
23 B4253 .14 =2B: .: 3=4 .;3072B 50P49

D@9 -FK-\MI@FK

@1 3=05 ;2;4/# A4 ;/.;.54 2 1.W4B +232 53./2<4 5*=474 :./
"25= 747./045# 3=4 /21TN7.+8B230.1 5*=4749 @3 *21 4B07N
01234 *4BB .W4/N;/.</27701< 21+ 2B5. ,4 7./4 /.,853 3.
25?7743/0* 4//./59 J /21TN7.+8B230.1 5*=474 8545 2 14A
3..B V 3=4 ;4/783230.1 .: *4BB /21T5 V 3. /4;/45413 +2329
-.154]8413B?# 14A 4//./N*.//4*301< 34*=10]845 58032,B4 :./
;4/783230.15 2/4 144+4+9 S4 538+? 3=4 ;/.;4/3045 255.*0234+
A03= 4//./N*.//4*301< /21TN7.+8B230.1 *.+45# 21+ 5=.A 3=23 3=4

;4/783230.1 2+>2*41*? </2;=# A=0*= +45*/0,45 3=4 3.;.B.<? .:
;4/783230.15# 05 2 58,</2;= .: 2 78B30N+074150.12B B0142/ 2/N
/2?9 J5 2 /458B3# 3=4 4//./N*.//4*301< *.+45 :./ /21T 7.+8B230.1
21 ,4 +450<14+ 8501< \44N743/0 *.+459 S4 ;/45413 2 :270B?
.: .14N4//./N*.//4*301< *.+45 A=.54 50P4 05 A03=01 =2B: .: 3=4
.;3072B 50P4# 21+ 2B5. 5=.A 3=4 /458B35 .: 5.74 .3=4/ !7./4
2+ =.*$ *.+4 *.153/8*30.159
@3 A0BB ,4 0134/45301< 3. 4R341+ 3=4 *.+4 *.153/8*30.1 01 3=05

;2;4/ 3. +450<1 *.+45 3=23 *.//4*3 3A. ./ 7./4 4//./5# ,?
8501< 14A \44N743/0* *.+45 ./ 58032,B4 B2330*4 0134/B42W4/59
Q=4 *.+45 *21 2B5. ,4 07;/.W4+ ,? 2 ,4334/ 830B0P230.1 .:
3=4 5;=4/4 ;2*T01< 01 3=4 ;4/783230.1 2+>2*41*? </2;=# A=0*=
05 5;2/54/ 3=21 3=4 2//2? Ln9 JB34/1230W4 47,4++01< .: 3=4
;4/783230.15# T1.A1 25 !"#$%&'(")#'*# *21 ,4 4R;B./4+ ^'_#
^O_9 !`./ 4R27;B4# 3=4 ;4/783230.1 2+>2*41*? </2;= :./ :.8/
187,4/5 *21 ,4 47,4++4+ 25 2 3/81*234+ .*32=4+/.19$ @1
2++030.1# 03 A0BB ,4 0134/45301< 3. *.7,014 3=4 4//./N*.//4*301<
.+45 A03= +232 /4A/0301< 5=4745 25 01 ^Y_9

GC`CGCK-CI
^%_ J9 L21+?.;2+=?2?# a9 I4//21.# 21+ 69 b25B4/# c6/.</27701< 212B.<

*.7;83230.12B 747./? 4B474135 3. 0.2% 2**8/2*? .W4/ 3.5 +4*2+45
8501< 2 ;/4+0*30W4 743=.+#d 01 +#',"")-*./ '0 &(" 1222 1*&"#*3&-'*34
56$!'/-%$ '* 7-#,%-&/ 3*) 56/&"$/# ;;9 &%)OV&%Y%# &""Y9

^&_ 69 -2;;4BB4330# -9 a.BB2# 69 FB0W.# 21+ C9 e21.10# 843/($"$'#-"/9 fB8A4/
J*2+470* 68,B05=4/5# %XXX9

^'_ 69 a20=2 21+ I9 f9 a8;32# cJ+>2*413 W4/30*45 .1 2 ;4/783.=4+/.1#d 01
519: ;< 9!!4< :3&(<# W.B9 '&# 1.9 &# ;;9 '&'N'&[# %X[[9

^)_ I9 S9 a.B.7, 21+ \9 G9 S4B*=# c64/:4*3 *.+45 01 3=4 \44 743/0* 21+
3=4 ;2*T01< .: ;.B?.701.45#d 519: ;< 9!!4< :3&(<# W.B9 %O# 1.9 &# ;;9
'"&V'%[# g219 %X["9

^Y_ J9 g021<# D9 L.=.55021# 21+ g9 L/8*T# c`B.2301< *.+45 :./ >.013 01:./72N
30.1 53./2<4 01 A/034 25?7743/0* 747./045#d 01 +#',< 1222 1*&< 56$!<
1*0'#$3&-'* =("'#6# K0*4# `/21*4# ;;9 %%ZZV%%["# &""[9

^Z_ J9 g021<# G9 E23445*8# E9 I*=A2/3P# 21+ g9 L/8*T# cG21T 7.+8B230.1 :./
"25= 747./045#d 01 +#',< 1222 1*&< 56$!< 1*0'#$3&-'*' =("'#6# &""O9

^[_ E9 f41+2BB 21+ g9 H9 a0,,.15# >3*? ,'##"43&-'* $"&(')/9 FR:./+
M10W4/503? 6/455# Kh# %XX"9

^O_ H9 C9 f183=# =(" 3#& '0 ,'$!%&"# !#'.#3$$-*.# W.B9 '# &1+ C+9# J++05.1N
S45B4?# %XXO9

^X_ H9 b9 \4=74/# cQ42*=01< *.7,0123./02B 3/0*T5 3. 2 *.7;834/#d 01 +#',<
56$!'/< 9!!4< :3&(< 7'$@-*3&'#-34 9*346/-/# W.B9 %"# J74/9 E23=9 I.*9#
6/.W0+41*4# G9@9# ;;9 %[XN%X'# %XZ"9

49 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code

Construction (One-Error-Correcting Rank Modulation Code)

Let C1,C2 ⊆ Sn denote two rank modulation codes constructed as
follows. Let A ∈ Sn be a general permutation whose inversion vector is
(x1, x2, · · · , xn−1). Then A is a codeword in C1 iff the following equation
is satisfied:

n−1∑

i=1

ixi ≡ 0 (mod 2n − 1)

A is a codeword in C2 iff the following equation is satisfied:

n−2∑

i=1

ixi + (n − 1) · (−xn−1) ≡ 0 (mod 2n − 1)

Between C1 and C2, choose the code with more codewords as the final
output.

50 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

One-Error-Correcting Code

For the above code, it can be proved that:

The code can correct one Kendall error.

The size of the code is at least (n−1)!
2 .

The size of the code is at least half of optimal.

51 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Codes Correcting More Errors [1]

The above code can be generalized to correct more errors.

C = {(x1, x2, · · · , xn−1) |
n−1∑

i=1

hixi ≡ 0 mod m}

Let A(n, d) be the maximum number of permutations in Sn

with minimum Kendall-tau distance d . We call

C (d) = lim
n→∞

ln A(n, d)

ln n!

capacity of rank modulation ECC of Kendall-tau distance d .

C (d) =

1 if d = O(n)

1− ε if d = Θ(n1+ε), 0 < ε < 1

0 if d = Θ(n2)

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” ISIT’10.

52 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

53 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

What is the right number of levels?

Performance of SLC, MLC and TLC:

SLC: 2 levels, endurance of ∼ 106 Program/Erase cycles.

MLC: 4 levels, endurance of ∼ 105 Program/Erase cycles.

TLC: 8 levels, endurance of ∼ 104 Program/Erase cycles.

Question: Is there a way to adaptively choose the number of levels,
based on the cells’ quality and random programming performance?

54 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC) [1]

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

[1] A. Jiang, H. Zhou and J. Bruck, Variable-level cells for nonvolatile memories, in Proc. ISIT, pp. 2489-2493,

2011.

55 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Existing Technology: Fixed Thresholds and Levels

level 0 level 1 level 2 level 3 level 4 level 5 level 6 level 7

Cell-level Distribution of TLC
T1 T2 T3 T4 T5 T6 T7

Cell-level Distribution of TLC

56 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0

Cell-level Distribution of VLC

57 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC

58 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC

59 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2

60 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1 level 2

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2

61 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1 level 2

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2 T3

62 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

0 1 2 3 4 5 6 7 8 9

T8 T9
Cell-level Distribution of VLC

63 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Variable Level Cell (VLC)

VLC is more adaptive compared to current schemes.

Programming is more robust to

Cell quality degradation/variance;

Probabilistic charge injection behavior.

Multiple levels can be programmed in parallel for higher speed.

64 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Storing Data in VLC

How to store data? One solution for one-write storage:

level 0

Cell-level Distribution of VLC

n cells

65 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Storing Data in VLC

Level 1 can store nH(x1) bits.

Reading these nH(x1) bits will require two threshold comparisons.

level 0 level 1

Cell-level Distribution of VLC

n(1-x1) cells

nx1 cells

66 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Storing Data in VLC

Level 2 can store n(1− x1)H(x2) bits.

Reading these n(1− x1)H(x2) bits will require one additional
threshold comparison.

level 0 level 1 level 2

Cell-level Distribution of VLC

n(1-x1)(1-x2) cells

nx1 cells
n(1-x1)x2 cells

67 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Capacity of VLC

Assume

Level 1 can be programmed with probability p1;

Level 2 can be programmed with probability p1p2;

Level 3 can be programmed with probability p1p2p3;

· · · ;
Level q can be programmed with probability p1p2 · · · pq,
where q is the maximum possible level number.

68 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Capacity of VLC

Define A1,A2, · · · ,Aq−1 recursively:

Let Aq−1 = 2pq−1 ;

For i = q − 2, q − 3, · · · , 1, let Ai = (1 + Ai+1)pi .

Theorem

The capacity (expected value) of VLC is

CVLC = log2 A1

bits per cell.

For the capacity region of rewriting codes, see:
[1] A. Jiang, H. Zhou and J. Bruck, Variable-level cells for nonvolatile memories, in Proc. ISIT, pp. 2489-2493,

2011.

69 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Comparison of Capacity between VLC and MLC

For i = 1, · · · , q − 1, let Pi be the probability that level i can be
programmed.
Let s be a constant. Let Pi = 1

1+2(i−8)s for i = 1, 2, · · · , 16.

70 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Comparison of Capacity between VLC and MLC

Assume MLC uses levels that can be programmed with probability 0.99
or more.

71 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Open Problems on Coding for NVMs

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

72 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Open Problems on Coding for NVMs

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

73 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Open Problems on Coding for NVMs

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

Codes for Fast Read

74 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Open Problems on Coding for NVMs

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

Codes for Fast Read

Codes for Different NVMs:
Flash Memory, PCM, etc.

75 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Open Problems on Coding for NVMs

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

Codes for Fast Read

Codes for Different NVMs:
Flash Memory, PCM, etc.RAID-like

Systems

3D Memory

Short-term and
Long-term Memory

Memory
Scrubbing

Codes for
Computing

In-Memory
Source/Channel Coding

76 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Open Problems on Coding for NVMs

Codes for Error Correction

Data Representation:
MLC, Rank Modulation

Codes for Rewriting

Signal Processing

Codes for Fast Read

Codes for Different NVMs:
Flash Memory, PCM, etc.RAID-like

Systems

3D Memory

Short-term and
Long-term Memory

Memory
Scrubbing

Codes for
Computing

In-Memory
Source/Channel Coding

77 / 78

Joint rewriting and error correction scheme
Rank Modulation

Variable-Level Cell (VLC)
Summary and Future Directions

Open Problems on Coding for NVMs

78 / 78

	NoiseSourcesinNANDDevices_finalPDF.pdf
	Tutorial_Eitan_pdf
	Slide Number 1
	Outline
	SLC, MLC and TLC Flash
	Flash Memory Structure
	Flash Memory Structure
	TLC Structure
	Shannon Capacity
	Shannon Capacity
	Error Correction Codes
	Error Correction Codes
	Error Correction Codes
	Error Characterization
	Slide Number 13
	ECC Comparison for TLC flash
	LDPC Decoders
	R0.8, LDPC with SPA Decoding
	R0.82, LDPC with SPA Decoding
	R0.9, LDPC with SPA Decoding
	Slide Number 19
	Slide Number 20
	General Observations
	Error Correction Codes
	BER per page - MLC
	Slide Number 24
	Bit Error Map in SLC
	Bit Error Map for Odd Pages in SLC
	Cell-based ECC
	ECC Scheme for TLC Flash
	MLC (MSB) Write Process
	ECC Scheme for TLC Flash
	BER for Cell-based Code for TLC Flash
	Limited Magnitude Error-Correcting Codes
	Limited Magnitude Error-Correcting Codes
	Limited Magnitude Error-Correcting Codes
	Limited Magnitude Error-Correcting Codes
	MLC Data Retention
	Cell Drift in PCM
	Constrained Codes
	Inter-Cell Interference (ICI)
	Balanced Codes
	Balanced Codes
	Balanced Codes
	Rewriting Codes
	Rewriting Codes
	Slide Number 45
	Rewriting Codes
	Rewriting Codes
	Write-Once Memories (WOM)
	WOM Implementation in SLC Flash
	BER for the First and Second Write
	Write-Once Memories (WOM)
	Binary WOM-Codes
	Capacity and Constructions
	Results: Unrestricted-rate
	Results: Fixed-rate
	Recent Results
	Why/When to Use WOM Codes?
	Why/When to Use WOM Codes?
	Write Amplification for t=2 WOM Codes
	Non-Binary WOM
	Thanks

	Anxiao_Jiang_Talk
	Joint rewriting and error correction scheme
	Rank Modulation
	Variable-Level Cell (VLC)
	Summary and Future Directions

