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Abstract— Interleaving codewords is an important method not interleaving scheme includes [10], [12], [15], [16] and [17],
only for combatting burst-errors, but also for distributed data  where the underlying graphs on which integers are interleaved
retrieval. This paper introduces the concept of Multi-Cluster include tori, arrays and circulant graphs. In [1], [2] and [3],

Interleaving (MCI), a generalization of traditional interleaving ;
problems. MCI problems for paths and cycles are studied. The codewords are interleaved on arrays to correct burst-errors

following problem is solved: how to interleave integers on a path Of rectangular shapes, circular shapes, or arbitrary connected
or cycle such that anym (m > 2) non-overlapping clusters of shapes.

order 2 in the path or cycle have at least 3 distinct integers.  Applications of interleaving in distributed data retrieval,
We then present a‘scheme using a ‘hierarchical-chain structure’ although maybe less well-known, are just as broad. Data
to solve th_e following more general problem for paths: how to t . d broadcast sch : i} "
interleave integers on a path such that anym (m > 2) non- streaming and broadcast scheémes using erasure-correcling
overlapping clusters of order L (L > 2) in the path have at least Codes have received extensive interest in both academia and
L + 1 distinct integers. It is shown that the scheme solves the industry, where interleaved components of a codeword are
second interleaving problem for paths that are asymptotically as transmitted in sequence, and every client can listen to this
long as the longest path on which an MCI exists, and clearly, for data flow for a while until enough codeword components are
shorter paths as well. received for recovering the information [6], [11]. (An example
In_dex Terms—Burs_t erro, c!uster, cycle, file placement, inter- js shown in Fig. 1 (a), where a codeword of 7 components
leaving, multi-cluster interleaving, path. is broadcast repeatedly. We assume that the codeword can
tolerate 2 erasures. Therefore every client only needs to
|. INTRODUCTION receive 5 different components. In this example, the codeword
components can be understood as interleaved on a path or
Interleaving codewords is an important method for bot§ cycle.) Interleaving is also studied in the scenario of file
combatting burst-errors and distributed data retrieval. Evepytrieval in networks, where a file is encoded into a codeword,
interleaving scheme can be interpreted as labelling a grapfisg components of the codeword are interleavingly placed on
vertices with integers, and traditional interleaving problems network, such that every node in the network can retrieve
all focus onlocal properties of the labelling. Specifically, ifenough distinct codeword components from its proximity for
we define acluster to be a connected subgraph of certaipeco\,ering the file [9], [13]. (An example is shown in Fig. 1
characteristics (such as size, shape, etc., depending on #}ewnere the codeword again has length 7 and can tolerate 2
specific definition of the interleaving problem), then traditiongd;zsyres. We assume that all edges have length 1. Then every
interleaving problems require that in evesingle cluster, the petwork node can retrieve 5 distinct codeword components
number of different integers exceeds a threshold, or evefym its proximity of radius 2 for recovering the file.)
integer appears less than a certain number of times, etc.  This paper introduces the concept Milti-Cluster Inter-
Applications of interleaving in burst-error correctioneaying (MCI) In general, an MCI problem is concerned with
are well known. The most familiar example is the intapelling the vertices of a given graph in such a way that for
terleaving of codewords on a path, which has thgny, clusters, the integers in them are sufficiently diversified
form *1,2,3,---n,1,2,3,---m, -+ ; for combatting one- (py certain criteria). Traditional interleaving problems corre-
dimensional burst-errors of length up ta. This one- gpond to the caser = 1. So MCI is a natural extension of
dimensional interleaving is generalized to higher dimensiogse traditional concept of interleaving.
in [3], [4], [5] and [7], where integers are used to label the \ne focus on Multi-Cluster Interleaving on paths and cycles.
vertices of a two-dimensional or higher-dimensional array ip this paper, we study the following problem.
such a way that in every connected subgraph of orasrthe o
array, each integer appears at mosgimes. ¢ andr here are ~ Definition 1: Let G = (V, E) be a path (or cycle) of
parameters. Therder of a graph is defined as the numbelertices. LetN, K, m and L be positive integers such that

of vertices in that graph.) More work on such a generalizdf = & > L andm > 2. A clusteris defined to be a connected
subgraph of ordeL of the path (or cycle). Assign one integer
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problem defined in Definition 1 has the following interpreta-
tion. The N integers used to label the vertices in the path/cycle
represent théV components in a codeword. is the minimum

number of components needed for decoding the codeword. (In

other words, the codeword can corréét— K erasures.) An

interleaving of the integers represents the placement of the
E E codeword components on the path/cycle. For each client that
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wants to retrieve data from the path/cycle, we assume it can

accessmn non-overlapping clusters; and we assume different
client 1 client 2 clients can access different sets of clusters. (By imposing the
restriction that then clusters a client can access must be non-
overlapping, we ensure that each client can access no less than
mL vertices.) Then when the interleaving is an MCI, every
client can retrieve enough data for decoding the codeword.

Multi-Cluster Interleaving on paths and cycles appears to

have natural applications in data-streaming and broadcast [8].
Imagine that the components of a codeword interleaved the
same way are transmitted asynchronously in several channels.
Then a client can simultaneously listen to multiple channels
in order to get data faster, which is equivalent to retrieving
data from multiple clusters. Another possible application is
data storage on disks [14], where we assume multiple heads

can read different parts of a disk in parallel to accelerate 1/0
(b) File storagein anetwork SpQEd.

(8) Broadcast

Fig. 1. Examples of interleaving for data retrieval. The MCI problem for paths and cycles can be divided into
smaller problems based on the values of the parameters. The
key results of this paper are:

n=21, N=9, K=5 m=2, L=3 « The family of problems with the constraints that= 2
T and K = 3 are solved for both paths and cycles. We
1 (3 1 8 @ show that when, = 2 and K = 3, an MCI exists on a

\ path if and only if the number of vertices in the path is
;' ! no greater thafiN —1)[(m —1)N — 1] + 2, and an MCI
@—0 66—/ &2 Ql) j exists on a cycle if and only if the number of vertices
: in the cycle is no greater tha@Vv — 1)[(m — 1)N — 1].
\‘ / Structural properties of MCIs in this case are analyzed,
~ and algorithms are presented which can output MCls on
Fig. 2. An example of multi-cluster interleaving (MCI). "~~~ paths and cycles as long as the MCls exist.
« The family of problems with the constraint that = L+
1 are studied for paths. A scheme using a ‘hierarchical-
chain’ structure is presented for constructing MCIs. It is

as defined in Definition 1.

The following is an example of the MCI problem. shown that the scheme solves the MCI problem for paths
Example 1:A cycle of n = 21 vertices is shown in Fig. 2. that are asymptotically as long as the longest path on
The parameters ar¥ = 9, K =5, m = 2 andL = 3. An which MCls exist, and clearly, for shorter paths as well.

interleaving is shown in the figure, where the integer on every The rest of the paper is organized as follows. In Section II,
vertex is the integer assigned to it. It can be verified that amge derive an upper bound for the orders of paths and cycles
2 non-overlapping clusters of order 3 have at least 5 distimat which MCls exist. We then prove a tighter upper bound
integers. For example, the two clusters in dashed circles hdee paths for the case df = 2 and K = 3. In Section Ill, we
integers ‘9, 1, 2’ and ‘7, 1, 6’ respectively, so they togethgrresent an optimal construction for MCI on paths for the case
have 5 distinct integers — 1, 2, 6, 7, 9. So the interleaving ¢ L = 2 and K = 3, which meets the upper bound presented
a multi-cluster interleaving on the cycle. in Section Il. In Section IV, we study the MCI problem for

If we remove an edge in the cycle, then it will becomgaths whenk = L + 1. In Section V we extend our results
a path. Clearly if all other parameters remain the same, tiiem paths to cycles. In Section VI, we conclude this paper.
interleaving shown in Fig. 2 will be a multi-cluster interleaving

on the path. 0 Il. UPPERBOUNDS
Multi-Cluster Interleaving has applications in distributed While traditional one-dimensional interleaving exists on

data storage in networks and data retrieval by clients that anéinitely long paths, that is no longer true for MCI. K =
capable of accessing multiple parts of the network. The M@tL, then to get an MCI, every integer can be assigned to



only one vertex of the path/cycle, which means that MCI Without loss of generality (WLOG), one of the following
exists only for paths/cycles of orde¥N or less. WhenK four cases must be true (because we can always get one of
has smaller values, MCI exists for longer paths/cycles. Thige four cases by permuting the names of the integers and by
following proposition presents an upper bound for the ordersversing the indices of the vertices):
of paths/cycles. Case 1: There exist 4 consecutive vertice&rir— v;, v;y1,
Vi4+2, Vi+3 — such thatC(’Ui) =1, C(’Ui_;,_l) = C(Ui_l’_g) = 2,
C(’UH_3) =1or 3.

Case 2: There exist+ 2 > 5 consecutive vertices ity —

Proposition 1: If a Multi-Cluster Interleaving exists on a
path (or cycle) ofr vertices, them < (m—1)L(})+(L—1).

Proof of Proposition 1Let G = (V, E) be a path (or cycle) v;, v,y 1, - -+, Uitz Viter1 — sSUch thate(v;) = 1, c(viy1) =
of n vertices with an MCI on itG contains at most 7 | NoNn-  ¢(v;40) = - -+ = c(vite) = 2, ¢(Viyer1) = 1 OF 3.
overlapping clusters. Lef C {1,2,--- , N} be an arbitrary set Ccase 3ie(vy) = c(vg) = 1, c(vs) = 2.
of L distinct integers. Then since the interleaving @ris an Case 4ic(v1) = c(vy) = -+ = ¢(vy) = 1 ande(vyy1) = 2,
MCI, among thosg % | non-overlapping clusters, atmost-1  \yheres > 3.
of them are assigned only integersSn.S can be one o(f) We an;Iyze the four cases one by one.
possible sets. SOF | < (m — 1)(12{)' Son < (m - 1)L(Jg) + Case 1: In this case, we insert a vertegxbetweenv;

(Z—-1). andwv; -, and get a new path of,,,, + 1 vertices. Call this

Note that for the same set of parametéfs K, m and L, new pathH, and assign the integer ‘4’ ta'. Consider anyn
if MCI exists on a path ofi = ng vertices, then it also exists non-overlapping clusters it/. If none of thosem clusters
on any path of: < ng vertices. That is because given an MCtontainsv’, then clearly they are alsen non-overlapping
on a path, by removing vertices from the ends of the path, whisters in the patlz, and therefore have been assigned at
can get MCls on shorter paths. However, such an argumégdst X' = 3 distinct integers. If then clusters contain all
does not necessarily hold for cycles. the three vertice®;,1, v" and v; 2, then they also contain
The upper bound of Proposition 1 is in fact loose. Faeitherv; or v;;3 — therefore they have been assigned at least
example, whenN = K = 3 andm = L = 2, a simple K = 3 distinct integers: '1,2,4’ or ‘2,3,4. WLOG, the only
exhaustive search will show that an MCI exists on a path (t@maining possibility is that one of the: clusters contains
a cycle) if and only if the path (respectively, cycle) is of ordev;+1 and v" while none of them containg;,,. Note that
6 (respectively, 4) or less. However, Proposition 1 gives @mong them clusters, then — 1 of them which don’t contain
upper bound which is < (m — 1)L(Jz’) +(L-1)=T. v’ are alsom — 1 clusters in the patltz, and they together
In the remainder of this section, we shall prove a tight¥ith (vi11,vi12) are m non-overlapping clusters 6 and
upper bound for paths for the case bf= 2 and K = 3, therefore are assigned at ledst= 3 distinct integers. Since
stated as the following theorem. Later study will show tha{vit1) = c(viy2), the originalm clusters includingv; 1, v’)
this bound is exact. must also have been assigned at |d&st 3 distinct integers.
So H hasn,,., + 1 vertices and has an MCI on it, which is

Theorem 1:When L = 2 and K = 3, if there exists a a contradiction.

Multi-Cluster Interleaving on a path of vertices, them < _ ) )
(N = D)[(m — 1)N — 1] + 2. Case 2: In this case, we insert a vert&betweenv;,; and

vi12, and insert a vertex’” betweerw; 1 andv; ., and get
Theorem 1 will be established by proving three lemmasnew path ofi,,.. +2 vertices. Call this new patF/, assign
below. Before starting the formal analysis, we firstly definghe integer ‘4’ tov’, and assign the integer ‘3’ to’. Consider
some notations that will be used throughout this paper. L&y m non-overlapping clusters iH. If the m clusters contain
G = (V,E) be a path. We denote the vertices in the path neitherv’ norv”, then clearly they are alse non-overlapping
G by v, va, --+, v, FOr2 < i < n —1, the two vertices clusters in the pathG, and therefore are assigned at least
adjacent tov; arev; 1 andwv;;1. A connected subgraph of k' = 3 distinct integers. If them clusters contain both’
G induced by vertices;, v;y1,--- ,v; (j > i) is denoted by and v”, then they also contain at least one vertex in the
(vi,vig1,---,v5). If a set of integers are interleaved 6%  set{v; 1, v;t2, - ,Vito_1,Vits }, and therefore are assigned
thenc(v;) denotes the integer assigned to vertex at least these 3 integers: ‘2, ‘3" and ‘4’. WLOG, the only
The following lemma reveals a structural property of MClremaining possibility is that the: clusters contain’ but not
v”". (Note that the cluster containing is assigned integers ‘2’
and ‘4’.) When that possibility is true, if thex clusters contain
vi+z+1, then they are assigned at least 3 distinct integers —
‘1,2,4' or '2,3,4'. If the m clusters don’t contaim; .1, then
they don't containy, ., either — then we divide the: clusters
into two groupsA and B, where A is the set of clusters none
Proof of Lemma 1Let G = (V,E) be a path ofn,,,, 0f which contains any vertex ifw’, v; 12, Vits, "+, Vitw—1},
vertices with an MCI on it, and assume two adjacent verticeasid B is the complement set of. Say there arg clusters in
of G are assigned the same integer. We will prove that @ Then, if the cluster containing’ also contains; 1 (re-
MCI exists on a path of more tham,,,, vertices, which is a spectively,v;5), there exists a set' of y clusters in the path
contradiction. G that only contain vertices ifw; 11, vit2, "+, Vita—1, Vita |

Lemma 1:Let the values ofV, K, m and L be fixed, where
N >4, K =3, m>2andL = 2. Let n,,., denote the
maximum value ofn such that an MCI exists on a path of
vertices. Then in any MCI on a path of,., vertices, no two
adjacent vertices are assigned the same integer.



(respectively,{vit2, Vi+3,* , Vitz—1,Vitz }), SUCh that the
m clusters inA U C are non-overlapping inG. Thosem
clusters inAUC are assigned at leasf = 3 distinct integers
since the interleaving otv is an MCI; and they are assigned
no more distinct integers than the originalclusters inAU B
are, because(v;+1) = c(viy2) = -+ = c¢(viy,) and either
vi+1 OF v;4o IS in the same cluster containing. So them
clusters inAU B are assigned at least = 3 distinct integers.
So H hasn,,.. + 2 vertices and has an MCI on it, which is
again a contradiction.

Case 3: In this case, we insert a vertéxbetweenv; and
vo, and assign the integer ‘3’ td. The rest of the analysis is
very similar to that for Case 1.

Case 4: In this case, we insert a vertgxbetweenv; and
vy, and insert a vertex” betweenv,_; anduv,, assign the
integer ‘3’ tov’, and assign the integer ‘2’ ta’. The rest of
the analysis is very similar to that for Case 2. Fig. 3. In this exampleN — 4, K — 3, m = 3, L — 2. An oracle tells

So a contradiction exists in all the four cases. Therefore, tfﬁ%th;g”ma{? = 23-dLet GM(Z:I(V, {E;) Tbr? th?hpath ?.hown ir!”trg)e fingjre, (\j/v?ich
Iemma iS proved. 0 as vertices and an on It en the verticesGoi e colored to

be red, yellow andgreenas shown.

The next two lemmas derive upper bounds for paths, re-
spectively for the caseN > 4" and the case/NV = 3'.

N=4, K=3, m=3, L=2, N,=23

V22

@ : redvertex cyellow vertex () : green vertex

Group A: [1,3]
Lemma 2:Let the values ofV, K, m and L be fixed, where Group B: [1,2],[2.3]
N >4, K =3, m>2andL = 2. Let n,,, denote the Group C: [1.4] ,[2.4] , [34]

maximum value ofn such that an MCI exists on a path of Group D: empty.
vertices. Them, 4, < (N —1)[(m — 1)N — 1] 4 2.
Fig. 4. Let’s continue the example in Fig. 3. Then groups A, B, C, D are
Proof of Lemma 2Let G = (V,E) be a path ofn,q:  as shown here.
vertices. Assume there is an MCI 62 By Lemma 1, no two
adjacent vertices id: are assigned the same integer. We color

the vertices inG with three colors —red, yellow and green is assigned the integey’; (i) there exist twogreenvertices

— through the following three steps: that are assigned integerg and ‘j’ respectively such that
Step 1, for2 < i < npae — 1, if c(v;_1) = c(v4,), hereis nogreenvertex between them.
then colorv; with the red color; (3) A pair [i,j] belongs to groupC if and only if one

Step 2, for2 < i < nymas, colory; with theyellowcolor  Of the following two conditions is satisfied: (i) at least one

if v; is not colorecred and there existg such that these four 9"€€nVvertex is assigned the integef’ and no greenvertex
conditions are satisfied: (1) < j < i, (2) v, is not colored IS assigned the integey’; (ii) at least onegreen vertex is

red, (3) c(v;) = c(v;), (4) the vertices between; andv; — gssigned the integer and no greenvertex is assigned the
that is,v; 11, vj42, -+, v;_1 — are all coloreded; integer ', _ _
Step 3, forl < i < nyae, if v; is neither coloreded (4) A pair [_i,j] belongs to groupD if and only if nogreen
nor coloredyellow, then coloru; with the greencolor. vertex is assigned the integei or * ;.
Clearly, each vertex of7 is assigned exactly one of the (S€€ Fig. 4 for an example.)
three colors. (See Fig. 3 for an example.) For anyl < i # j < N, let E(i,j) C E denote the

following subset of edges aF: an edge ofG is in E(i, j) if
and only if one endpoint of the edge is assigned the integer *
d and the other endpoint of the edge is assigned the intgger *

pairs. We partition those(g’) pairs into four groups 4’, * B’, Let 2(;, j) denote the number O.f edges (i, j). (See. F‘ig. 5
‘C* and ‘D’ in the following way: for an example.) Below we derive upper bounds 46, j).

(1) A pair [i,5] belongs to groupA if and only if the ~ Foranypair [i, j] in group A or groupC, z(i, j) < 2m—2.
following two conditions are satisfied: (i) at least ogeen That's because otherwise there would exishon-overlapping
vertex is assigned the integet and at least ongreenvertex clusters inG each of which is assigned only integers *
is assigned the integej (i) for any two greenvertices that and ', which would contradict the assumption that the
are assigned integers ‘and ‘;’ respectively, there is at leastinterleaving onG is an MCI. (See Fig. 6 for an example.)
onegreenvertex between them. Now consider gpair [z, j] in group B. z(i,j) < 2m — 2

(2) A pair [i,j] belongs to groupB if and only if the for the same reason as in the previous case. In the following,
following two conditions are satisfied: (i) at least ogeeen we will prove thatz(i, j) < 2m — 3 by using contradiction.
vertex is assigned the integet and at least ongreenvertex Assumez(i, j) = 2m—2. Then in order to avoid the existence

If we arbitrarily pick two different integers — say’‘and
‘4" — from the set{1,2,--- , N}, then we get gair [i, j]
(or [4,14], equivalently). There are totally’;) such un-ordere



N=4, K=3, m=3, L=2, Nn,.=23 K=3, m=3, L=2, 2z(12)=4

2(1,2)=3 z(1,3)=4 z(1,4)=4 2(2,3)=3 z(2,4)=4 2(3,4)=4

1 3 1 3 4 1
O E(l,3b E(1,3b E(1,3). E(L,3 E(1,4)' E(1,4)’7

1 2 1 2 1
coe OO OO OO e

1

Fig. 7. In this exampleK =3, m =3, L = 2, 2(1,2) =2m — 2 = 4.

2 4 2 1 2 1 E(l’f) Then for a path with an MCI on it, the 4 edges whose endpoints are labelled
. E(2,4b E(24) E(l,Z). E(1,2). E(1,2 E(1,4)’7 by ‘1’ and ‘2" have to be consecutive, as shown in the figure.
E(24)
é EQ24)2 E(2,3)é E(2,3)‘ EQ23)° E(3,4)é E(3,4)8
@
E(3.4) Vi, Vp, Vp, Vp, Vi,
3 E(3,4% eee—(()—eee—)—eee—)—eee—)—eee—( ) )oeee
(b)
Vi, Vo, v v Vi

Fig. 5. Let’s continue the example in Fig. 3. Then the Egt, j) that an Pe i\ !
edge belongs to is labelled beside that edge. The value of gach) is ~ **® OO eee—O-eee—(eee—()eee—()()eee

shown in the figure.

Fig. 8. (a) Case 1k; < ka. (b) Case 2ks < kj.

vertices between,, andvy, are allred, and the two vertices
@ adjacent to anyed vertex must be assigned the same integer,
1 21 2. 1 2 . H ;
/ \,/ % . we can see that(vg,—1) = c(v,,) = . Since there is an
e e { () )r ()= )r()r{)—eoee 2= L NP _
edge betweeny,_; (which is assigned the integef’) and
vy, (which is assigned the integey’), vy, must be in the
(b) set{vy41,vy12, -, Uytram—1}. However, it is simple to see
A 24 2 A 201 that every vertex in the seftv,1,vy12, * ,Vy42m—1} that
00 U000 eee-U0O-*** s assigned the integey” must bered — so vy, should be
red instead ofgreen— therefore a contradiction exists.
Case 2k, < kq. Then the patl@ is interleaved as in Fig. 8
Fig. 6. In this exampleK = 3, m = 3, L = 2. Two paths are shown (D). We usev,,, v,,, - - -, v, to denote all the/ellow vertices

respectively in (a) and (b), each of which has more than—2 = 4 edges in  petweerw;,, anduvy, . (The other vertices between, andw;,
the setE(1,2). Then both of them contaim = 3 non-overlapping clusters S ! 2 !

(as shown in dashed circles) that are assigned only two distinct integers, wHHE all red') . )
proves that the interleaving on them cannot be MCI. We can see that(vy,—1) = j. Since there is an edge

betweenwvy, 1 (which is assigned the integey’y and vy,
(which is assigned the integer’), both vy, _; andvy, are in

of m non-overlapping clusters i that are assigned onlythe set{v, o, vy43, - ,vy12m—1}. Since every vertex in the
integers ©’ and ‘j’, the z(i,j) = 2m — 2 edges iNE(i,j) Set{vyi1,vyq2, " ,vy+2m—1} thatis assigned the integer ‘
must be consecutive in the path, which means, WLOG, must bered, and since the color ofy, is green it is simple
that there are&2m — 1 consecutive vertices, 1, v,12, ---, t0 see that all the vertices in the s@t, 1, vy 12, - vk, -1}
vy+2m—1 (y > 0) whose assigned integers are in the forrthat are assigned the integet must bered (because oth-
of [c(vy41), c(vyt2), -+, c(vytram—1)] = [¢,4,%, 4, -+ ,i,4,i]. erwisevg, would have to beyellow). Then since the color
(See Fig. 7 for an example.) of vy41 is red, the vertexv, exists and it must have been

According to the definition of ‘grouf?’, there exist agreen assigned the integer(v,.2) = j° — and that contradicts
vertex v, and agreenvertexvy,, such thatuy, is assigned the statement that all the edgesliiti, j) are in the subgraph
the integer ¢’, vy, is assigned the integey’; and there is no (Vyt1,Vyt2, 5 Vyr2m—1)-
greenvertex between them. Therefore every vertex betweenTherefore a contradiction always exists whefi,j) =

v, anduwyg, is eitherred or yellow. There are two possible 2, — 2. So for anypair [i,7] in group B, z(i,j) < 2m — 3.

cases: Now consider apair [i,j] in group D. By the definition

Case 1%; < k2. Then the patlr is interleaved as in Fig. 8 of ‘group D’, no greenvertex is assigned the integer' or

(a). We usevy,, vp,, -, vp, to denote all theyellowvertices *j*. Let {vj,,vy,, -+, vy} denote the set of vertices that
betweenvy, andvy,. (The other vertices between, andvi, are assigned the integei’,'where k; < ky < -+ < ky. If
are allred) {Vky, Uiy, -+, g, } # 0, by the way vertices are colored, it

By the definition of yellow vertices’, we can see thatis simple to see that,, cannot beyellow — so vy, must
c(vp,) = c(vp,_,) = -+ = c(vp,) = c(vg,) = i. Since the be red. Then similarly,vy,, vi,, ---, vig, Must bered, too.

t



Therefore all the vertices that are assigned the integere [1l. OPTIMAL CONSTRUCTION FORMCI ON PATHS
of the colorred. Similarly, all the vertices that are assigned WITH CONSTRAINTSL =2AND K =3

the integer j’ are of the colorred. Assume there is an edge |n this section, we present a construction for MCI on paths
whose two endpoints are assigned the integerand the \yhose orders attain the upper bound of Theorem 1, therefore

integer " respectively. Then since the two vertices adjaceioying the exactness of that bound. The construction is shown
to any red vertex must be assigned the same integer, thefg ihe following algorithm.

exists an infinitely long subgraph of the pathto which the ) ) .
assigned integers are in the form of i, j,4, j, i, j - --*, which Algorithm 1: MCI on the longest path with constraints= 2
is certainly impossible. Therefore a contradiction exists. So for and K =3

any pair [i, j] in group D, z(4, j) = 0. Input: ParametersV, K, m and L, whereN > 3, K = 3,

o ) m>2andL =2. ApathG = (V,E) of n=(N—
Let = denote the number ddistinct integers assigned to 1)[(m — 1)N — 1] + 2 vertices.

greenvertices, and letX denote the set of those distinct Output: An MCI on G.
integers. It is simple to see that exacfff) pairs [i, j] are in Algorithm:

group A or group B, wherei ¢ X andj € X —and among | et j = (Vy, Ey) be a graph with parallel edges. The

them at least: — 1 pairs are in group3. It is also simple 10 yertex set offf, Vi, is {u1, us, - - , un }. FOr any two vertices
Sgﬂf‘hat exactly:(N — ) pairs are in group”’ and exactly ., andw; (i # j), there are2m — 3 edges between them if
(%) pairs are in groupD. By using the upper bounds wey —i+1<N-1lor2<j—i+1<N—1, and there

have derived for:(i, j), we see that the number of edges iRre 9, — 2 edges between them otherwise. There is no loop
Gis at most{(3) — (z —1)]-(2m —2)+(z—1)- (2m=3)+ in [. (ThereforeH has exactlyr — 1 edges.)

(N —=z)-2m—2)+ (";7) -0 = (1 -m)a? + (2mN — Find a walk inH, uy, — up, — --- — ug,, that satisfies
2N —m)z + 1, whose maximum value (at integer solutionsghe following two requirements: (1) the walk starts with

is achieved wherr = N — 1 — and that maximum value is gnd ends withuy_1 — namely,uy, = uy anduy,, = uy_1

(N —=1)[(m—=1)N —1] + 1. SOnmaes, the number of vertices __ and passes every edge i exactly once; (2) for any two

in G, is at most(N —1)[(m —1)N —1] +2. O vertices of H, the walk passes all the edges between them
consecutively
Fori=1,2,---,n, assign the integerk;’ to the vertexv;

Lemma 3:Let the values ofV, K, m andL be fixed, where . G and t an MCI or o
N =3 K=3 m2>2andL = 2. Let n,,,, denote the In &, and we get an oK.
maximum value ofn such that an MCI exists on a path of Here is an example of the above algorithm.

i < (N — - - .
vertices. Themya, < (N —1)[(m = 1)N =1} +2. Example 2:AssumeG = (V,E) is a path ofn = 11

Proof of Lemma 3Let G = (V, E) be a path of vertices vertices, and the parameters ave= 4, K = 3, m = 2 and
that has an MCI on it. We need to show that (N —1)[(m— L = 2. Thereforen = (N —1)[(m —1)N — 1] + 2. Algorithm
N —1] + 2. 1 constructs a grapH = (Vy, Ex), which is shown in Fig. 9

If no two adjacent vertices of are assigned the samel®. The walk inH, ug, — ug, — --- — uy,,, can be easily
integer, then with the same argument as in the proof fgund. For example, we can let the walk be — us —
Lemma 2, it can be shown that< (N —1)[(m—1)N—1]+2. %1 = Usg — U — Uy — Ug — Uy — Uz — ug — uz. Corre-
Now assume two adjacent vertices Gf are assigned the ;pondlng o that walk, we get the. |'nterleavmg @ras ShO.W” :
same integer. Clearly we can firidnon-overlapping clusters in Fig. 9 (b). It can be easily verified that the interleaving is
in G, such thatn < 2t + 2 and at least one of theclusters indeed an MCI. =
contains two vertices that are assigned the same integeTheorem 2:Algorithm 1 correctly outputs a Multi-Cluster
Among thoset non-overlapping clusters, let, y, z, a, b and Interleaving on the patky.

c respectively denote the number of clusters that are assigne

only the integer ‘1’, only the integer ‘2’, only the integer ‘3 1 outputs corresponds to a walk in the grah= (Viy, Bz ).

Zs;h t:g'?h I?rgzgienrtse irsar?lo,l :n’d b‘gfh St?r?céniﬁgeir:tefle:\r/]ii 3O"rqheN vertices ofH correspond to théV integers interleaved
9 : 9 98n G. Itis not difficult to realize that the walk i satisfying

G is an MCI, anym non-overlapping clusters are assigned '?ts two requirements indeed exists. For any two vertiegs
least K = 3 distinct integers. Therefore +y +a < m — 1, 9 : y &

andu,; in H, there are at mostm — 2 edges between them,
y+z+b <m—1, z+z+c < m—1. S02z+2y+2z+a+b+c < L J .
Sm —3. S0z +y+2+atbte < 3m—3—(z+y+2). Since which are passed consecutively by the walk.(5bas at most

2m — 2 edges whose endpoints are assigned the intégard
> = < :
iiy;[;; i’;JraiJZitiBaigfg;fgdjl(w—ftii'):_V;gft 4, and those edges are consecutiveGnSo G has at most
6 — 6 — %N —)[(m—1)N - 142 y — m—1 non-overlapping clusters that are assigned only integers

, . ¢ andj. Now it is simple to see that the interleaving Gfis an
Therefore this lemma is proved. O Mcl 0

g’roof of Theorem 2The interleaving orG that Algorithm

With Lemma 2 and Lemma 3 proved, we see that Theorem 1a|gorithm 1 is optimal in the sense that it produces Multi-

becomes a natural conclusion. Cluster Interleaving for the longest path on which MCI exists.
It is clear that the algorithm can be modified easily to produce
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Fig. 10. lllustrations of three operations on paths.
2
5 A 5 ) Example 3:Let G be the path shown in Fig. 10 (a). By

removing the vertex); from G, we get the path shown in
(v Wig Vg Ve vy 4 Fig. 10 (b). By inserting a vertex in front of the vertexvs
in G (or equivalently, behind the vertex in G, or between
_ the vertexvy andwvs in G), we get the path shown in Fig. 10
Fig. 9. (a) The grapt = (Vy, Ex) (b) MCl on the pathG = (V, E) (©).
Let H be the path shown in Fig. 10 (d). By combinitif
with G such that the last 2 vertices @f overlap the first 2
Rlertices ofG, we get the path shown in Fig. 10 (e). O

MCI for shorter paths as well — the method is to find short
walks in the auxiliary graphd = (Vi, Fy). We skip the
details for simplicity. By Theorem 1 and Theorem 2, we find Now we present an algorithm which computes an MCI on
the exact condition for MCl’s existence wheh = 2 and a path whileK = L + 1. Being different from Algorithm 1,

K = 3, as the following theorem says. in this algorithm the order of the path is not preset. Instead,
the algorithm tries to find a long path on which MCI exists
(the longer, the better), and computes an MCI for it. Thus the
output of this algorithm not only provides an MCI solution,
but also gives a lower bound for the maximum order of the
path on which MCI exists.

Theorem 3:When L = 2 and K = 3, there exists a Multi-
Cluster Interleaving on a path of vertices if and only if
n< (N—-1[(m-1)N—1]+2.

IV. MCI ON PATHS WITH CONSTRAINT K = L + 1 Algorithm 2: MCI on a path with the constraimt’ = L + 1
In this section, we study the MCI problem for paths with [pPut: ParametersV, K, m and, whereN > K = L+1 > 3
more general constraink = L + 1. z.andm > 2.
We define three operations on paths — ‘remove a v&putPut: A|.1 MCl on a pathG = (V, E).
tex’, ‘insert a vertex' and ‘combine two paths’. Let be Algorithm:

a path ofn vertices: (v1,vs, - ,v,). By ‘removing the 1-IfL =2 thenletG = (V,E)bea path of N-1)[(m—-1)N
vertex v;' from G (1 < i < n), we get a new path —1] + 2 vertices, and use Algorithm 1 to find an MCI
(V1,V2,+ ,Vi_1,Vi41, - ,Uy). By ‘inserting a vertexp’ in on G. OutputG and the MCI on it, then exit. (So Step 2
front of the vertexv; in G (1 < i < n), we get a new and Step 3 will be executed only if > 3.)

path (vy,va, - v;_1, 0,05, ,vn). Let H be a path ofp/ 2.fori=L+1toN do

vertices: (uy, ua, -+ ,uy). Assume forl < i < n, v; is { Find a pathB; (the longer, the better) that satisfies the
assigned the integet(v;); and assume foi < i < =/, following three conditions:

u; is assigned the integet(u;). Also, let [ be a positive (1) Each vertex oB; is assigned an integer 1,2, - - - ,
integer between 1 andnin(n,n’), and assume forl < i—1}, namely, there is an interleaving of the integers
i < 1, e(vi) = c(un_14;). Then by saying ‘combining in {1,2,---,i—1} on B;

H with G such that the last vertices of H overlap the (2) Any m non-overlapping connected subgraphsipf
first [ vertices of G, we mean to construct a path af + each of which is of ordef — 1, are assigned at least
n — | vertices whose assigned integers are in the form of L distinct integers;

[c(u1), c(ug), -+, c(un), c(vigr), c(Viga), - -+, ¢(vy)], Which (3) Ifi>L+1,thenforj=1to L —1, thej-th last

is the same agc(u), c(ua), -, c(un—1), c(v1), c(ve), -, vertex of B; is assigned the same integer as the

¢(vy,)]. The following are examples of the three operations. (L — j)-th vertex of A;_;.



To find the pathB;, (recursively) call Algorithm 2 in the
following way: when calling Algorithm 2, replace the

inputs of the algorithm —V, K, m and L — respectively @

with i—1, L, m and L —1; then let the output of Algorithm
2 (which is a path with an interleaving on it) be the path

B;. (b)

Séan the vertices iB; backward (from the last vertex to

the first vertex), and insert a new vertex after evéry 1
vertices inB;. (In other words, if the vertices iB3; areu,

ue, - -+, us, then after inserting vertices intB; in the way ©

described above, we get a new pathnof L%J vertices; and
if we look at the new path in the reverse order — from the last

vertex to the first vertex — then the path is of the fofm,, (d

Up—1, "+ Uatl—(L—1), & NEW VerteXpa (L—1), Ua—(L—1)—1,

crty Up41-2(L—1), A NEW Vertexl%"zfQ(Lfl)_: Up—2(L—1)—1s """
Up41-3(L—1), & NEW vertex; - - - - ). In this new path, every

cluster of orderL contains exactly one newly inserted vertex.)
Assign the integeri' to every newly inserted vertex in the
new path, and denote this new path bi;"
¥
3. Obtain a new path by combining the pathg, Ay_1, - -,
Ap41 in the following way: combined y with Ax_q,
combine Ay _; with Ay _5, ---, and combined 5 with
Ap41 such that the last — 1 vertices of A overlap the
first L — 1 vertices of Ay_1, the lastL — 1 vertices of
Apn_1 overlap the first — 1 vertices ofAy_», - -+, and the
last L — 1 vertices of Ay, o overlap the first, — 1 vertices
of Ar41. (In other words, if we denote the number of vertices
in A; by [;, for L+ 1 <i < N, then the new path we get

hasy>;, i — (L—1)(N — L—1) vertices)) Let this new

path beG = (V, E). OutputG and the interleaving (which
is an MCI) on it, then exit. O

The following is an example of Algorithm 2.

Example 4:In this example, the input parameters for Al-
gorithm 2 areN =6, K = 4, m = 2 and L = 3. That is,
we use Algorithm 2 to compute a path that is the longer the
better and interleave 6 integers on it, such that in the path,
any 2 non-overlapping clusters are assigned at least 4 distinct
integers.

Algorithm 2 firstly computes a patti3, that satisfies the

®

N=6, K=4, m=2, L=3
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following two conditions: (1) each vertex @, is assigned an Fig. 11. An example of Algorithm 2.

integer in{1, 2, 3}; (2) anym = 2 non-overlapping connected
subgraphs oB3, of orderL—1 = 2 are assigned at least= 3

distinct integers. To comput®,, Algorithm 2 calls itself in an integer in{1,2,3,4}; (2) any m = 2 non-overlapping
a recursive way, by setting the inputs of the algorithmMN+ connected subgraphs &f; of order L — 1 = 2 are assigned
K, mand L — to be 3, 3, 2 and 2; during that call, it usest leastL, = 3 distinct integers; (3) the last vertex @ is
Algorithm 1 to computeB,. There is more than one possibleassigned the same integer as the 2nd verted po{which is
outcome of Algorithm 1; WLOG, let us assume the output hethe integer ‘1), and the 2nd last vertex 6% is assigned the

is that B, is assigned integers in the form ff, 3,1, 2, 3, 2].
The pathB, is shown in Figure 11 (a).

same integer as the 1st vertex4f (which is the integer ‘4’).
Algorithm 2 computesB; by once again calling itself.

Algorithm 2 then scan$B, backward, inserts a new ver-Algorithm 2 can use the following method to find a path
tex into B, after everyL — 1 = 2 vertices, and assignsthat satisfies all the above 3 conditions. Firstly, use Algorithm
the integer ‘4’ to every newly inserted vertex. As a result, to find a path that satisfies the first 2 conditions, which
we get a path whose assigned integers are in the formisfeasy, and call this patt's. All the integers assigned to
[4,1,3,4,1,2,4,3,2]. We call this new patti,. A4 is shown C5 are in the set{1,2,3,4}; and from Algorithm 1, it is

in Figure 11 (b).

simple to see that the last two vertices dfy are assigned

Algorithm 2 then computes a patB; that satisfies the two different integers. (Note that the first two verticesAn
following three conditions: (1) each vertex &f; is assigned are also assigned two different integers.) So by permuting



B, : By BL.: number of vertices generated during the process of Algorithm
Algorithm2(N-LLmL-1)  Algorithm2(N-2LmL-1)  Algorithmz(LLm,-1) 2S funning. That number is greater than the order of the
OO OOOOOOO0 OOOOOOO0 eos 0000 final output pathG = (V, E) (except whenL = 2), because
when Algorithm 2 is combining paths, there are overlapping
vertices. However we can show that the total number of
An Ana Aua vertices generated is less than twice the ordefef (V, E).
OO0O0O0O0O0O0O00C00 OO0 OO0O0O00C0 eee o-O0-000

A proof of this claim is presented in Appendix I.
\ \ / Below we prove the correctness of Algorithm 2.

Theorem 4:Algorithm 2 is correct.

Algorithm2(N,L+1,m L) Proof of Theorem 4We will prove this theorem by induc-
tion. If L = 2, then Algorithm 2 uses Algorithm 1 to compute
Fig. 12. Algorithm 2 has four input paramete®, K, m and L. Lets the MCI — so the result is clearly correct. Also, we notice that
use ‘Algorithm2(a,b,c,d)’ to denote the path output by Algorithm 2 whegyr anyv MCI Algorithm 1. anv tw i nt verti
N =a, K =b m = cand L = d. The final output of Algorithm 2 — fora y . c OUI.pUt by . gorit ; any two adjace tvertices
Algorithm2(N,L+1,m,L) — is obtained by combining the patHs,, Ay_;, &€ assigned different integers. We use those two facts as the
.o, Ap41, while A; (for i = N, N — 1, ---, L + 1) is obtained by base case.

inserting vertices into the patB;. B; is an output of Algorithm 2 as well, Let I be an integer such th& < I < L. Let's assume
which is a path with an interleaving af— 1 different integers; specifically, -

B; is Algorithm2(i-1,L,m,L-1). So from this figure, we can see the recursivi€ fqllowing statement is true: if we replac_e the inputs of
structure of Algorithm 2, and the ‘hierarchical-chain structure’ of its outputAlgorithm 2 — parameter®V, K, m and L — with any other

set of valid inputsV, K = i+1, andi such thak < i < I,
Algorithm 2 will correctly output an MCI on a path; and in
the names of the integers assigned’tg we can get a path that MCI, anyi consecutive vertices are assignedifferent
that satisfies not only the first 2 conditions but also the 3ittegers. (That is our induction assumption.)
condition. Call this pathBs. There is more than one possible Now let's replace the inputs of Algorithm 2 — parameters
result of Bs. WLOG, we assume the integers assignedto N, K, m and L — with a set of valid inputsV’, K’ = I +
are in the form of[3,4,3,1,3,2,4,2,1,4,1]. Bs is shown 1,m’ andl. Then Algorithm 2 needs to compute (in its Step
in Figure 11 (c). Then Algorithm 2 inserts vertices inRy 2) N’ — I paths:Bry1, Brya, --+, By ForI +1 < j <
and gets a new patH;, whose assigned integers are in th&V’, B; is (recursively) computed by calling Algorithm 2. The
form of [3,5,4,3,5,1,3,5,2,4,5,2,1,5,4,1]. As is shown in interleaving onB; is in fact an MCI where the order of each
Figure 11 (d). cluster isI —1 — so by the induction assumption, Algorithm 2
Nex‘t7 A|gor|thm 2 Computes a patB6, by Ca”ing itself will Correctly OUtpUt the interleaVing OBj. Bj is aSSigned the
again. WLOG, we assume the integers assigneBdare in integersin{1,2,---,j—1}; and by the induction assumption,
the form of[1, 3,1, 4,1,5,1,2,3,2,5,2,4,3,4,5,3,B; anyl—1consecutive vertices if¥; are assigned—1 different
is shown in Figure 11 (e). Then Algorithm 2 inserts verticel§tegers.
into Bg and gets a new patig, whose assigned integers are The path Ari, is constructed by inserting vertices into
in the form of[6, 1, 3,6, 1,4, 6,1, 5,6, 1, 2, 6, 3, 2, 6, 58141 such that anyl consecutive vertices im;; contain
2,6,4,3,6,4,5,6, 3,544 is shown in Figure 11 (f). exactly one newly inserted vertex, and all the newly inserted
vertices are assigned the integér+1’. So anyl consecutive
vertices inA;,; are assigned different integers. Therefore
it is always feasible to adjust the interleaving @.- to
vertices of A,. As a result, we get a patfi = (V, E) of 48 make the last — 1 vertices of By, be assigned the same
vertices which is assigned the integés1, 3, 6, 1, 4, 6, 1, 5, integers as the first — 1 vertices ofA;,. Noticing that the
6,1,2,6,3,2,6,52,6,4,3.6,4,5,6,3,5 4,351, 3,5, @’st I — 1 vertices of By,o are assigned the same integers
4,5,2,1,5,4,1,3,4,1,2,4,3].27 is shown in Figure 11 as the last/ — 1 vertices of A;.,, we see thatd,, and
(). This is the output of Algorithm 2. It can be verified that'/+1 can be successiully combined with—1 overlapping
the interleaving orG is indeed an MCI. g Vertices by Algorithm 2. Similarly, fod +3 <t < N’, A,
and A;_; can be successfully combined by Algorithm 2; and
The path output by Algorithm 2 is a chain of the sub-pathfer 7 + 2 < ¢t < N’, any I consecutive vertices inl, are
Apy1, Apte, --+, An. The interleavings on those paths usassigned! different integers.
more and more integers, and those sub-paths are of increasindigorithm 2 usesG to denote the path got by combining
orders. In that sense, they form a ‘hierarchy’. Each sub-gdath A, ,,, A;,,, ---, Ay. For our discussion herd, and N
is derived from a patiB;, and B; is a chain of some shortershould, respectively, be replaced byand N’. Clearly anyl
sub-paths; then, each of the sub-paths that constilytés consecutive vertices i’ are alsol consecutive vertices in
derived through the chaining of some even shorter sub-patias, for some;j (I + 1 < j < N’), therefore are assignefl
andsoon-:--- That is another ‘hierarchy’. Therefore we sayiifferent integers. And for any»’ non-overlapping connected
that the path output by Algorithm 2 has a ‘hierarchical-chaisubgraphs of ordef in G, either all of them are contained in
structure’. (See Fig. 12 for an illustration.) A; for somej (I+1 < j < N), or one of them is contained in
The complexity of Algorithm 2 is dominated by the total4; and another of them is contained.y. for some;” # ;'

Finally, Algorithm 2 combinesig, A5 and A4 such that the
last L — 1 = 2 vertices of Ag overlap the first2 vertices of
As, and the lastl. — 1 = 2 vertices of A5 overlap the first2



(I+1<j # 37" < N’). In the former case, by removingwith the upper bound of Proposition 1 ,,,nq —
different sets of parameterss and L, with K = L + 1

those vertices that are assigned the integérirt those m/’

10

for four

subgraphs, we get’ non-overlapping connected subgraphthroughout. The relative difference’ in Table 1 is defined as

in B; each of which containg — 1 vertices, which in total w =1-
différence approac‘hes 0 & — oo.

are aSS|gned at leastdifferent integers not includingj* —

. Theorem 5 shows that this relative

so them’ subgraphs irG (which are also ind,) are assigned

at least/ + 1 different integers. In the latter case, WLOG,
let's sayj’ < j”. Then the subgraph i, is assigned!

different integers not includingj””’, and the subgraph ial;

is assigned an integeyj””’ — so the m’ subgraphs inG' are
assigned at leagt+ 1 different integers in total. Therefore the

interleaving onG is an MCI (with parameter®/’’, K/, m' and
I). So the induction assumption also holds whien I.

Algorithm 2 computes the result for the original problem
by recursively calling itself. By the above induction, every

intermediate time Algorithm 2 is called, the output is correct,

So the final output of Algorithm 2 is also correct. O

The maximum order of a path for which MCI exists
increases wherN — the number of interleaved integers —

increases. The performance of Algorithm 2 can be evaluat

by the difference between the order of the path output by

Algorithm 2 and the maximum order of a path for which MCI

exists. We are interested in how the difference behaves wh

N increases.

Theorem 5:Fix the values ofK, m and L, where K =

L+1>3andm > 2, and letN be a variable § > K).
Then the longest path for which MCI exists h@:l—l)!NL +
O(NE~1) vertices. And the path output by Algorithm 2 also

has 7= 11)|NL + O(NE-1) vertices.

Proof of Theorem 5tet G = (V, E) be a path ok vertices
with an MCl on it. Then by Proposition &, < (m—1)L(7)+
(L —1). Son < =i NP+ O(NET,

When L = 2, Algorithm 2 outputs a path ofN — 1)[(m —
1)N—1]+2 vertices. Wherl, > 3, to get the output, Algorithm
2 needs to construct the patdg 1, Ar1o, -+, An; and for
L+1<i< N, A;is got by inserting vertices into the path
B;. B; is again an output of Algorithm 2, which is assigned
1 — 1 distinct integers, and in which a considered ‘cluster’ is

of order L — 1. Let's useF' (N, m, L) to denote the number of
vertices in the path output by Algorithm 2, and us&, m, L)
to denote the number of vertices in the path Then based on

m=2andL =3
N || Output of Upper Relative
Algorithm 2 (n) bound Upoung) difference
10 312 362 0.1381
20 || 3177 3422 0.0716
50 || 57072 58802 0.0294
100 || 477897 485102 0.0149
150 || 1637472 1653902 0.0099
200 || 3910797 3940202 0.0075
m=2andL =5
N || Output of Upper Relative
Algorithm 2 (n) bound Upoung) difference
10 930 1264 0.2642
420 || 68265 77524 0.1194
50 10081020 10593804 0.0484
100 || 367196445 376437604 0.0245
150 [[ 2.9093 x 107 2.9580 x 107 0.0165
200 || 1.2521 x 1010 1.2678 x 1010 0.0124
m=5andL =3
N || Output of Upper Relative
Algorithm 2 (n) bound Upounq) difference
10 1383 1442 0.0409
20 || 13428 13682 0.0186
50 233463 235202 0.0074
100 || 1933188 1940402 0.0037
150 || 6599163 6615602 0.0025
200 || 15731388 15760802 0.0019
m=>5andL =5
N || Output of Upper Relative
Algorithm 2 (n) bound Upoung) difference
10 4395 5044 0.1287
20 || 298785 310084 0.0364
50 41846205 42375204 0.0125
100 || 1.4964 x 107 1.5058 x 107 0.0062
150 || 1.1783 x 1010 1.1832 x 1010 0.0041
1.200 || 5.0556 x 10T 5.0713 x 100 0.0031

the above observed relations, we get the following 3 equation

) F(N,m,2) = (N — D)[(m — 1)N — 1] +2:
(2)whenL >3, F(N,m,L) =>";_ L+1A(sz) (N—
L—1)(L—1);

(3)wheni > L+1 >4, A(i,m,L) = | 2 -F(i—1,m,L—
1)]. (Note thatF' (i — 1, m, L — 1) is the number of vertices
in the pathB;.)

By solving the above equations, we g&{N,m,L) =

= 11)'NL + O(NL=1), as claimed.

Table 1: Comparison between the order of the path output by Algorithm 2

and an upper bound, and their relative difference.

V. MCI oN CYCLES

In this section, we extend our results on MCI from paths

to cycles, for the case of' = 2 and K = 3". The analysis
for the two kinds of graphs bears similarity; but the ‘circular’

Theorem 5 shows that the path output by Algorithm 2 istructure of the cycle leads to certain differences sometimes.

asymptotically as long as the longest path for which MCI Let G =

(V,E) be a cycle. The following notations will

exists. What's more, the orders of those two paths have the used throughout this section. We denote riheertices in

same highest-degree term (). G =

(‘/’E) by Ull UQ! ."J

v,. For2 < i <n -1, the two

We conclude with some numerical results. In Table 1, theertices adjacent to; arev;_; andv; ;. Vertexv; andv,, are
order of the path output by Algorithm 2 -+ — is compared adjacent to each other. A connected subgraplizahduced
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by verticesv;, v;41,--- ,v; is denoted by(v;, vi+1,---,v;). N = 3 distinct integers. If in the MCI or7, no two adjacent
If a set of integers are interleaved @ thenc(v;) denotes vertices are assigned the same integer, then with the same
the integer assigned to vertex argument as in the proof of Lemma 5, it can be shown that
' < — _ —1l.
Lemma 4:Letthe values ofv, K, in andL be fixed, where Z&n Z:gr]t(]\/vertic;lgg% thg)tjgre ;]ss:\l?]\:\elda;? ?aemtg (ier:?ea{; t'\I'l\;1C)en
N >4, K =3, m>2andL = 2. Let n,,,, denote the ) . 9 ger.
. . there are three possible cases.
maximum value ofn. such that an MCI exists on a cycle of } ;
. . . Case 1n,,.. is even.
n vertices. Then in any MCI on a cycle af,,,, vertices, no

X . . . Case 2:m,,.. IS 0dd, and there are at least 2 non-
two adjacent vertices are assigned the same integer. : . o .
overlapping clusters iz each of which is assigned only one

The proof of Lemma 4 is skipped because it is very similafistinct integer.

to that of Lemma 1. Case 3n,,4, IS 0dd, and there don't exist 2 non-overlapping
Lemma 5:Let the values ofV, K, m and L be fixed, where icrllijesg;irrs inG: each of which is assigned only one distinct

N >4, K =3, m>2andL = 2. Let n,,,, denote the

maximum value ofr such that an MCI exists on a cycle of We consider the three wses_ one by one. _
vertices. TheMnee < (N — 1)[(m — 1)N — 1]. Case 1:n,q. IS even. In this case, clearly we can find

. ] =maz non-overlapping clusters such that at least one of them is

Proof of Lemma 5:This lemma can be proved in theassigned only one integer. Among thdg:= non-overlapping
same way as the proof for Lemma 2, except for a few smallsters, letr, , 2, a, b ande respectively denote the number
differences. Eor simplicity, we just point out those differencess |usters that are assigned only integer ‘1’, only integer ‘2’,
here, and skip the rest of the proof. only integer ‘3’, both integers ‘1’ and ‘2’, both integers ‘2’

The first difference is that due to the ‘circular’ topology of;,q 3’ and both integers ‘1’ and ‘3'. Since the interleaving
the cycleG, the specific way to color the vertices 6f with g g MCI, clearlyz + y+a<m—1,y+z+b<m—1,
thered, yellow andgreencolors should be modified to be the, | . . <m—1.502z4+2y+2z+a+tb+e<3m—3. So
following: “Step 1, forl < ¢ < nyqs, If the two vertices r+y+z+a+b+c<3m—3—(r+y+z). Sincer+y+z > 1
adjacent tov; are assigned the same integer, then we color 5 Nomaw = 2z +y +2+a+b+c), We getnmes <
with the red color; Step 2, forl < i < ny4., We colorv; 23m—3— (z+y+2)] <6m—8=(N—1)[(m—1)N—1].
with the yellow color if v; is not coloredred and there exists
J such that these four conditions are satisfied:j(3 ¢, (2) v;
is not coloreded, (3) c(v;) = c(v;), (3) the following vertices
betweerw; andv; — v;q1, vj42, - -+, v;—1 (note that if a lower
index exceedsi,,q, it is subtracted byi,,.., SO that the lower index
is always between 1 and,,.,) — are all coloredred; Step 3,
;Oer”;W’Sﬂ: eﬁ vtg”ggl (;]:’v:}iwli?hntil;h; r;gr?lcoorﬁ:?d nor colored a, b and ¢ respectively denote the number of clusters that

The second difference is that compared to paths, for cyc[a%rse asagqed only ‘|n'teger 1 only m_teger 2 " o,nly |ntfag?er
L . , both integers ‘1’ and ‘2’, both integers ‘2’ and ‘3,
there are two extra cases to consider in the proof:

Case 1: all the vertices in the cyaléarered. If that is true, and both integers "1" and '3'. Since the interleaving is an
. " . MCl, cleary x + y+a < m—-1,y+2+b < m— 1,
then G must have been assigned only two distinct integers,
L . ) z4+r4+c<m-—-1.S02x+2y+2z+a+b+c<3m— 3.
which implies thatG contains less thamL = 2m < (N — .
: ; . . Sox+y+z+at+b+e<3m—3—(zr+y+z). Since
1)[(m — 1)N — 1] vertices (since we assume the mterleavm%
on G is an MCI) +y+z>2andnme =2(x+y+z+a+b+c)+1,
_ " : We getnme, <2B3m—-3—(z+y+2)]+1<6m—-9<
Case 2: there is ngreenvertex in G, and all theyellow (N = 1)[(m—1)N — 1]
vertices are assigned the same integer — say it is intégdfr * Y ' L .
that is true, then the integers Ghmust look like the following: ~ €@S€ 374, iS 0dd, and there don't exist 2 non-overlapping
{i,a,i,a, -+ ,4,a,4,b,4,b, - i b, Ji,c,i,c, -+ ,i,ch. clusters inG each of which is assigned only one distinct
Foranyj # i (1 < j < N), there are at moskm — 2 integer. Letz’, ¢/, 2/, o/, V' and ¢’ respectively denote the
edges inG whose endpoints are assignednd j respectively .number‘of edges it whose two endpomt,s are both assigned
(because the interleaving off is an MCI). So the order integer 'I', are both assigned integer '2', are both assigned
of G (which equals the number of edges @) is at most INteger ‘3, are assigned integers "1’ and ‘2, are assigned
(N—1)(2m—2) < (N —=1)[(m—1)N —1]. O m/tege/rs 2, and/ 3, /are 2/155|gned |nte,ger_s 1" and ‘3. (Then
] 4y +2+d+V 4+ = nmaee.) It's simple to see that
N =3 K=3m2>2andL = 2. Let ny,, denote the js ejther 1 or 2. So WLOG, we consider the following two
maximum value of» such that an MCI exists on a cycle of gyp-cases.

i < — — — .
vertices. Themmq, < (N —1)[(m — )N —1]. Sub-case 3.1z = 1, andy’ = 2/ = 0. In this case,
Proof of Lemma 6Let G = (V, E) be a cycle ofn,.. o < 2m — 3, because otherwise there will be non-

vertices that has an MCI on it. We need to show that, < overlapping clusters iz that are assigned only integers ‘1’
(N —=1)[(m—1)N —1]. It is simple to see thaf is assigned and ‘2. Similarly, ¢’ < 2m — 3. Also clearly,t/ < 2m — 2.

Case 2:n,,q. IS 0odd, and there are at least 2 non-
overlapping clusters inG each of which is assigned only
one distinct integer. In this case, clearly we can flhel;—‘l
non-overlapping clusters among which there are at least two
clusters each of which is assigned only one distinct integer.
1

Among those™=«4— non-overlapping clusters, let, y, z,
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If o’ =2m — 3 and¢ = 2m — 3, then since there don't exist
m non-overlapping clusters it that are assigned only one
or two distinct integers, the MCI o&' can only take the form
described as follows. I, there arex’ = 2m — 3 consecutive
edges each of which has integers ‘2" and ‘1’ assigned to its
endpoints, which form a segment in the cyclethat begins
with a vertex assigned the integer ‘2’ and ends with a vertex
assigned the integer ‘1'. That segment is followed by an edge
whose two endpoints both are assigned the integer ‘1", then
followed by ¢ = 2m — 3 consecutiveedges each of which
has the integers ‘1’ and ‘3’ assigned to its endpoints, and (b)
finally followed by’ consecutiveedges each of which has the
integers ‘3’ and ‘2’ assigned to its endpoints, finishing the loop
of edges in the cyclé&'. Then it is simple to see that can't be
even, which implies tha’ < 2m — 2 here. So in any case, we
havea +b' +¢ < (2m—3)+(2m—2)+ (2m—3) = 6m —8.
SO ez = @ +y +2 +d +V + < 6m—7. So
Nmaz < 6m —8=(N—1)[(m—-1)N —1].

Sub-case 3.2r' = 2, andy’ = 2z’ = 0. In this case, with
arguments similar to those in sub-case 3.1, wazfjet 2m—4,
d <2m—4,andV <2m—2. S0nmae = 2" +y' +2 +a' +
b+ <24+02m—-4)+2m—-2)+(2m—4)=6m—8=
(N =Dl(m -1)N —1]. Fig. 13. (a) The grapl#f = (Vir, Exr)  (b) MCI on the cycleG: = (V, E)

So it has been proved that in any casg,. < (N—1)[(m—
1N —1]. m

Below we present an algorithm for generating MCIs on
cycles. A distinct feature of this algorithm is that it needs to
treat the cases:'is even’ and # is odd’ somehow differently.
Note that a Eulerian walk in a graph is a closed walk that
passes every edge of the graph exactly once.

finally back touy,), that satisfies the following condition:
for any two vertices, the walk passes all the edges between
them consecutively

Fori=1,2,--- ,n, assign the integerk;’ to the vertexv;

in G, then exit the algorithm. |

. . . The following is an example of Algorithm 3.
Algorithm 3: MCI on a cycle with constraints = 2 and

K =3 Example 5:AssumeG = (V,E) is a cycle ofn = 12

Input: A cycle G = (V, E) of n vertices. Parameterd, K,  vertices, and the parameters ave= 4, K = 3, m = 3 and

m and L, whereN >3, K =3, m>2andL = 2. L = 2. ThereforeN < n < (N — 1)[(m — 1)N — 1] and

Output: An MCl on G. n—{(N—1)[(m—-1)N —1]} = —9 is odd. So Algorithm
Algorithm: 3's step 3 is used to compute the interleaving, where the set

1. 1fn> (N —1)[(m — 1)N — 1], then there does not exist ° 'S defined to bes = {(1,2),(2,3),(3,4),(4,1)}. Then we
an MCI onG, so exit the algorithm. can choose the grapH = (Vy, Ex) to be the one shown in

Fig. 13(a). We can then (easily) find the following Eulerian
2. If n < N, arbitrarily select: integers in the sefl,2,--- , 9 @) (easily) fi wing =uerl

N q : distinct int ; h vertex. th W?IkinH:Ul_)ug_)u1_)u2_>U1_>U2_>U4_>u2_>
thg,sgorﬁﬁi:gn one distinct integer to each vertex, then e1>§|4 — ug — ug — uy (then back tou;). Corresponding to

that walk, we get the MCI as shown in Fig. 13(b). O
BfN<n<(N-1)[(m—-1)N—-1]andn— (N —1)[(m—

1)N — 1] is even, then define a sétasS = {(1,2), (2,3) Theorem 6:Algorithm 3 correctly outputs an MCI on the
(3,4),- ,(N=2,N—1),(N—-1,1)};if N<n< (N- CycleG.

D[(m—1)N —1] andn— (N —1)[(m — 1)N — 1] is odd,  The correctness of the above theorem should be clear once
then define a sef asS = {(1,2),(2,3),(3,4), -~ ,(N—1, the proof of Theorem 2 is understood. Now we can present the

N), (N, 1)} necessary and sufficient condition for MCI to exist on cycles
Let H=(Vy,Ey) be a graph with parallel edges thatyhen, = 2 and X = 3.

satisfies these four requirements: (1) its vertex séfgs—
{u1,us,--+ ,un}; (2) there is no loop ind, and all the ) : :
edges inH are undirected; (3) there areedges ingf; ©n @ cycle ofn vertices if and only ifn < (N —1)[(m —

(4) for any two vertices:; andu;, if the un-ordered pair DN —1].

(i, 7) belongs to the sef, then the number of edges between

them is odd and is no greater tham — 3; otherwise, it is VI. CONCLUSION

even and is no greater th&m — 2. In this paper, the Multi-Cluster Interleaving (MCI) problem
Find a Eulerian walk inH, w;, — ux, — --- — ug, (@nd for paths and cycles is studied. Compared to traditional in-

Theorem 7:When L = 2 and K = 3, there exists an MCI
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terleaving schemes, Multi-Cluster Interleaving has the distinctNow assume the assertions of this lemma are true when
feature that the diversity of integers is required in multiple -+ < ¢ — 1, and let's prove them for the case= ¢. When
instead of single — clusters. It has potential applications in= t, B; is the output of another recursion — Algorithrmz(
data-streaming, broadcast and disk storage. 1,y=t,m,y —1=1t—1); and by the induction assumption,
There exist many open problems in MCI. How to optimalllgorithm2(@ — 1,y = ¢,m,y — 1 = t — 1) contains at least
construct MCI without the constraint th& = L + 1 is still 2(y—1)+2 = 2y vertices. SaB; contains at leasty vertices.
unknown. Also, in the MCI problem, the path/cycle can bel; is created by inserting at Iea%{—"lj > 2 vertices intoB;,
replaced by more general graphs. Such extensions will help A; contains at leas?y + 2 vertices.G contains at least as
bring Multi-Cluster Interleaving into practice. We hope thenany vertices as!;. That concludes this proof. O
techniques presented here will provide insights for further

study Now we can prove the “sufficient condition” mentioned in

the second paragraph of this appendix. Assume in one of the
recursions — whose corresponding input parameterszare
APPENDIX | y+1, m, y — two pathsA; and A;,, are combined; and let
ON THE COMPLEXITY OF ALGORITHM 2 u; and u;; be two vertices — respectively id; and 4,1,

When Algorithm 2 runs, it generates vertices in paths. Wg that overlap each other in that ‘combining’ operation. In

define this more rigorously below. Algorithm 2 has threI%ﬁat recursion, for any integer A, contains at leaszy + 2

basic operations: (1) inserting vertices into an existing path ygrices by Lemma 7; and when two paths are combined, only

get a longer path; (2) combining two paths with overlapping 1 vertices are overlapped.. Sg andu;, do not .overlap
vertices; (3) using Algorithm 1 to generate a path. For t y other vertex in that recursion, and they are neither among

first operation, we say that those vertices inserted into f e f|rstthy +t3 Vteg'cizinorr arr:c;ng thehilar?tiJr ;Z vr:erilcc?s ?f‘
existing path are newly generated vertices. For the secq § path oulput Dy IS recursio (which is denoted Gy

operation, we say that no vertex is newly generated. For twethedalgoglthm). NO\Q’ assume tr_lllf] recursu()jn IS ca_lled ai a
third operation, we say that all the vertices in the path outhEoce ure by a second recursion. The second recursion (whose

by Algorithm 1 are newly generated vertices. The complexif put parameters are % + 2, m, y + 1) will insert vertices

of Algorithm 2 is dominated by the total number of verticed to t?edpaf:h output by :'he f|rsfttrhecurs£|;)n (wnh_onebneﬁv ve(r;ex
generated while Algorithm 2 runs. inserted after every vertices of the path, scanning backwards)

In this appendix, we shall prove that while Algorithm 2{0 obtain a longer path — which we shall denote &Y So in

, . .
runs, the total number of vertices generated is less than twm@éa pathA’, there is at least one newly inserted vertex before

the order of the final output patf — (V. E). The method is andu;, (which are now the same vertex) and at least one

to prove the following sufficient condition: “while Algorithm newly inserted vertex behind them. 59 andu,. are neither

2is ruming, 2 verexoveraps anoter verie whie e TN e 1 L veriees oremon e i uerees
paths they respectively belong to are combined, then those two . ' ining P

) . N overlap onlyy vertices. Sou; andu; will not overlap any
vertices will not overlap any more vertex later on.” (Namely;

for any vertex in the final output patt¥ — (V. £), it is the other vertex in the second recursion. Similarly, and u;:

. . . will not overlap any other vertex in future recursions. That
overlapping of at most two previously generated vertices.) concludes our proof
The recursive structure of Algorithm 2 is illustrated in P '

Fig. 12. Let's consider an arbitrary one of the recursions,
whose corresponding input parameters arey + 1, m, y

— namely, the output of this recursion is Algorithm2{ + The authors would like to thank the Associate Editor for
1,m, y). (For the definition ofAlgorithm2(a,b,c,d), please his great diligence and the anonymous reviewers for their very
see Fig. 12.) The output of this recursion is denoted @&y * helpful comments.

in the algorithm; and ify > 3, during this recursion, a set of

paths denoted byB;’ and ‘A;’ (for different values ofi) will REFERENCES

be created. Let's first prove the following lemma. [1] K. A. S. Abdel-Ghaffar, “Achieving the Reiger bound for burst errors

. . . using two-dimensional interleaving schemes,”Aroc. IEEE Int. Symp.
Lemma 7:If y > 3, then B; contains at leas?y vertices, Information Theory Ulm, Germany, 1997, pp. 425.

A; contains at leas?y + 2 vertices, andZ contains at least [2] C. Aimeida and R. Palazzo, “Two-dimensional interleaving using the
2y + 2 vertices. set partition technique,” ifProc. IEEE Int. Symp. Information Thegry
Trondheim, Norway, 1994, pp. 505.
Proof of Lemma 7:We use induction. Whery = 3, B; [3] M. Blaum and J. Bruck, “Correcting two-dimensional clusters by in-

. - s terleaving of symbols,” inProc. IEEE Int. Symp. Information Theor
is the output of another recursion — Algorithm2{ 1,y = Trondheigm NoﬁNay 1994, pp. 504. ymp o

3,m,y —1 =2). (Note thatm > 2 andi —1 >y = 3.) The [4] M. Blaum, J. Bruck and P. G. Farrell, “Two-dimensional interleaving
path AIgorithmZ( —l,y=3my—1= 2) is Computed by schemes with repetitions,” iRroc. |IEEE Int. Symp. Information Theory
lling Algorithm 1, so its order igi — 1 — 1)[( 1)@ ulm, Germany, 1997, pp. 342
calling Alg , % - [(m - ) (i ~ [5] M. Blaum, J. Bruck and A. Vardy, “Interleaving schemes for multidi-
1)—1]+2 > (i—2)?+2 > 6 = 2y. A; is created by inserting mensional cluster errorslEEE Trans. Inform. Theoryol. 44, no. 2, pp.
at least| 24 | = 3 vertices intoB;, so A; contains at least _ 730-743, Mar. 1998. _ .
y— . a . | t ti éﬁ] J. W. Byers, M. Luby, M. Mitzenmacher and A. Rege, “A digital
2y+3 > 2y +2 vertices.G; contains at least as many VertiCeS ™ o ntain approach to reliable distribution of bulk data,’ Roc. ACM
as A;. This serves as our base case. SIGCOMM’'98 Vancouver, Canada, Sep. 1998, pp. 56-67.

ACKNOWLEDGMENT



[7] T. Etzion and A. Vardy, “Two-dimensional interleaving schemes with
repetitions: constructions and boundgEE Trans. Inform. Theoryol.
48, no. 2, pp. 428-457, Feb. 2002.

[8] K. Foltz, L. Xu and J. Bruck, “Scheduling for efficient data broadcast
over two channels,” irProc. IEEE Int. Symp. Inform. TheqrZhicago,
USA, 2004, pp. 113.

[9] A.Jiang and J. Bruck, “Diversity coloring for information storage in net-
works,” in Proc. IEEE Int. Symp. Inform. Theqriausanne, Switzerland,
2002, pp. 381.

[10] A. Jiang, M. Cook and J. Bruck, “Optimdtinterleaving on tori,” in
Proc. IEEE Int. Symp. Inform. TheqrZhicago, USA, 2004, pp. 22.

[11] A. Mahanti, D. L. Eager, M. K. Vernon and D. Sundaram-Stukel,
“Scalable on-demand media streaming with packet loss recove®roit,
ACM SIGCOMM’'01 San Diego, CA, USA, Aug., 2001, pp. 97-108.

[12] Y. Merksamer and T. Etzion, “On the optimality of coloring with a
lattice,” in Proc. IEEE Int. Symp. Inform. TheqrZhicago, USA, 2004,
pp. 21.

[13] M. Naor and R. M. Roth, “Optimal file sharing in distributed networks,”
SIAM J. Comput.vol. 24, no. 1, pp. 158-183, 1995.

[14] D. A. Patterson, G. A. Gibson and R. Katz, “A case for redundant arrays
of inexpensive disks,” irProc. SIGMOD Int. Conf. Data Management
Chicago, USA, 1988, pp. 109-116.

[15] M. Schwartz and T. Etzion, “Optimal 2-dimensional 3-dispersion lat-
tices,” Lecture Notes in Computer Science 264p. 216-225, 2003.

[16] A. Slivkins and J. Bruck, “Interleaving schemes on circulant graphs with
two offsets,” accepted biEEE Trans. Inform. Theory

[17] W. Xu and S. W. Golomb, “Optimal interleaving schemes for correcting
2-d cluster errors,” irProc. IEEE Int. Symp. Inform. Theqrghicago,
USA, 2004, pp. 23.

Anxiao (Andrew) Jiang (S’00-M’05) received the B.S. degree with honors

in 1999 from the Department of Electronic Engineering, Tsinghua University,
Beijing, China, and the M.S. and Ph.D. degrees in 2000 and 2004, respec-
tively, from the Department of Electrical Engineering, California Institute of
Technology.

He was a recipient of the four-year Engineering Division Fellowship from
the California Institute of Technology in 1999. His research interests include
optimization, combinatorics, data storage and transmission in networks, evo-
lution and design of complex systems, and wireless and sensor networks.

Jehoshua Bruck (S'86-M'89-SM’93-F'01) is the Gordon and Betty Moore
Professor of Computation and Neural Systems and Electrical Engineering at
the California Institute of Technology. He also serves as the Director of the
Caltech Information Science and Technology (IST) program. His research
interests include information theory, distributed systems, computation theory
and biological systems. Dr. Bruck has an extensive industrial experience,
including working with IBM Research for ten years. Dr. Bruck is a co-founder
and Chairman of Rainfinity, a spin-off company from Caltech that is focusing
on providing software for management of enterprise storage systems.

Dr. Bruck received the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion, Israel Institute of Technology, in 1982 and 1985, respec-
tively and the Ph.D. degree in Electrical Engineering from Stanford University
in 1989. Dr. Bruck is the recipient of a 1997 IBM Partnership Award, a
1995 Sloan Research Fellowship, a 1994 National Science Foundation Young
Investigator Award, six IBM Plateau Invention Achievement Awards, a 1992
IBM Outstanding Innovation Award, and a 1994 IBM Outstanding Technical
Achievement Award for his contributions to the design and implementation
of the SP-1, the first IBM scalable parallel computer. He published more than
200 journal and conference papers in his areas of interests and he holds 24
US patents.

14



