
1

Multi-Cluster Interleaving on Paths and Cycles
Anxiao (Andrew) Jiang,Member, IEEE,Jehoshua Bruck,Fellow, IEEE

Abstract— Interleaving codewords is an important method not
only for combatting burst-errors, but also for distributed data
retrieval. This paper introduces the concept of Multi-Cluster
Interleaving (MCI), a generalization of traditional interleaving
problems. MCI problems for paths and cycles are studied. The
following problem is solved: how to interleave integers on a path
or cycle such that any m (m ≥ 2) non-overlapping clusters of
order 2 in the path or cycle have at least 3 distinct integers.
We then present a scheme using a ‘hierarchical-chain structure’
to solve the following more general problem for paths: how to
interleave integers on a path such that anym (m ≥ 2) non-
overlapping clusters of order L (L ≥ 2) in the path have at least
L + 1 distinct integers. It is shown that the scheme solves the
second interleaving problem for paths that are asymptotically as
long as the longest path on which an MCI exists, and clearly, for
shorter paths as well.

Index Terms— Burst error, cluster, cycle, file placement, inter-
leaving, multi-cluster interleaving, path.

I. I NTRODUCTION

Interleaving codewords is an important method for both
combatting burst-errors and distributed data retrieval. Every
interleaving scheme can be interpreted as labelling a graph’s
vertices with integers, and traditional interleaving problems
all focus on local properties of the labelling. Specifically, if
we define acluster to be a connected subgraph of certain
characteristics (such as size, shape, etc., depending on the
specific definition of the interleaving problem), then traditional
interleaving problems require that in everysingle cluster, the
number of different integers exceeds a threshold, or every
integer appears less than a certain number of times, etc.

Applications of interleaving in burst-error correction
are well known. The most familiar example is the in-
terleaving of codewords on a path, which has the
form ‘1, 2, 3, · · ·n, 1, 2, 3, · · ·n, · · · · · · ,’ for combatting one-
dimensional burst-errors of length up ton. This one-
dimensional interleaving is generalized to higher dimensions
in [3], [4], [5] and [7], where integers are used to label the
vertices of a two-dimensional or higher-dimensional array in
such a way that in every connected subgraph of ordert of the
array, each integer appears at mostr times. (t andr here are
parameters. Theorder of a graph is defined as the number
of vertices in that graph.) More work on such a generalized

This work was supported in part by the Lee Center for Advanced
Networking at the California Institute of Technology, and by NSF grant
CCR-TC-0209042. The material in this paper was presented in part at the
7th International Symposium on Communication Theory and Applications,
Ambleside, Lake District, UK, July 13 - 18, 2003.

A. Jiang is with the Department of Electrical Engineering, California
Institute of Technology, MC 136-93, Pasadena, CA 91125, USA (e-mail:
jax@paradise.caltech.edu).

J. Bruck is with the Department of Electrical Engineering, California
Institute of Technology, MC 136-93, Pasadena, CA 91125, USA (e-mail:
bruck@paradise.caltech.edu).

interleaving scheme includes [10], [12], [15], [16] and [17],
where the underlying graphs on which integers are interleaved
include tori, arrays and circulant graphs. In [1], [2] and [3],
codewords are interleaved on arrays to correct burst-errors
of rectangular shapes, circular shapes, or arbitrary connected
shapes.

Applications of interleaving in distributed data retrieval,
although maybe less well-known, are just as broad. Data
streaming and broadcast schemes using erasure-correcting
codes have received extensive interest in both academia and
industry, where interleaved components of a codeword are
transmitted in sequence, and every client can listen to this
data flow for a while until enough codeword components are
received for recovering the information [6], [11]. (An example
is shown in Fig. 1 (a), where a codeword of 7 components
is broadcast repeatedly. We assume that the codeword can
tolerate 2 erasures. Therefore every client only needs to
receive 5 different components. In this example, the codeword
components can be understood as interleaved on a path or
a cycle.) Interleaving is also studied in the scenario of file
retrieval in networks, where a file is encoded into a codeword,
and components of the codeword are interleavingly placed on
a network, such that every node in the network can retrieve
enough distinct codeword components from its proximity for
recovering the file [9], [13]. (An example is shown in Fig. 1
(b), where the codeword again has length 7 and can tolerate 2
erasures. We assume that all edges have length 1. Then every
network node can retrieve 5 distinct codeword components
from its proximity of radius 2 for recovering the file.)

This paper introduces the concept ofMulti-Cluster Inter-
leaving (MCI). In general, an MCI problem is concerned with
labelling the vertices of a given graph in such a way that for
anym clusters, the integers in them are sufficiently diversified
(by certain criteria). Traditional interleaving problems corre-
spond to the casem = 1. So MCI is a natural extension of
the traditional concept of interleaving.

We focus on Multi-Cluster Interleaving on paths and cycles.
In this paper, we study the following problem.

Definition 1: Let G = (V, E) be a path (or cycle) ofn
vertices. LetN , K, m and L be positive integers such that
N ≥ K > L andm ≥ 2. A clusteris defined to be a connected
subgraph of orderL of the path (or cycle). Assign one integer
in the set{1, 2, · · · , N} to each vertex. Such an assignment
is called aMulti-Cluster Interleaving(MCI) if and only if
everym non-overlapping clusters have no less thanK distinct
integers. 2

The above MCI problem is fully characterized by the five
parameters —n, N , K, m, L — and the graphG = (V,E).
We note that throughout this paper, the parametersn, N , K,
m, L and the graphG = (V, E) will always have the meanings

2

4

5

7

35

6

2

6

1

(b) File storage in a network

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3

(a) Broadcast

client 1 client 2

Fig. 1. Examples of interleaving for data retrieval.

9 1 2 3 1 8 7

1

655

8 27

93

5

4

72

4

n=21, N=9, K=5, m=2, L=3

Fig. 2. An example of multi-cluster interleaving (MCI).

as defined in Definition 1.
The following is an example of the MCI problem.

Example 1:A cycle of n = 21 vertices is shown in Fig. 2.
The parameters areN = 9, K = 5, m = 2 and L = 3. An
interleaving is shown in the figure, where the integer on every
vertex is the integer assigned to it. It can be verified that any
2 non-overlapping clusters of order 3 have at least 5 distinct
integers. For example, the two clusters in dashed circles have
integers ‘9, 1, 2’ and ‘7, 1, 6’ respectively, so they together
have 5 distinct integers — 1, 2, 6, 7, 9. So the interleaving is
a multi-cluster interleaving on the cycle.

If we remove an edge in the cycle, then it will become
a path. Clearly if all other parameters remain the same, the
interleaving shown in Fig. 2 will be a multi-cluster interleaving
on the path. 2

Multi-Cluster Interleaving has applications in distributed
data storage in networks and data retrieval by clients that are
capable of accessing multiple parts of the network. The MCI

problem defined in Definition 1 has the following interpreta-
tion. TheN integers used to label the vertices in the path/cycle
represent theN components in a codeword.K is the minimum
number of components needed for decoding the codeword. (In
other words, the codeword can correctN −K erasures.) An
interleaving of the integers represents the placement of the
codeword components on the path/cycle. For each client that
wants to retrieve data from the path/cycle, we assume it can
accessm non-overlapping clusters; and we assume different
clients can access different sets of clusters. (By imposing the
restriction that them clusters a client can access must be non-
overlapping, we ensure that each client can access no less than
mL vertices.) Then when the interleaving is an MCI, every
client can retrieve enough data for decoding the codeword.

Multi-Cluster Interleaving on paths and cycles appears to
have natural applications in data-streaming and broadcast [8].
Imagine that the components of a codeword interleaved the
same way are transmitted asynchronously in several channels.
Then a client can simultaneously listen to multiple channels
in order to get data faster, which is equivalent to retrieving
data from multiple clusters. Another possible application is
data storage on disks [14], where we assume multiple heads
can read different parts of a disk in parallel to accelerate I/O
speed.

The MCI problem for paths and cycles can be divided into
smaller problems based on the values of the parameters. The
key results of this paper are:

• The family of problems with the constraints thatL = 2
and K = 3 are solved for both paths and cycles. We
show that whenL = 2 andK = 3, an MCI exists on a
path if and only if the number of vertices in the path is
no greater than(N − 1)[(m− 1)N − 1]+ 2, and an MCI
exists on a cycle if and only if the number of vertices
in the cycle is no greater than(N − 1)[(m − 1)N − 1].
Structural properties of MCIs in this case are analyzed,
and algorithms are presented which can output MCIs on
paths and cycles as long as the MCIs exist.

• The family of problems with the constraint thatK = L+
1 are studied for paths. A scheme using a ‘hierarchical-
chain’ structure is presented for constructing MCIs. It is
shown that the scheme solves the MCI problem for paths
that are asymptotically as long as the longest path on
which MCIs exist, and clearly, for shorter paths as well.

The rest of the paper is organized as follows. In Section II,
we derive an upper bound for the orders of paths and cycles
on which MCIs exist. We then prove a tighter upper bound
for paths for the case ofL = 2 andK = 3. In Section III, we
present an optimal construction for MCI on paths for the case
of L = 2 andK = 3, which meets the upper bound presented
in Section II. In Section IV, we study the MCI problem for
paths whenK = L + 1. In Section V we extend our results
from paths to cycles. In Section VI, we conclude this paper.

II. U PPERBOUNDS

While traditional one-dimensional interleaving exists on
infinitely long paths, that is no longer true for MCI. IfK =
mL, then to get an MCI, every integer can be assigned to

3

only one vertex of the path/cycle, which means that MCI
exists only for paths/cycles of orderN or less. WhenK
has smaller values, MCI exists for longer paths/cycles. The
following proposition presents an upper bound for the orders
of paths/cycles.

Proposition 1: If a Multi-Cluster Interleaving exists on a
path (or cycle) ofn vertices, thenn ≤ (m−1)L

(
N
L

)
+(L−1).

Proof of Proposition 1: Let G = (V,E) be a path (or cycle)
of n vertices with an MCI on it.G contains at mostbn

Lc non-
overlapping clusters. LetS ⊆ {1, 2, · · · , N} be an arbitrary set
of L distinct integers. Then since the interleaving onG is an
MCI, among thosebn

Lc non-overlapping clusters, at mostm−1
of them are assigned only integers inS. S can be one of

(
N
L

)
possible sets. Sobn

Lc ≤ (m−1)
(
N
L

)
. Son ≤ (m−1)L

(
N
L

)
+

(L− 1). 2

Note that for the same set of parametersN , K, m andL,
if MCI exists on a path ofn = n0 vertices, then it also exists
on any path ofn < n0 vertices. That is because given an MCI
on a path, by removing vertices from the ends of the path, we
can get MCIs on shorter paths. However, such an argument
does not necessarily hold for cycles.

The upper bound of Proposition 1 is in fact loose. For
example, whenN = K = 3 and m = L = 2, a simple
exhaustive search will show that an MCI exists on a path (or
a cycle) if and only if the path (respectively, cycle) is of order
6 (respectively, 4) or less. However, Proposition 1 gives an
upper bound which isn ≤ (m− 1)L

(
N
L

)
+ (L− 1) = 7.

In the remainder of this section, we shall prove a tighter
upper bound for paths for the case ofL = 2 and K = 3,
stated as the following theorem. Later study will show that
this bound is exact.

Theorem 1:When L = 2 and K = 3, if there exists a
Multi-Cluster Interleaving on a path ofn vertices, thenn ≤
(N − 1)[(m− 1)N − 1] + 2.

Theorem 1 will be established by proving three lemmas
below. Before starting the formal analysis, we firstly define
some notations that will be used throughout this paper. Let
G = (V,E) be a path. We denote then vertices in the path
G by v1, v2, · · · , vn. For 2 ≤ i ≤ n − 1, the two vertices
adjacent tovi are vi−1 and vi+1. A connected subgraph of
G induced by verticesvi, vi+1, · · · , vj (j ≥ i) is denoted by
(vi, vi+1, · · · , vj). If a set of integers are interleaved onG,
thenc(vi) denotes the integer assigned to vertexvi.

The following lemma reveals a structural property of MCI.

Lemma 1:Let the values ofN , K, m andL be fixed, where
N ≥ 4, K = 3, m ≥ 2 and L = 2. Let nmax denote the
maximum value ofn such that an MCI exists on a path ofn
vertices. Then in any MCI on a path ofnmax vertices, no two
adjacent vertices are assigned the same integer.

Proof of Lemma 1: Let G = (V, E) be a path ofnmax

vertices with an MCI on it, and assume two adjacent vertices
of G are assigned the same integer. We will prove that an
MCI exists on a path of more thannmax vertices, which is a
contradiction.

Without loss of generality (WLOG), one of the following
four cases must be true (because we can always get one of
the four cases by permuting the names of the integers and by
reversing the indices of the vertices):

Case 1: There exist 4 consecutive vertices inG — vi, vi+1,
vi+2, vi+3 — such thatc(vi) = 1, c(vi+1) = c(vi+2) = 2,
c(vi+3) = 1 or 3.

Case 2: There existx + 2 ≥ 5 consecutive vertices inG —
vi, vi+1, · · · , vi+x, vi+x+1 — such thatc(vi) = 1, c(vi+1) =
c(vi+2) = · · · = c(vi+x) = 2, c(vi+x+1) = 1 or 3.

Case 3:c(v1) = c(v2) = 1, c(v3) = 2.
Case 4:c(v1) = c(v2) = · · · = c(vx) = 1 andc(vx+1) = 2,

wherex ≥ 3.
We analyze the four cases one by one.

Case 1: In this case, we insert a vertexv′ betweenvi+1

andvi+2, and get a new path ofnmax + 1 vertices. Call this
new pathH, and assign the integer ‘4’ tov′. Consider anym
non-overlapping clusters inH. If none of thosem clusters
contains v′, then clearly they are alsom non-overlapping
clusters in the pathG, and therefore have been assigned at
least K = 3 distinct integers. If them clusters contain all
the three verticesvi+1, v′ and vi+2, then they also contain
eithervi or vi+3 — therefore they have been assigned at least
K = 3 distinct integers: ‘1,2,4’ or ‘2,3,4’. WLOG, the only
remaining possibility is that one of them clusters contains
vi+1 and v′ while none of them containsvi+2. Note that
among them clusters, them−1 of them which don’t contain
v′ are alsom − 1 clusters in the pathG, and they together
with (vi+1, vi+2) are m non-overlapping clusters inG and
therefore are assigned at leastK = 3 distinct integers. Since
c(vi+1) = c(vi+2), the originalm clusters including(vi+1, v

′)
must also have been assigned at leastK = 3 distinct integers.
So H hasnmax + 1 vertices and has an MCI on it, which is
a contradiction.

Case 2: In this case, we insert a vertexv′ betweenvi+1 and
vi+2, and insert a vertexv′′ betweenvi+x−1 andvi+x, and get
a new path ofnmax +2 vertices. Call this new pathH, assign
the integer ‘4’ tov′, and assign the integer ‘3’ tov′′. Consider
anym non-overlapping clusters inH. If the m clusters contain
neitherv′ norv′′, then clearly they are alsom non-overlapping
clusters in the pathG, and therefore are assigned at least
K = 3 distinct integers. If them clusters contain bothv′

and v′′, then they also contain at least one vertex in the
set{vi+1, vi+2, · · · , vi+x−1, vi+x}, and therefore are assigned
at least these 3 integers: ‘2’, ‘3’ and ‘4’. WLOG, the only
remaining possibility is that them clusters containv′ but not
v′′. (Note that the cluster containingv′ is assigned integers ‘2’
and ‘4’.) When that possibility is true, if them clusters contain
vi+x+1, then they are assigned at least 3 distinct integers —
‘1,2,4’ or ‘2,3,4’. If the m clusters don’t containvi+x+1, then
they don’t containvi+x either — then we divide them clusters
into two groupsA andB, whereA is the set of clusters none
of which contains any vertex in{v′, vi+2, vi+3, · · · , vi+x−1},
andB is the complement set ofA. Say there arey clusters in
B. Then, if the cluster containingv′ also containsvi+1 (re-
spectively,vi+2), there exists a setC of y clusters in the path
G that only contain vertices in{vi+1, vi+2, · · · , vi+x−1, vi+x}

4

(respectively,{vi+2, vi+3, · · · , vi+x−1, vi+x}), such that the
m clusters inA ∪ C are non-overlapping inG. Those m
clusters inA∪C are assigned at leastK = 3 distinct integers
since the interleaving onG is an MCI; and they are assigned
no more distinct integers than the originalm clusters inA∪B
are, becausec(vi+1) = c(vi+2) = · · · = c(vi+x) and either
vi+1 or vi+2 is in the same cluster containingv′. So them
clusters inA∪B are assigned at leastK = 3 distinct integers.
So H hasnmax + 2 vertices and has an MCI on it, which is
again a contradiction.

Case 3: In this case, we insert a vertexv′ betweenv1 and
v2, and assign the integer ‘3’ tov′. The rest of the analysis is
very similar to that for Case 1.

Case 4: In this case, we insert a vertexv′ betweenv1 and
v2, and insert a vertexv′′ betweenvx−1 and vx, assign the
integer ‘3’ to v′, and assign the integer ‘2’ tov′′. The rest of
the analysis is very similar to that for Case 2.

So a contradiction exists in all the four cases. Therefore, this
lemma is proved. 2

The next two lemmas derive upper bounds for paths, re-
spectively for the case ‘N ≥ 4’ and the case ‘N = 3’.

Lemma 2:Let the values ofN , K, m andL be fixed, where
N ≥ 4, K = 3, m ≥ 2 and L = 2. Let nmax denote the
maximum value ofn such that an MCI exists on a path ofn
vertices. Thennmax ≤ (N − 1)[(m− 1)N − 1] + 2.

Proof of Lemma 2: Let G = (V, E) be a path ofnmax

vertices. Assume there is an MCI onG. By Lemma 1, no two
adjacent vertices inG are assigned the same integer. We color
the vertices inG with three colors —red, yellow and green
— through the following three steps:

Step 1, for2 ≤ i ≤ nmax − 1, if c(vi−1) = c(vi+1),
then colorvi with the red color;

Step 2, for2 ≤ i ≤ nmax, colorvi with theyellowcolor
if vi is not coloredred and there existsj such that these four
conditions are satisfied: (1)1 ≤ j < i, (2) vj is not colored
red, (3) c(vj) = c(vi), (4) the vertices betweenvj and vi —
that is,vj+1, vj+2, · · · , vi−1 — are all coloredred;

Step 3, for1 ≤ i ≤ nmax, if vi is neither coloredred
nor coloredyellow, then colorvi with the greencolor.

Clearly, each vertex ofG is assigned exactly one of the
three colors. (See Fig. 3 for an example.)

If we arbitrarily pick two different integers — say ‘i’ and
‘j’ — from the set{1, 2, · · · , N}, then we get apair [i, j]
(or [j, i], equivalently). There are totally

(
N
2

)
such un-ordered

pairs. We partition those
(
N
2

)
pairs into four groups ‘A’, ‘ B’,

‘C ’ and ‘D’ in the following way:
(1) A pair [i, j] belongs to groupA if and only if the

following two conditions are satisfied: (i) at least onegreen
vertex is assigned the integer ‘i’ and at least onegreenvertex
is assigned the integer ‘j’, (ii) for any two greenvertices that
are assigned integers ‘i’ and ‘j’ respectively, there is at least
onegreenvertex between them.

(2) A pair [i, j] belongs to groupB if and only if the
following two conditions are satisfied: (i) at least onegreen
vertex is assigned the integer ‘i’ and at least onegreenvertex

4v1 v2 v3 v4 v5 v6 v7

v8v9v10v11v12v13v14

v15 v16 v17 v18 v19 v20 v21

v22v23

���
���
���
���

: yellow vertex : green vertex: red vertex

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	

�
�

�
�
1 3 1 3 1

2 4 2 1 2

4 2 3 2 3

1

1 4

34

43

N=4, K=3, m=3, L=2, =23maxn

Fig. 3. In this example,N = 4, K = 3, m = 3, L = 2. An oracle tells
us thatnmax = 23. Let G = (V, E) be the path shown in the figure, which
has 23 vertices and an MCI on it. Then the vertices ofG will be colored to
be red, yellow andgreenas shown.

Group A: [1,3]

Group B: [1,2] , [2,3]

Group D: empty.

Group C: [1,4] , [2,4] , [3,4]

Fig. 4. Let’s continue the example in Fig. 3. Then groups A, B, C, D are
as shown here.

is assigned the integer ‘j’, (ii) there exist twogreenvertices
that are assigned integers ‘i’ and ‘j’ respectively such that
there is nogreenvertex between them.

(3) A pair [i, j] belongs to groupC if and only if one
of the following two conditions is satisfied: (i) at least one
green vertex is assigned the integer ‘i’ and no green vertex
is assigned the integer ‘j’, (ii) at least onegreen vertex is
assigned the integer ‘j’ and no greenvertex is assigned the
integer ‘i’.

(4) A pair [i, j] belongs to groupD if and only if no green
vertex is assigned the integer ‘i’ or ‘ j’.

(See Fig. 4 for an example.)

For any 1 ≤ i 6= j ≤ N , let E(i, j) ⊆ E denote the
following subset of edges ofG: an edge ofG is in E(i, j) if
and only if one endpoint of the edge is assigned the integer ‘i’
and the other endpoint of the edge is assigned the integer ‘j’.
Let z(i, j) denote the number of edges inE(i, j). (See Fig. 5
for an example.) Below we derive upper bounds forz(i, j).

For anypair [i, j] in groupA or groupC, z(i, j) ≤ 2m−2.
That’s because otherwise there would existm non-overlapping
clusters inG each of which is assigned only integers ‘i’
and ‘j’, which would contradict the assumption that the
interleaving onG is an MCI. (See Fig. 6 for an example.)

Now consider apair [i, j] in group B. z(i, j) ≤ 2m − 2
for the same reason as in the previous case. In the following,
we will prove thatz(i, j) ≤ 2m − 3 by using contradiction.
Assumez(i, j) = 2m−2. Then in order to avoid the existence

5

4

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����1 3 1 3 1

2 4 2 1 2

4 2 3 2 3

1

1 4

34

43

E(1,3) E(1,3) E(1,3) E(1,3) E(1,4) E(1,4)

E(1,4)E(1,2) E(1,2) E(1,2)E(2,4)E(2,4)

E(2,4)

E(2,4) E(2,3) E(2,3) E(2,3) E(3,4) E(3,4)

E(3,4)

E(1,4)

E(3,4)

z(1,2)=3 z(1,3)=4 z(1,4)=4 z(2,3)=3 z(2,4)=4 z(3,4)=4

N=4, K=3, m=3, L=2, =23maxn

Fig. 5. Let’s continue the example in Fig. 3. Then the setE(i, j) that an
edge belongs to is labelled beside that edge. The value of eachz(i, j) is
shown in the figure.

1 2 1 2 1 2

1 2 1 2 1 2 1

(a)

(b)

K=3, m=3, L=2

Fig. 6. In this example,K = 3, m = 3, L = 2. Two paths are shown
respectively in (a) and (b), each of which has more than2m−2 = 4 edges in
the setE(1, 2). Then both of them containm = 3 non-overlapping clusters
(as shown in dashed circles) that are assigned only two distinct integers, which
proves that the interleaving on them cannot be MCI.

of m non-overlapping clusters inG that are assigned only
integers ‘i’ and ‘j’, the z(i, j) = 2m − 2 edges inE(i, j)
must be consecutive in the pathG, which means, WLOG,
that there are2m − 1 consecutive verticesvy+1, vy+2, · · · ,
vy+2m−1 (y ≥ 0) whose assigned integers are in the form
of [c(vy+1), c(vy+2), · · · , c(vy+2m−1)] = [i, j, i, j, · · · , i, j, i].
(See Fig. 7 for an example.)

According to the definition of ‘groupB’, there exist agreen
vertex vk1 and agreenvertex vk2 , such thatvk1 is assigned
the integer ‘i’, vk2 is assigned the integer ‘j’, and there is no
green vertex between them. Therefore every vertex between
vk1 and vk2 is either red or yellow. There are two possible
cases:

Case 1:k1 < k2. Then the pathG is interleaved as in Fig. 8
(a). We usevp1 , vp2 , · · · , vpt to denote all theyellow vertices
betweenvk1 andvk2 . (The other vertices betweenvk1 andvk2

are all red.)
By the definition of ‘yellow vertices’, we can see that

c(vpt) = c(vpt−1) = · · · = c(vp1) = c(vk1) = i. Since the

1 2 1 2 1

K=3, m=3, L=2, z(1,2)=4

Fig. 7. In this example,K = 3, m = 3, L = 2, z(1, 2) = 2m − 2 = 4.
Then for a path with an MCI on it, the 4 edges whose endpoints are labelled
by ‘1’ and ‘2’ have to be consecutive, as shown in the figure.

k 1
v p 1

v p 2
v p t

v k 2
v

p 1
v p 2

v p t
vk 2

v k 1
v

(a)

(b)

Fig. 8. (a) Case 1:k1 < k2. (b) Case 2:k2 < k1.

vertices betweenvpt andvk2 are all red, and the two vertices
adjacent to anyred vertex must be assigned the same integer,
we can see thatc(vk2−1) = c(vpt) = i. Since there is an
edge betweenvk2−1 (which is assigned the integer ‘i’) and
vk2 (which is assigned the integer ‘j’), vk2 must be in the
set{vy+1, vy+2, · · · , vy+2m−1}. However, it is simple to see
that every vertex in the set{vy+1, vy+2, · · · , vy+2m−1} that
is assigned the integer ‘j’ must be red — so vk2 should be
red instead ofgreen— therefore a contradiction exists.

Case 2:k2 < k1. Then the pathG is interleaved as in Fig. 8
(b). We usevp1 , vp2 , · · · , vpt to denote all theyellow vertices
betweenvk2 andvk1 . (The other vertices betweenvk2 andvk1

are all red.)
We can see thatc(vk1−1) = j. Since there is an edge

betweenvk1−1 (which is assigned the integer ‘j’) and vk1

(which is assigned the integer ‘i’), both vk1−1 andvk1 are in
the set{vy+2, vy+3, · · · , vy+2m−1}. Since every vertex in the
set{vy+1, vy+2, · · · , vy+2m−1} that is assigned the integer ‘j’
must bered, and since the color ofvk1 is green, it is simple
to see that all the vertices in the set{vy+1, vy+2, · · · , vk1−1}
that are assigned the integer ‘i’ must be red (because oth-
erwise vk1 would have to beyellow). Then since the color
of vy+1 is red, the vertexvy exists and it must have been
assigned the integer ‘c(vy+2) = j’ — and that contradicts
the statement that all the edges inE(i, j) are in the subgraph
(vy+1, vy+2, · · · , vy+2m−1).

Therefore a contradiction always exists whenz(i, j) =
2m− 2. So for anypair [i, j] in groupB, z(i, j) ≤ 2m− 3.

Now consider apair [i, j] in group D. By the definition
of ‘group D’, no green vertex is assigned the integer ‘i’ or
‘j’. Let {vk1 , vk2 , · · · , vkt} denote the set of vertices that
are assigned the integer ‘i’, where k1 < k2 < · · · < kt. If
{vk1 , vk2 , · · · , vkt} 6= ∅, by the way vertices are colored, it
is simple to see thatvk1 cannot beyellow — so vk1 must
be red. Then similarly,vk2 , vk3 , · · · , vkt must bered, too.

6

Therefore all the vertices that are assigned the integer ‘i’ are
of the color red. Similarly, all the vertices that are assigned
the integer ‘j’ are of the colorred. Assume there is an edge
whose two endpoints are assigned the integer ‘i’ and the
integer ‘j’ respectively. Then since the two vertices adjacent
to any red vertex must be assigned the same integer, there
exists an infinitely long subgraph of the pathG to which the
assigned integers are in the form of ‘· · · i, j, i, j, i, j · · · ’, which
is certainly impossible. Therefore a contradiction exists. So for
any pair [i, j] in groupD, z(i, j) = 0.

Let x denote the number ofdistinct integers assigned to
green vertices, and letX denote the set of thosex distinct
integers. It is simple to see that exactly

(
x
2

)
pairs [i, j] are in

groupA or groupB, wherei ∈ X andj ∈ X — and among
them at leastx− 1 pairs are in groupB. It is also simple to
see that exactlyx(N − x) pairs are in groupC and exactly(
N−x

2

)
pairs are in groupD. By using the upper bounds we

have derived forz(i, j), we see that the number of edges in
G is at most[

(
x
2

)− (x− 1)] · (2m− 2) + (x− 1) · (2m− 3) +
x(N − x) · (2m − 2) +

(
N−x

2

) · 0 = (1 − m)x2 + (2mN −
2N −m)x + 1, whose maximum value (at integer solutions)
is achieved whenx = N − 1 — and that maximum value is
(N − 1)[(m− 1)N − 1] + 1. Sonmax, the number of vertices
in G, is at most(N − 1)[(m− 1)N − 1]+2. 2

Lemma 3:Let the values ofN , K, m andL be fixed, where
N = 3, K = 3, m ≥ 2 and L = 2. Let nmax denote the
maximum value ofn such that an MCI exists on a path ofn
vertices. Thennmax ≤ (N − 1)[(m− 1)N − 1] + 2.

Proof of Lemma 3: Let G = (V, E) be a path ofn vertices
that has an MCI on it. We need to show thatn ≤ (N−1)[(m−
1)N − 1] + 2.

If no two adjacent vertices ofG are assigned the same
integer, then with the same argument as in the proof of
Lemma 2, it can be shown thatn ≤ (N−1)[(m−1)N−1]+2.

Now assume two adjacent vertices ofG are assigned the
same integer. Clearly we can findt non-overlapping clusters
in G, such thatn ≤ 2t + 2 and at least one of thet clusters
contains two vertices that are assigned the same integer.
Among thoset non-overlapping clusters, letx, y, z, a, b and
c respectively denote the number of clusters that are assigned
only the integer ‘1’, only the integer ‘2’, only the integer ‘3’,
both the integers ‘1’ and ‘2’, both the integers ‘2’ and ‘3’,
and both the integers ‘1’ and ‘3’. Since the interleaving on
G is an MCI, anym non-overlapping clusters are assigned at
leastK = 3 distinct integers. Thereforex + y + a ≤ m − 1,
y+z+b ≤ m−1, z+x+c ≤ m−1. So2x+2y+2z+a+b+c ≤
3m−3. Sox+y+z+a+b+c ≤ 3m−3−(x+y+z). Since
x+y+z ≥ 1, t = x+y+z+a+b+c, andn ≤ 2t+2, we get
n ≤ 2(x+y+z+a+b+c+1) ≤ 2[3m−3−(x+y+z)+1] ≤
6m− 6 = (N − 1)[(m− 1)N − 1] + 2.

Therefore this lemma is proved. 2

With Lemma 2 and Lemma 3 proved, we see that Theorem 1
becomes a natural conclusion.

III. O PTIMAL CONSTRUCTION FORMCI ON PATHS

WITH CONSTRAINTSL = 2 AND K = 3
In this section, we present a construction for MCI on paths

whose orders attain the upper bound of Theorem 1, therefore
proving the exactness of that bound. The construction is shown
as the following algorithm.

Algorithm 1: MCI on the longest path with constraintsL = 2
and K = 3

Input: ParametersN , K, m andL, whereN ≥ 3, K = 3,
m ≥ 2 andL = 2. A path G = (V, E) of n = (N−
1)[(m− 1)N − 1] + 2 vertices.

Output: An MCI on G.
Algorithm:

Let H = (VH , EH) be a graph with parallel edges. The
vertex set ofH, VH , is {u1, u2, · · · , uN}. For any two vertices
ui and uj (i 6= j), there are2m − 3 edges between them if
2 ≤ i = j + 1 ≤ N − 1 or 2 ≤ j = i + 1 ≤ N − 1, and there
are2m − 2 edges between them otherwise. There is no loop
in H. (ThereforeH has exactlyn− 1 edges.)

Find a walk inH, uk1 → uk2 → · · · → ukn
, that satisfies

the following two requirements: (1) the walk starts withu1

and ends withuN−1 — namely,uk1 = u1 andukn = uN−1

— and passes every edge inH exactly once; (2) for any two
vertices ofH, the walk passes all the edges between them
consecutively.

For i = 1, 2, · · · , n, assign the integer ‘ki’ to the vertexvi

in G, and we get an MCI onG. 2

Here is an example of the above algorithm.

Example 2:AssumeG = (V, E) is a path ofn = 11
vertices, and the parameters areN = 4, K = 3, m = 2 and
L = 2. Thereforen = (N − 1)[(m− 1)N − 1]+2. Algorithm
1 constructs a graphH = (VH , EH), which is shown in Fig. 9
(a). The walk inH, uk1 → uk2 → · · · → ukn , can be easily
found. For example, we can let the walk beu1 → u3 →
u1 → u4 → u1 → u2 → u4 → u2 → u3 → u4 → u3. Corre-
sponding to that walk, we get the interleaving onG as shown
in Fig. 9 (b). It can be easily verified that the interleaving is
indeed an MCI. 2

Theorem 2:Algorithm 1 correctly outputs a Multi-Cluster
Interleaving on the pathG.

Proof of Theorem 2:The interleaving onG that Algorithm
1 outputs corresponds to a walk in the graphH = (VH , EH).
TheN vertices ofH correspond to theN integers interleaved
on G. It is not difficult to realize that the walk inH satisfying
its two requirements indeed exists. For any two verticesui

anduj in H, there are at most2m− 2 edges between them,
which are passed consecutively by the walk. SoG has at most
2m−2 edges whose endpoints are assigned the integersi and
j, and those edges are consecutive inG. So G has at most
m−1 non-overlapping clusters that are assigned only integers
i andj. Now it is simple to see that the interleaving onG is an
MCI. 2

Algorithm 1 is optimal in the sense that it produces Multi-
Cluster Interleaving for the longest path on which MCI exists.
It is clear that the algorithm can be modified easily to produce

7

u 4

u 1 u 2 u 3

(a)

N = 4 , K = 3 , m = 2 , L = 2n = 11 ,

v 4v 1 v 2 v 3 v 5

v 8

v 6

v 7v 9v11 v10

(b) 31

43 3

1 4 1

2

4
2

Fig. 9. (a) The graphH = (VH , EH) (b) MCI on the pathG = (V, E)

MCI for shorter paths as well — the method is to find shorter
walks in the auxiliary graphH = (VH , EH). We skip the
details for simplicity. By Theorem 1 and Theorem 2, we find
the exact condition for MCI’s existence whenL = 2 and
K = 3, as the following theorem says.

Theorem 3:WhenL = 2 andK = 3, there exists a Multi-
Cluster Interleaving on a path ofn vertices if and only if
n ≤ (N − 1)[(m− 1)N − 1] + 2.

IV. MCI ON PATHS WITH CONSTRAINT K = L + 1

In this section, we study the MCI problem for paths with a
more general constraint:K = L + 1.

We define three operations on paths — ‘remove a ver-
tex’, ‘insert a vertex’ and ‘combine two paths’. LetG be
a path of n vertices: (v1, v2, · · · , vn). By ‘removing the
vertex vi’ from G (1 ≤ i ≤ n), we get a new path
(v1, v2, · · · , vi−1, vi+1, · · · , vn). By ‘inserting a vertex̂v’ in
front of the vertexvi in G (1 ≤ i ≤ n), we get a new
path (v1, v2, · · · vi−1, v̂, vi, · · · , vn). Let H be a path ofn′

vertices: (u1, u2, · · · , un′). Assume for1 ≤ i ≤ n, vi is
assigned the integerc(vi); and assume for1 ≤ i ≤ n′,
ui is assigned the integerc(ui). Also, let l be a positive
integer between 1 andmin(n, n′), and assume for1 ≤
i ≤ l, c(vi) = c(un′−l+i). Then by saying ‘combining
H with G such that the lastl vertices of H overlap the
first l vertices ofG’, we mean to construct a path ofn′ +
n − l vertices whose assigned integers are in the form of
[c(u1), c(u2), · · · , c(un′), c(vl+1), c(vl+2), · · · , c(vn)], which
is the same as[c(u1), c(u2), · · · , c(un′−l), c(v1), c(v2), · · · ,
c(vn)]. The following are examples of the three operations.

v 4 v 5v 2
v 3

4 2 31
(b)

v 1 v 4 v 5v 2
v 3G :

1 34 21
(a)

v 2v 1 v v 4 v 5
v 3

1 4 2 31
(c)

u 1
u 3 u 4u 2

2 4 41
H :(d)

2 4 1 4 1 2 3
(e)

Fig. 10. Illustrations of three operations on paths.

Example 3:Let G be the path shown in Fig. 10 (a). By
removing the vertexv1 from G, we get the path shown in
Fig. 10 (b). By inserting a vertex̂v in front of the vertexv3

in G (or equivalently, behind the vertexv2 in G, or between
the vertexv2 andv3 in G), we get the path shown in Fig. 10
(c).

Let H be the path shown in Fig. 10 (d). By combiningH
with G such that the last 2 vertices ofH overlap the first 2
vertices ofG, we get the path shown in Fig. 10 (e). 2

Now we present an algorithm which computes an MCI on
a path whileK = L + 1. Being different from Algorithm 1,
in this algorithm the order of the path is not preset. Instead,
the algorithm tries to find a long path on which MCI exists
(the longer, the better), and computes an MCI for it. Thus the
output of this algorithm not only provides an MCI solution,
but also gives a lower bound for the maximum order of the
path on which MCI exists.

Algorithm 2: MCI on a path with the constraintK = L + 1
Input: ParametersN , K, m andL, whereN ≥ K = L+1 ≥ 3

andm ≥ 2.
Output: An MCI on a pathG = (V, E).
Algorithm:
1. If L = 2, then letG = (V, E) be a path of(N−1)[(m−1)N
−1] + 2 vertices, and use Algorithm 1 to find an MCI
on G. OutputG and the MCI on it, then exit. (So Step 2
and Step 3 will be executed only ifL ≥ 3.)

2. for i = L + 1 to N do
{ Find a pathBi (the longer, the better) that satisfies the

following three conditions:
(1) Each vertex ofBi is assigned an integer in{1, 2, · · · ,

i−1}, namely, there is an interleaving of the integers
in {1, 2, · · · , i− 1} on Bi;

(2) Any m non-overlapping connected subgraphs ofBi,
each of which is of orderL−1, are assigned at least
L distinct integers;

(3) If i > L + 1, then forj = 1 to L− 1, the j-th last
vertex ofBi is assigned the same integer as the
(L− j)-th vertex ofAi−1.

8

To find the pathBi, (recursively) call Algorithm 2 in the
following way: when calling Algorithm 2, replace the
inputs of the algorithm —N , K, m andL — respectively
with i−1, L, m andL−1; then let the output of Algorithm
2 (which is a path with an interleaving on it) be the path
Bi.
Scan the vertices inBi backward (from the last vertex to
the first vertex), and insert a new vertex after everyL− 1
vertices inBi. (In other words, if the vertices inBi areu1,
u2, · · · , un̂, then after inserting vertices intoBi in the way
described above, we get a new path ofn̂ + b n̂

L−1
c vertices; and

if we look at the new path in the reverse order — from the last
vertex to the first vertex — then the path is of the form(un̂,
un̂−1, · · · , un̂+1−(L−1), a new vertex,un̂−(L−1), un̂−(L−1)−1,
· · · , un̂+1−2(L−1), a new vertex,un̂−2(L−1), un̂−2(L−1)−1, · · · ,
un̂+1−3(L−1), a new vertex,· · · · · ·). In this new path, every
cluster of orderL contains exactly one newly inserted vertex.)
Assign the integer ‘i’ to every newly inserted vertex in the
new path, and denote this new path by ‘Ai’.

}
3. Obtain a new path by combining the pathsAN , AN−1, · · · ,

AL+1 in the following way: combineAN with AN−1,
combineAN−1 with AN−2, · · · , and combineAL+2 with
AL+1 such that the lastL− 1 vertices ofAN overlap the
first L− 1 vertices ofAN−1, the lastL− 1 vertices of
AN−1 overlap the firstL−1 vertices ofAN−2, · · · , and the
last L− 1 vertices ofAL+2 overlap the firstL− 1 vertices
of AL+1. (In other words, if we denote the number of vertices
in Ai by li, for L + 1 ≤ i ≤ N , then the new path we get
has

∑N
i=L+1 li− (L−1)(N −L−1) vertices.) Let this new

path beG = (V, E). OutputG and the interleaving (which
is an MCI) on it, then exit. 2

The following is an example of Algorithm 2.

Example 4:In this example, the input parameters for Al-
gorithm 2 areN = 6, K = 4, m = 2 and L = 3. That is,
we use Algorithm 2 to compute a path that is the longer the
better and interleave 6 integers on it, such that in the path,
any 2 non-overlapping clusters are assigned at least 4 distinct
integers.

Algorithm 2 firstly computes a pathB4 that satisfies the
following two conditions: (1) each vertex ofB4 is assigned an
integer in{1, 2, 3}; (2) anym = 2 non-overlapping connected
subgraphs ofB4 of orderL−1 = 2 are assigned at leastL = 3
distinct integers. To computeB4, Algorithm 2 calls itself in
a recursive way, by setting the inputs of the algorithm —N ,
K, m andL — to be 3, 3, 2 and 2; during that call, it uses
Algorithm 1 to computeB4. There is more than one possible
outcome of Algorithm 1; WLOG, let us assume the output here
is that B4 is assigned integers in the form of[1, 3, 1, 2, 3, 2].
The pathB4 is shown in Figure 11 (a).

Algorithm 2 then scansB4 backward, inserts a new ver-
tex into B4 after everyL − 1 = 2 vertices, and assigns
the integer ‘4’ to every newly inserted vertex. As a result,
we get a path whose assigned integers are in the form of
[4, 1, 3, 4, 1, 2, 4, 3, 2]. We call this new pathA4. A4 is shown
in Figure 11 (b).

Algorithm 2 then computes a pathB5 that satisfies the
following three conditions: (1) each vertex ofB5 is assigned

B 4

1 3 1 2 3 2

A 4

B 5

3 34 1 3 2 4 2 1 4 1

A 5

6B

1 3 1 4 1 5 1 2 3 2

52434535

A 6

6 1 3 6 1 4 6 1 5 6

1263265264

6 1 3 6 1 4 6 1 5 6

1263265264

63 4 5 6 3 5

63 4 5 6 3 5

3 5 4 3 5 1 3 5 2 4

521541

4 3 5

1352452154

1

4 1 3 4 1 2 4 3 2

3 4 1 2 4 3 2

N=6, K=4, m=2, L=3

(a)

(b)

(c)

(d)

(e)

(f)

(g) G=(V,E)

Fig. 11. An example of Algorithm 2.

an integer in{1, 2, 3, 4}; (2) any m = 2 non-overlapping
connected subgraphs ofB5 of order L − 1 = 2 are assigned
at leastL = 3 distinct integers; (3) the last vertex ofB5 is
assigned the same integer as the 2nd vertex ofA4 (which is
the integer ‘1’), and the 2nd last vertex ofB5 is assigned the
same integer as the 1st vertex ofA4 (which is the integer ‘4’).

Algorithm 2 computesB5 by once again calling itself.
Algorithm 2 can use the following method to find a path
that satisfies all the above 3 conditions. Firstly, use Algorithm
1 to find a path that satisfies the first 2 conditions, which
is easy, and call this pathC5. All the integers assigned to
C5 are in the set{1, 2, 3, 4}; and from Algorithm 1, it is
simple to see that the last two vertices inC5 are assigned
two different integers. (Note that the first two vertices inA4

are also assigned two different integers.) So by permuting

9

A N A N−1 L+1A

B N :

Algorithm2(N−1,L,m,L−1)

B L+1 :

Algorithm2(L,L,m,L−1)

B N−1:

Algorithm2(N−2,L,m,L−1)

Algorithm2(N,L+1,m,L)

Fig. 12. Algorithm 2 has four input parameters:N , K, m and L. Let’s
use ‘Algorithm2(a,b,c,d)’ to denote the path output by Algorithm 2 when
N = a, K = b, m = c and L = d. The final output of Algorithm 2 —
Algorithm2(N,L+1,m,L) — is obtained by combining the pathsAN , AN−1,
· · · , AL+1, while Ai (for i = N , N − 1, · · · , L + 1) is obtained by
inserting vertices into the pathBi. Bi is an output of Algorithm 2 as well,
which is a path with an interleaving ofi − 1 different integers; specifically,
Bi is Algorithm2(i-1,L,m,L-1). So from this figure, we can see the recursive
structure of Algorithm 2, and the ‘hierarchical-chain structure’ of its output.

the names of the integers assigned toC5, we can get a path
that satisfies not only the first 2 conditions but also the 3rd
condition. Call this pathB5. There is more than one possible
result ofB5. WLOG, we assume the integers assigned toB5

are in the form of[3, 4, 3, 1, 3, 2, 4, 2, 1, 4, 1]. B5 is shown
in Figure 11 (c). Then Algorithm 2 inserts vertices intoB5

and gets a new pathA5, whose assigned integers are in the
form of [3, 5, 4, 3, 5, 1, 3, 5, 2, 4, 5, 2, 1, 5, 4, 1]. A5 is shown in
Figure 11 (d).

Next, Algorithm 2 computes a pathB6, by calling itself
again. WLOG, we assume the integers assigned toB6 are in
the form of[1, 3, 1, 4, 1, 5, 1, 2, 3, 2, 5, 2, 4, 3, 4, 5, 3, 5]. B6

is shown in Figure 11 (e). Then Algorithm 2 inserts vertices
into B6 and gets a new pathA6, whose assigned integers are
in the form of [6, 1, 3, 6, 1, 4, 6, 1, 5, 6, 1, 2, 6, 3, 2, 6, 5,
2, 6, 4, 3, 6, 4, 5, 6, 3, 5]. A6 is shown in Figure 11 (f).

Finally, Algorithm 2 combinesA6, A5 andA4 such that the
last L − 1 = 2 vertices ofA6 overlap the first2 vertices of
A5, and the lastL− 1 = 2 vertices ofA5 overlap the first2
vertices ofA4. As a result, we get a pathG = (V, E) of 48
vertices which is assigned the integers[6, 1, 3, 6, 1, 4, 6, 1, 5,
6, 1, 2, 6, 3, 2, 6, 5, 2, 6, 4, 3, 6, 4, 5, 6, 3, 5, 4, 3, 5, 1, 3, 5, 2,
4, 5, 2, 1, 5, 4, 1, 3, 4, 1, 2, 4, 3, 2]. G is shown in Figure 11
(g). This is the output of Algorithm 2. It can be verified that
the interleaving onG is indeed an MCI. 2

The path output by Algorithm 2 is a chain of the sub-paths
AL+1, AL+2, · · · , AN . The interleavings on those paths use
more and more integers, and those sub-paths are of increasing
orders. In that sense, they form a ‘hierarchy’. Each sub-pathAi

is derived from a pathBi, andBi is a chain of some shorter
sub-paths; then, each of the sub-paths that constituteBi is
derived through the chaining of some even shorter sub-paths,
and so on· · · · · · That is another ‘hierarchy’. Therefore we say
that the path output by Algorithm 2 has a ‘hierarchical-chain
structure’. (See Fig. 12 for an illustration.)

The complexity of Algorithm 2 is dominated by the total

number of vertices generated during the process of Algorithm
2’s running. That number is greater than the order of the
final output pathG = (V, E) (except whenL = 2), because
when Algorithm 2 is combining paths, there are overlapping
vertices. However we can show that the total number of
vertices generated is less than twice the order ofG = (V,E).
A proof of this claim is presented in Appendix I.

Below we prove the correctness of Algorithm 2.

Theorem 4:Algorithm 2 is correct.

Proof of Theorem 4:We will prove this theorem by induc-
tion. If L = 2, then Algorithm 2 uses Algorithm 1 to compute
the MCI — so the result is clearly correct. Also, we notice that
for any MCI output by Algorithm 1, any two adjacent vertices
are assigned different integers. We use those two facts as the
base case.

Let I be an integer such that2 < I ≤ L. Let’s assume
the following statement is true: if we replace the inputs of
Algorithm 2 — parametersN , K, m andL — with any other
set of valid inputsN̂ , K̂ = i+1, m̂ andi such that2 ≤ i < I,
Algorithm 2 will correctly output an MCI on a path; and in
that MCI, anyi consecutive vertices are assignedi different
integers. (That is our induction assumption.)

Now let’s replace the inputs of Algorithm 2 — parameters
N , K, m andL — with a set of valid inputsN ′,K ′ = I +
1,m′ andI. Then Algorithm 2 needs to compute (in its Step
2) N ′ − I paths:BI+1, BI+2, · · · , BN ′ . For I + 1 ≤ j ≤
N ′, Bj is (recursively) computed by calling Algorithm 2. The
interleaving onBj is in fact an MCI where the order of each
cluster isI−1 — so by the induction assumption, Algorithm 2
will correctly output the interleaving onBj . Bj is assigned the
integers in{1, 2, · · · , j−1}; and by the induction assumption,
anyI−1 consecutive vertices inBj are assignedI−1 different
integers.

The pathAI+1 is constructed by inserting vertices into
BI+1 such that anyI consecutive vertices inAI+1 contain
exactly one newly inserted vertex, and all the newly inserted
vertices are assigned the integer ‘I +1’. So anyI consecutive
vertices inAI+1 are assignedI different integers. Therefore
it is always feasible to adjust the interleaving onBI+2 to
make the lastI − 1 vertices ofBI+2 be assigned the same
integers as the firstI − 1 vertices ofAI+1. Noticing that the
last I − 1 vertices ofBI+2 are assigned the same integers
as the lastI − 1 vertices ofAI+2, we see thatAI+2 and
AI+1 can be successfully combined withI − 1 overlapping
vertices by Algorithm 2. Similarly, forI + 3 ≤ t ≤ N ′, At

andAt−1 can be successfully combined by Algorithm 2; and
for I + 2 ≤ t ≤ N ′, any I consecutive vertices inAt are
assignedI different integers.

Algorithm 2 usesG to denote the path got by combining
AL+1, AL+2, · · · , AN . For our discussion here,L and N
should, respectively, be replaced byI andN ′. Clearly anyI
consecutive vertices inG are alsoI consecutive vertices in
Aj for somej (I + 1 ≤ j ≤ N ′), therefore are assignedI
different integers. And for anym′ non-overlapping connected
subgraphs of orderI in G, either all of them are contained in
Aj for somej (I+1 ≤ j ≤ N ′), or one of them is contained in
Aj′ and another of them is contained inAj′′ for somej′′ 6= j′

10

(I + 1 ≤ j′ 6= j′′ ≤ N ′). In the former case, by removing
those vertices that are assigned the integer ‘j’ in those m′

subgraphs, we getm′ non-overlapping connected subgraphs
in Bj each of which containsI − 1 vertices, which in total
are assigned at leastI different integers not including ‘j’ —
so them′ subgraphs inG (which are also inAj) are assigned
at leastI + 1 different integers. In the latter case, WLOG,
let’s say j′ < j′′. Then the subgraph inAj′ is assignedI
different integers not including ‘j′′’, and the subgraph inAj′′

is assigned an integer ‘j′′’ — so the m′ subgraphs inG are
assigned at leastI +1 different integers in total. Therefore the
interleaving onG is an MCI (with parametersN ′,K ′,m′ and
I). So the induction assumption also holds wheni = I.

Algorithm 2 computes the result for the original problem
by recursively calling itself. By the above induction, every
intermediate time Algorithm 2 is called, the output is correct.
So the final output of Algorithm 2 is also correct. 2

The maximum order of a path for which MCI exists
increases whenN — the number of interleaved integers —
increases. The performance of Algorithm 2 can be evaluated
by the difference between the order of the path output by
Algorithm 2 and the maximum order of a path for which MCI
exists. We are interested in how the difference behaves when
N increases.

Theorem 5:Fix the values ofK, m and L, whereK =
L + 1 ≥ 3 and m ≥ 2, and letN be a variable (N ≥ K).
Then the longest path for which MCI exists hasm−1

(L−1)!N
L +

O(NL−1) vertices. And the path output by Algorithm 2 also
has m−1

(L−1)!N
L + O(NL−1) vertices.

Proof of Theorem 5:Let G = (V, E) be a path ofn vertices
with an MCI on it. Then by Proposition 1,n ≤ (m−1)L

(
N
L

)
+

(L− 1). So n ≤ m−1
(L−1)!N

L + O(NL−1).
WhenL = 2, Algorithm 2 outputs a path of(N − 1)[(m−

1)N−1]+2 vertices. WhenL ≥ 3, to get the output, Algorithm
2 needs to construct the pathsAL+1, AL+2, · · · , AN ; and for
L + 1 ≤ i ≤ N , Ai is got by inserting vertices into the path
Bi. Bi is again an output of Algorithm 2, which is assigned
i − 1 distinct integers, and in which a considered ‘cluster’ is
of orderL−1. Let’s useF (N, m, L) to denote the number of
vertices in the path output by Algorithm 2, and useA(i, m,L)
to denote the number of vertices in the pathAi. Then based on
the above observed relations, we get the following 3 equations:

(1) F (N,m, 2) = (N − 1)[(m− 1)N − 1] + 2;
(2) whenL ≥ 3, F (N,m, L) =

∑N
i=L+1 A(i,m,L)−(N−

L− 1)(L− 1);
(3) wheni ≥ L+1 ≥ 4, A(i,m, L) = b L

L−1 ·F (i−1,m, L−
1)c. (Note thatF (i − 1,m, L − 1) is the number of vertices
in the pathBi.)

By solving the above equations, we getF (N, m, L) =
m−1

(L−1)!N
L + O(NL−1), as claimed. 2

Theorem 5 shows that the path output by Algorithm 2 is
asymptotically as long as the longest path for which MCI
exists. What’s more, the orders of those two paths have the
same highest-degree term (inN).

We conclude with some numerical results. In Table 1, the
order of the path output by Algorithm 2 —n — is compared

with the upper bound of Proposition 1 —Ubound — for four
different sets of parametersm and L, with K = L + 1
throughout. The ‘relative difference’ in Table 1 is defined as
Ubound−n

Ubound
= 1 − n

Ubound
. Theorem 5 shows that this relative

difference approaches 0 asN →∞.

m = 2 andL = 3
N Output of Upper Relative

Algorithm 2 (n) bound (Ubound) difference
10 312 362 0.1381
20 3177 3422 0.0716
50 57072 58802 0.0294
100 477897 485102 0.0149
150 1637472 1653902 0.0099
200 3910797 3940202 0.0075

m = 2 andL = 5
N Output of Upper Relative

Algorithm 2 (n) bound (Ubound) difference
10 930 1264 0.2642
20 68265 77524 0.1194
50 10081020 10593804 0.0484
100 367196445 376437604 0.0245
150 2.9093× 109 2.9580× 109 0.0165
200 1.2521× 1010 1.2678× 1010 0.0124

m = 5 andL = 3
N Output of Upper Relative

Algorithm 2 (n) bound (Ubound) difference
10 1383 1442 0.0409
20 13428 13682 0.0186
50 233463 235202 0.0074
100 1933188 1940402 0.0037
150 6599163 6615602 0.0025
200 15731388 15760802 0.0019

m = 5 andL = 5
N Output of Upper Relative

Algorithm 2 (n) bound (Ubound) difference
10 4395 5044 0.1287
20 298785 310084 0.0364
50 41846205 42375204 0.0125
100 1.4964× 109 1.5058× 109 0.0062
150 1.1783× 1010 1.1832× 1010 0.0041
200 5.0556× 1010 5.0713× 1010 0.0031

Table 1: Comparison between the order of the path output by Algorithm 2

and an upper bound, and their relative difference.

V. MCI ON CYCLES

In this section, we extend our results on MCI from paths
to cycles, for the case of “L = 2 and K = 3”. The analysis
for the two kinds of graphs bears similarity; but the ‘circular’
structure of the cycle leads to certain differences sometimes.

Let G = (V, E) be a cycle. The following notations will
be used throughout this section. We denote then vertices in
G = (V,E) by v1, v2, · · · , vn. For 2 ≤ i ≤ n − 1, the two
vertices adjacent tovi arevi−1 andvi+1. Vertexv1 andvn are
adjacent to each other. A connected subgraph ofG induced

11

by verticesvi, vi+1, · · · , vj is denoted by(vi, vi+1, · · · , vj).
If a set of integers are interleaved onG, then c(vi) denotes
the integer assigned to vertexvi.

Lemma 4:Let the values ofN , K, m andL be fixed, where
N ≥ 4, K = 3, m ≥ 2 and L = 2. Let nmax denote the
maximum value ofn such that an MCI exists on a cycle of
n vertices. Then in any MCI on a cycle ofnmax vertices, no
two adjacent vertices are assigned the same integer.

The proof of Lemma 4 is skipped because it is very similar
to that of Lemma 1.

Lemma 5:Let the values ofN , K, m andL be fixed, where
N ≥ 4, K = 3, m ≥ 2 and L = 2. Let nmax denote the
maximum value ofn such that an MCI exists on a cycle ofn
vertices. Thennmax ≤ (N − 1)[(m− 1)N − 1].

Proof of Lemma 5:This lemma can be proved in the
same way as the proof for Lemma 2, except for a few small
differences. For simplicity, we just point out those differences
here, and skip the rest of the proof.

The first difference is that due to the ‘circular’ topology of
the cycleG, the specific way to color the vertices ofG with
the red, yellow andgreencolors should be modified to be the
following: “Step 1, for 1 ≤ i ≤ nmax, if the two vertices
adjacent tovi are assigned the same integer, then we colorvi

with the red color; Step 2, for1 ≤ i ≤ nmax, we color vi

with the yellow color if vi is not coloredred and there exists
j such that these four conditions are satisfied: (1)j 6= i, (2) vj

is not coloredred, (3) c(vj) = c(vi), (3) the following vertices
betweenvj andvi — vj+1, vj+2, · · · , vi−1 (note that if a lower
index exceedsnmax, it is subtracted bynmax, so that the lower index
is always between 1 andnmax) — are all coloredred; Step 3,
for 1 ≤ i ≤ nmax, if vi is neither coloredred nor colored
yellow, then we colorvi with the greencolor.”

The second difference is that compared to paths, for cycles
there are two extra cases to consider in the proof:

Case 1: all the vertices in the cycleG arered. If that is true,
then G must have been assigned only two distinct integers,
which implies thatG contains less thanmL = 2m < (N −
1)[(m− 1)N − 1] vertices (since we assume the interleaving
on G is an MCI).

Case 2: there is nogreenvertex in G, and all theyellow
vertices are assigned the same integer — say it is integer ‘i’. If
that is true, then the integers onG must look like the following:
{i, a, i, a, · · · , i, a, i, b, i, b, · · · , i, b, · · · · · · , i, c, i, c, · · · , i, c}.
For any j 6= i (1 ≤ j ≤ N), there are at most2m − 2
edges inG whose endpoints are assignedi andj respectively
(because the interleaving onG is an MCI). So the order
of G (which equals the number of edges inG) is at most
(N − 1)(2m− 2) < (N − 1)[(m− 1)N − 1]. 2

Lemma 6:Let the values ofN , K, m andL be fixed, where
N = 3, K = 3, m ≥ 2 and L = 2. Let nmax denote the
maximum value ofn such that an MCI exists on a cycle ofn
vertices. Thennmax ≤ (N − 1)[(m− 1)N − 1].

Proof of Lemma 6: Let G = (V, E) be a cycle ofnmax

vertices that has an MCI on it. We need to show thatnmax ≤
(N − 1)[(m− 1)N − 1]. It is simple to see thatG is assigned

N = 3 distinct integers. If in the MCI onG, no two adjacent
vertices are assigned the same integer, then with the same
argument as in the proof of Lemma 5, it can be shown that
nmax ≤ (N − 1)[(m− 1)N − 1]. Now assume there are two
adjacent vertices inG that are assigned the same integer. Then
there are three possible cases.

Case 1:nmax is even.
Case 2: nmax is odd, and there are at least 2 non-

overlapping clusters inG each of which is assigned only one
distinct integer.

Case 3:nmax is odd, and there don’t exist 2 non-overlapping
clusters inG each of which is assigned only one distinct
integer.

We consider the three cases one by one.

Case 1:nmax is even. In this case, clearly we can find
nmax

2 non-overlapping clusters such that at least one of them is
assigned only one integer. Among thosenmax

2 non-overlapping
clusters, letx, y, z, a, b andc respectively denote the number
of clusters that are assigned only integer ‘1’, only integer ‘2’,
only integer ‘3’, both integers ‘1’ and ‘2’, both integers ‘2’
and ‘3’, and both integers ‘1’ and ‘3’. Since the interleaving
is an MCI, clearlyx + y + a ≤ m − 1, y + z + b ≤ m − 1,
z +x+ c ≤ m− 1. So2x+2y +2z +a+ b+ c ≤ 3m− 3. So
x+y+z+a+b+c ≤ 3m−3−(x+y+z). Sincex+y+z ≥ 1
and nmax = 2(x + y + z + a + b + c), we get nmax ≤
2[3m− 3− (x+ y + z)] ≤ 6m− 8 = (N − 1)[(m− 1)N − 1].

Case 2: nmax is odd, and there are at least 2 non-
overlapping clusters inG each of which is assigned only
one distinct integer. In this case, clearly we can findnmax−1

2
non-overlapping clusters among which there are at least two
clusters each of which is assigned only one distinct integer.
Among thosenmax−1

2 non-overlapping clusters, letx, y, z,
a, b and c respectively denote the number of clusters that
are assigned only integer ‘1’, only integer ‘2’, only integer
‘3’, both integers ‘1’ and ‘2’, both integers ‘2’ and ‘3’,
and both integers ‘1’ and ‘3’. Since the interleaving is an
MCI, clearly x + y + a ≤ m − 1, y + z + b ≤ m − 1,
z + x + c ≤ m− 1. So 2x + 2y + 2z + a + b + c ≤ 3m− 3.
So x + y + z + a + b + c ≤ 3m − 3 − (x + y + z). Since
x + y + z ≥ 2 and nmax = 2(x + y + z + a + b + c) + 1,
we getnmax ≤ 2[3m − 3 − (x + y + z)] + 1 ≤ 6m − 9 <
(N − 1)[(m− 1)N − 1].

Case 3:nmax is odd, and there don’t exist 2 non-overlapping
clusters inG each of which is assigned only one distinct
integer. Letx′, y′, z′, a′, b′ and c′ respectively denote the
number of edges inG whose two endpoints are both assigned
integer ‘1’, are both assigned integer ‘2’, are both assigned
integer ‘3’, are assigned integers ‘1’ and ‘2’, are assigned
integers ‘2’ and ‘3’, are assigned integers ‘1’ and ‘3’. (Then
x′ + y′ + z′ + a′ + b′ + c′ = nmax.) It’s simple to see that
amongx′, y′ andz′, two of them equal 0, and the other one
is either 1 or 2. So WLOG, we consider the following two
sub-cases.

Sub-case 3.1:x′ = 1, and y′ = z′ = 0. In this case,
a′ ≤ 2m − 3, because otherwise there will bem non-
overlapping clusters inG that are assigned only integers ‘1’
and ‘2’. Similarly, c′ ≤ 2m − 3. Also clearly,b′ ≤ 2m − 2.

12

If a′ = 2m− 3 andc′ = 2m− 3, then since there don’t exist
m non-overlapping clusters inG that are assigned only one
or two distinct integers, the MCI onG can only take the form
described as follows. InG, there area′ = 2m−3 consecutive
edges each of which has integers ‘2’ and ‘1’ assigned to its
endpoints, which form a segment in the cycleG that begins
with a vertex assigned the integer ‘2’ and ends with a vertex
assigned the integer ‘1’. That segment is followed by an edge
whose two endpoints both are assigned the integer ‘1’, then
followed by c′ = 2m − 3 consecutiveedges each of which
has the integers ‘1’ and ‘3’ assigned to its endpoints, and
finally followed byb′ consecutiveedges each of which has the
integers ‘3’ and ‘2’ assigned to its endpoints, finishing the loop
of edges in the cycleG. Then it is simple to see thatb′ can’t be
even, which implies thatb′ < 2m−2 here. So in any case, we
havea′+b′+c′ < (2m−3)+(2m−2)+(2m−3) = 6m−8.
So nmax = x′ + y′ + z′ + a′ + b′ + c′ < 6m − 7. So
nmax ≤ 6m− 8 = (N − 1)[(m− 1)N − 1].

Sub-case 3.2:x′ = 2, andy′ = z′ = 0. In this case, with
arguments similar to those in sub-case 3.1, we geta′ ≤ 2m−4,
c′ ≤ 2m−4, andb′ ≤ 2m−2. Sonmax = x′+y′+ z′+a′+
b′ + c′ ≤ 2 + (2m− 4) + (2m− 2) + (2m− 4) = 6m− 8 =
(N − 1)[(m− 1)N − 1].

So it has been proved that in any case,nmax ≤ (N−1)[(m−
1)N − 1]. 2

Below we present an algorithm for generating MCIs on
cycles. A distinct feature of this algorithm is that it needs to
treat the cases ‘n is even’ and ‘n is odd’ somehow differently.
Note that a Eulerian walk in a graph is a closed walk that
passes every edge of the graph exactly once.

Algorithm 3: MCI on a cycle with constraintsL = 2 and
K = 3

Input: A cycle G = (V, E) of n vertices. ParametersN , K,
m andL, whereN ≥ 3, K = 3, m ≥ 2 andL = 2.

Output: An MCI on G.
Algorithm:

1. If n > (N − 1)[(m− 1)N − 1], then there does not exist
an MCI onG, so exit the algorithm.

2. If n ≤ N , arbitrarily selectn integers in the set{1, 2, · · · ,
N}, and assign one distinct integer to each vertex, then exit
the algorithm.

3. If N < n ≤ (N − 1)[(m− 1)N − 1] andn− (N − 1)[(m−
1)N − 1] is even, then define a setS asS = {(1, 2), (2, 3),
(3, 4), · · · , (N − 2, N − 1), (N − 1, 1)}; if N < n ≤ (N−
1)[(m− 1)N − 1] andn− (N − 1)[(m− 1)N − 1] is odd,
then define a setS asS = {(1, 2), (2, 3), (3, 4), · · · , (N−1,
N), (N, 1)}.
Let H = (VH , EH) be a graph with parallel edges that
satisfies these four requirements: (1) its vertex set isVH =
{u1, u2, · · · , uN}; (2) there is no loop inH, and all the
edges inH are undirected; (3) there aren edges inH;
(4) for any two verticesui anduj , if the un-ordered pair
(i, j) belongs to the setS, then the number of edges between
them is odd and is no greater than2m− 3; otherwise, it is
even and is no greater than2m− 2.
Find a Eulerian walk inH, uk1 → uk2 → · · · → ukn (and

N = 4 , K = 3 , m = 3 , L = 2n = 12 ,

u 1 u 2
u 4u 3

1 3 1

2
2

2 4

1

3

4

4
2

v 1 v 2
v 3

v 5 v 4v 6

v 7 v 8 v 9

v10v11v12

(a)

(b)

Fig. 13. (a) The graphH = (VH , EH) (b) MCI on the cycleG = (V, E)

finally back touk1), that satisfies the following condition:
for any two vertices, the walk passes all the edges between
themconsecutively.
For i = 1, 2, · · · , n, assign the integer ‘ki’ to the vertexvi

in G, then exit the algorithm. 2

The following is an example of Algorithm 3.

Example 5:AssumeG = (V, E) is a cycle ofn = 12
vertices, and the parameters areN = 4, K = 3, m = 3 and
L = 2. ThereforeN < n ≤ (N − 1)[(m − 1)N − 1] and
n − {(N − 1)[(m − 1)N − 1]} = −9 is odd. So Algorithm
3’s step 3 is used to compute the interleaving, where the set
S is defined to beS = {(1, 2), (2, 3), (3, 4), (4, 1)}. Then we
can choose the graphH = (VH , EH) to be the one shown in
Fig. 13(a). We can then (easily) find the following Eulerian
walk in H: u1 → u3 → u1 → u2 → u1 → u2 → u4 → u2 →
u4 → u2 → u3 → u4 (then back tou1). Corresponding to
that walk, we get the MCI as shown in Fig. 13(b). 2

Theorem 6:Algorithm 3 correctly outputs an MCI on the
cycle G.

The correctness of the above theorem should be clear once
the proof of Theorem 2 is understood. Now we can present the
necessary and sufficient condition for MCI to exist on cycles
whenL = 2 andK = 3.

Theorem 7:WhenL = 2 andK = 3, there exists an MCI
on a cycle ofn vertices if and only ifn ≤ (N − 1)[(m −
1)N − 1].

VI. CONCLUSION

In this paper, the Multi-Cluster Interleaving (MCI) problem
for paths and cycles is studied. Compared to traditional in-

13

terleaving schemes, Multi-Cluster Interleaving has the distinct
feature that the diversity of integers is required in multiple —
instead of single — clusters. It has potential applications in
data-streaming, broadcast and disk storage.

There exist many open problems in MCI. How to optimally
construct MCI without the constraint thatK = L + 1 is still
unknown. Also, in the MCI problem, the path/cycle can be
replaced by more general graphs. Such extensions will help
bring Multi-Cluster Interleaving into practice. We hope the
techniques presented here will provide insights for further
study.

APPENDIX I
ON THE COMPLEXITY OF ALGORITHM 2

When Algorithm 2 runs, it generates vertices in paths. We
define this more rigorously below. Algorithm 2 has three
basic operations: (1) inserting vertices into an existing path to
get a longer path; (2) combining two paths with overlapping
vertices; (3) using Algorithm 1 to generate a path. For the
first operation, we say that those vertices inserted into the
existing path are newly generated vertices. For the second
operation, we say that no vertex is newly generated. For the
third operation, we say that all the vertices in the path output
by Algorithm 1 are newly generated vertices. The complexity
of Algorithm 2 is dominated by the total number of vertices
generated while Algorithm 2 runs.

In this appendix, we shall prove that while Algorithm 2
runs, the total number of vertices generated is less than twice
the order of the final output pathG = (V, E). The method is
to prove the following sufficient condition: “while Algorithm
2 is running, if a vertex overlaps another vertex while the two
paths they respectively belong to are combined, then those two
vertices will not overlap any more vertex later on.” (Namely,
for any vertex in the final output pathG = (V,E), it is the
overlapping of at most two previously generated vertices.)

The recursive structure of Algorithm 2 is illustrated in
Fig. 12. Let’s consider an arbitrary one of the recursions,
whose corresponding input parameters arex, y + 1, m, y
— namely, the output of this recursion is Algorithm2(x, y +
1,m, y). (For the definition ofAlgorithm2(a, b, c, d), please
see Fig. 12.) The output of this recursion is denoted by ‘G’
in the algorithm; and ify ≥ 3, during this recursion, a set of
paths denoted by ‘Bi’ and ‘Ai’ (for different values ofi) will
be created. Let’s first prove the following lemma.

Lemma 7: If y ≥ 3, thenBi contains at least2y vertices,
Ai contains at least2y + 2 vertices, andG contains at least
2y + 2 vertices.

Proof of Lemma 7:We use induction. Wheny = 3, Bi

is the output of another recursion — Algorithm2(i − 1, y =
3,m, y − 1 = 2). (Note thatm ≥ 2 and i− 1 ≥ y = 3.) The
path Algorithm2(i − 1, y = 3,m, y − 1 = 2) is computed by
calling Algorithm 1, so its order is(i − 1 − 1)[(m − 1)(i −
1)−1]+2 ≥ (i−2)2 +2 ≥ 6 = 2y. Ai is created by inserting
at leastb 2y

y−1c = 3 vertices intoBi, so Ai contains at least
2y +3 > 2y +2 vertices.G contains at least as many vertices
asAi. This serves as our base case.

Now assume the assertions of this lemma are true when
y ≤ t − 1, and let’s prove them for the casey = t. When
y = t, Bi is the output of another recursion — Algorithm2(i−
1, y = t, m, y − 1 = t− 1); and by the induction assumption,
Algorithm2(i − 1, y = t,m, y − 1 = t − 1) contains at least
2(y−1)+2 = 2y vertices. SoBi contains at least2y vertices.
Ai is created by inserting at leastb 2y

y−1c ≥ 2 vertices intoBi,
so Ai contains at least2y + 2 vertices.G contains at least as
many vertices asAi. That concludes this proof. 2

Now we can prove the “sufficient condition” mentioned in
the second paragraph of this appendix. Assume in one of the
recursions — whose corresponding input parameters arex,
y + 1, m, y — two pathsAi andAi+1 are combined; and let
uj and uj′ be two vertices — respectively inAi and Ai+1

— that overlap each other in that ‘combining’ operation. In
that recursion, for any integert, At contains at least2y + 2
vertices by Lemma 7; and when two paths are combined, only
y − 1 vertices are overlapped. Souj and uj′ do not overlap
any other vertex in that recursion, and they are neither among
the first y + 3 vertices nor among the lasty + 3 vertices of
the path output by this recursion (which is denoted by ‘G’
in the algorithm). Now assume this recursion is called as a
procedure by a second recursion. The second recursion (whose
input parameters are *,y + 2, m, y + 1) will insert vertices
into the path output by the first recursion (with one new vertex
inserted after everyy vertices of the path, scanning backwards)
to obtain a longer path — which we shall denote byA′. So in
the pathA′, there is at least one newly inserted vertex before
uj anduj′ (which are now the same vertex) and at least one
newly inserted vertex behind them. Souj anduj′ are neither
among the firsty+4 vertices nor among the lasty+4 vertices
of A′. In the second recursion, the combining of two paths will
overlap onlyy vertices. Souj and uj′ will not overlap any
other vertex in the second recursion. Similarly,uj and uj′

will not overlap any other vertex in future recursions. That
concludes our proof.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor for
his great diligence and the anonymous reviewers for their very
helpful comments.

REFERENCES

[1] K. A. S. Abdel-Ghaffar, “Achieving the Reiger bound for burst errors
using two-dimensional interleaving schemes,” inProc. IEEE Int. Symp.
Information Theory, Ulm, Germany, 1997, pp. 425.

[2] C. Almeida and R. Palazzo, “Two-dimensional interleaving using the
set partition technique,” inProc. IEEE Int. Symp. Information Theory,
Trondheim, Norway, 1994, pp. 505.

[3] M. Blaum and J. Bruck, “Correcting two-dimensional clusters by in-
terleaving of symbols,” inProc. IEEE Int. Symp. Information Theory,
Trondheim, Norway, 1994, pp. 504.

[4] M. Blaum, J. Bruck and P. G. Farrell, “Two-dimensional interleaving
schemes with repetitions,” inProc. IEEE Int. Symp. Information Theory,
Ulm, Germany, 1997, pp. 342.

[5] M. Blaum, J. Bruck and A. Vardy, “Interleaving schemes for multidi-
mensional cluster errors,”IEEE Trans. Inform. Theory, vol. 44, no. 2, pp.
730-743, Mar. 1998.

[6] J. W. Byers, M. Luby, M. Mitzenmacher and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” inProc. ACM
SIGCOMM’98, Vancouver, Canada, Sep. 1998, pp. 56-67.

14

[7] T. Etzion and A. Vardy, “Two-dimensional interleaving schemes with
repetitions: constructions and bounds,”IEEE Trans. Inform. Theory, vol.
48, no. 2, pp. 428-457, Feb. 2002.

[8] K. Foltz, L. Xu and J. Bruck, “Scheduling for efficient data broadcast
over two channels,” inProc. IEEE Int. Symp. Inform. Theory, Chicago,
USA, 2004, pp. 113.

[9] A. Jiang and J. Bruck, “Diversity coloring for information storage in net-
works,” in Proc. IEEE Int. Symp. Inform. Theory, Lausanne, Switzerland,
2002, pp. 381.

[10] A. Jiang, M. Cook and J. Bruck, “Optimalt-interleaving on tori,” in
Proc. IEEE Int. Symp. Inform. Theory, Chicago, USA, 2004, pp. 22.

[11] A. Mahanti, D. L. Eager, M. K. Vernon and D. Sundaram-Stukel,
“Scalable on-demand media streaming with packet loss recovery,” inProc.
ACM SIGCOMM’01, San Diego, CA, USA, Aug., 2001, pp. 97-108.

[12] Y. Merksamer and T. Etzion, “On the optimality of coloring with a
lattice,” in Proc. IEEE Int. Symp. Inform. Theory, Chicago, USA, 2004,
pp. 21.

[13] M. Naor and R. M. Roth, “Optimal file sharing in distributed networks,”
SIAM J. Comput., vol. 24, no. 1, pp. 158-183, 1995.

[14] D. A. Patterson, G. A. Gibson and R. Katz, “A case for redundant arrays
of inexpensive disks,” inProc. SIGMOD Int. Conf. Data Management,
Chicago, USA, 1988, pp. 109–116.

[15] M. Schwartz and T. Etzion, “Optimal 2-dimensional 3-dispersion lat-
tices,” Lecture Notes in Computer Science 2643, pp. 216–225, 2003.

[16] A. Slivkins and J. Bruck, “Interleaving schemes on circulant graphs with
two offsets,” accepted byIEEE Trans. Inform. Theory.

[17] W. Xu and S. W. Golomb, “Optimal interleaving schemes for correcting
2-d cluster errors,” inProc. IEEE Int. Symp. Inform. Theory, Chicago,
USA, 2004, pp. 23.

Anxiao (Andrew) Jiang (S’00-M’05) received the B.S. degree with honors
in 1999 from the Department of Electronic Engineering, Tsinghua University,
Beijing, China, and the M.S. and Ph.D. degrees in 2000 and 2004, respec-
tively, from the Department of Electrical Engineering, California Institute of
Technology.

He was a recipient of the four-year Engineering Division Fellowship from
the California Institute of Technology in 1999. His research interests include
optimization, combinatorics, data storage and transmission in networks, evo-
lution and design of complex systems, and wireless and sensor networks.

Jehoshua Bruck (S’86-M’89-SM’93-F’01) is the Gordon and Betty Moore
Professor of Computation and Neural Systems and Electrical Engineering at
the California Institute of Technology. He also serves as the Director of the
Caltech Information Science and Technology (IST) program. His research
interests include information theory, distributed systems, computation theory
and biological systems. Dr. Bruck has an extensive industrial experience,
including working with IBM Research for ten years. Dr. Bruck is a co-founder
and Chairman of Rainfinity, a spin-off company from Caltech that is focusing
on providing software for management of enterprise storage systems.

Dr. Bruck received the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion, Israel Institute of Technology, in 1982 and 1985, respec-
tively and the Ph.D. degree in Electrical Engineering from Stanford University
in 1989. Dr. Bruck is the recipient of a 1997 IBM Partnership Award, a
1995 Sloan Research Fellowship, a 1994 National Science Foundation Young
Investigator Award, six IBM Plateau Invention Achievement Awards, a 1992
IBM Outstanding Innovation Award, and a 1994 IBM Outstanding Technical
Achievement Award for his contributions to the design and implementation
of the SP-1, the first IBM scalable parallel computer. He published more than
200 journal and conference papers in his areas of interests and he holds 24
US patents.

