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Abstract One of the challenging tasks in the deployment of

dense wireless networks (like sensor networks) is in devising

a routing scheme for node to node communication. Impor-

tant consideration includes scalability, routing complexity,

quality of communication paths and the load sharing of the

routes. In this paper, we show that a compact and expres-

sive abstraction of network connectivity by the medial axis

enables efficient and localized routing. We propose MAP, a

Medial Axis based naming and routing Protocol that does

not require geographical locations, makes routing decisions

locally, and achieves good load balancing. In its preprocess-

ing phase, MAP constructs the medial axis of the sensor field,

defined as the set of nodes with at least two closest bound-
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ary nodes. The medial axis of the network captures both the

complex geometry and non-trivial topology of the sensor

field. It can be represented succinctly by a graph whose size

is in the order of the complexity of the geometric features

(e.g., the number of holes). Each node is then given a name

related to its position with respect to the medial axis. The

routing scheme is derived through local decisions based on

the names of the source and destination nodes and guaran-

tees delivery with reasonable and natural routes. We show

by both theoretical analysis and simulations that our medial

axis based geometric routing scheme is scalable, produces

short routes, achieves excellent load balancing, and is very

robust to variations in the network model.

Keywords Medial axis . Routing . System design . Sensor

networks

1 Introduction

Routing is elementary in all communication networks. The

design of routing algorithms is tightly coupled with the de-

sign of auxiliary infrastructure that abstracts the network con-

nectivity. For networks with stable links and powerful nodes,

such as the Internet, infrastructures such as routing tables are

constructed and maintained so that routing can be performed

efficiently at each router by a routing table look-up, and rout-

ing paths are close to optimum. For networks with fragile

links, constantly changing topologies, and nodes with less

resourceful hardware, such as ad hoc mobile wireless net-

works, routing tends to be on-demand with no pre-computed

infrastructures. However, without any auxiliary infrastruc-

ture, discovery of routes may have to rely on flooding the

network.
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In this paper we focus on routing in wireless sensor net-

works, where sensor nodes are stationary and deployed in

a geometric space. Each sensor node has constrained power

supply, thus energy conservation is an important considera-

tion in the design of network protocols. For sensor networks

that target at long-term usage such as environment moni-

toring, the demand for scalable point-to-point routing is in-

creasing in order to support in-network information process-

ing, content-based data storage and retrieval [25, 29], target

tracking and detection [32], sensor tasking and control, and

complex query mechanisms [16]. Depending on the applica-

tions, a node may specify the destination ID as in the case

of sensor tasking, or in the case of target tracking, acquire

the destination by a content-based storage structure such as

the distributed hash table. Reactive routing protocols, which

are designed mainly for ad hoc mobile networks and rely on

flooding for route discovery, is too energy-expensive for sen-

sor networks. It is also observed that wireless links for static

sensor nodes are reasonably stable [17, 27]. Therefore it is

desirable to perform moderate preprocessing and maintain

some lightweight infrastructure so that more efficient and

localized routing can be adopted.

A good intuition on how to build a lightweight and effec-

tive auxiliary routing infrastructure is that sensor networks

are closely related to the geometric environment where they

are deployed. Two nodes can directly communicate when

they are geographically close. Thus geometric proximity in-

formation has high correlation with the network topology.

This intuition has been used in geographical forwarding, a

clever idea to effectively make routing decisions based on

the geographical locations of destinations and the one-hop

neighboring nodes—a packet is greedily forwarded to the

one-hop neighbor that is geographically closest to the des-

tination [6, 20, 23]. Such an abstraction of the network con-

nectivity based on nodes’ Euclidean coordinates has tremen-

dously simplified the design of routing protocols and im-

proved routing efficiency. For a sensor network with uniform

and dense sensor deployment in a flat and regular region, geo-

graphical forwarding is an efficient and scalable scheme that

produces almost shortest paths with very little overhead.

A natural question on the practicality of geographical rout-

ing is how to obtain the geographical locations of a large

number of sensors. An essential part of the preprocessing

overhead of building the infrastructure for geographical rout-

ing is to solve the localization problem, namely, finding the

Euclidean coordinates of the sensors. Localization can be

done by either hardware support such as Global Positioning

Systems (GPS), or by algorithms that induce the locations

of sensor nodes from their local interactions. In fact, if sen-

sors are densely deployed in a flat regular region with simple

geometry (e.g., a disk with no holes), greedy geographical

routing is robust enough to localization errors and approxi-

mate locations suffice [8, 28].

Greedy geographical forwarding, however, runs into se-

rious problems for sensor fields with complex geometry. In

many of the real-world situations where sensor networks are

deployed, such as metropolitan areas, warehouses, university

campuses or airport terminals, the sensor field naturally has

complex shape and/or many holes (regions where sensors are

not deployed due to the existence of obstacles). When there

are holes in a sensor field, greedy forwarding can fail when all

the neighbors are further away from the destination. In other

words, a route created by greedy forwarding tries to follow

the straight line from source to destination, which is often

blocked by obstacles in a complex environment. A number

of ways have been devised to get around holes. For example,

face routing or perimeter routing [6, 20, 23] deals with this

case by routing a packet along the face of a planar subgraph

until greedy forwarding can be performed again. If the sensor

network has rich geometric features, perimeter routing has to

be adopted frequently. There are several issues on applying

face routing or perimeter routing in practice [21, 22]. The

correct construction of the planar subgraph depends heavily

on two impractical assumptions, the accurate location in-

formation and the unit disk graph model. Accurate location

information is very hard to obtain. The communication graph

is not a unit disk graph in practice [17]. Inaccurate location

information or a slight deviation of the communication graph

from the unit disk graph model may cause the routing sub-

graph to be disconnected or have crossing edges [21,22,30].

Further, perimeter routing produces awkward routing paths

along the boundaries of holes. Overloading of nodes on the

boundaries of holes exhausts the batteries of those nodes

quickly, which will further enlarge the holes and eventually

connect small holes to big holes or even partition the network

into disconnected pieces. Notice that such an unbalance of

loads is created not by traffic patterns but by the defect of

routing algorithms.

The failure of greedy forwarding for sensor fields with

complex geometry and/or non-trivial topology is mainly due

to the mismatch of routing rules with the real network connec-

tivity. The geographical locations, an abstraction on which

routing rules are based, does not correlate well with the con-

nectivity graph. Two nodes that are geographically close may

actually be far away in the connectivity graph. A good ab-

straction for this case should not only takes into account the

geometric proximity of the sensors, but also the global ge-

ometric shape and topological features of the sensor field.

This intuition is validated by the observation that the global

shape and the topological features of the layout mostly reflect

the underlying structure of the environment (e.g. obstacles),

and they are likely to remain stable. Nodes/links may come

and go. But only when such changes are of large quanti-

ties and geographically correlated, can they possibly modify

the global shape of the sensor field or destroy/create large-

scale topological features. Thus we can afford to explicitly

Springer



Wireless Netw

compute an abstraction of the geometry of sensors and carry

out proactive routing at this abstract level, such that these

high-level combinatorial routes can be efficiently realized

in the network by localized and decentralized protocols. A

protocol that explicitly states the importance of topological

information in routing in sensor networks with large holes,

called GLIDER, was recently proposed by Fang et al. [12]. It

is a landmark-based naming and routing scheme, where the

global topology of the network is represented by a compact

abstract Delaunay triangulation on a set of landmarks, and is

used in a global planning step to guide routes around holes.

However, the selection of landmarks has a critical impact

on the performance of such landmark-based routing algo-

rithms. Understanding how to select a good set of landmarks

is a challenging task.

2 Overview

In this paper we explore an appropriate geometric abstraction

of sensor networks that enables efficient and localized rout-

ing. The shapes of regions or surfaces have been studied ex-

tensively in computational geometry, and various structures

have been proposed for efficient representation of shapes.

One of them is the medial axis [3, 10], which is defined as

the set of points with at least two closest neighbors on the

boundaries of the shape. The medial axis is a ‘skeleton’ of

a region that captures all the topological features. There-

fore it has been used extensively to represent, reason about

and explore properties of shapes, in areas such as robot path

planning [19], surface reconstruction [1,2] and shape classi-

fication [31]. In this paper we show that the medial axis of a

sensor field is a good abstraction of the communication net-

work. The medial axis can be constructed efficiently by using

only the connectivity information, can be represented com-

pactly by a graph whose size is proportional to the number of

large geometric features, and enables an efficient gradient-

descending routing algorithm.

We propose MAP, a medial axis based naming and routing

protocol for sensor networks, in particular those with compli-

cated geometric and topological features. Our MAP naming

and routing methods are similar in spirit with GLIDER [12], in

the way that we also take a compact abstraction of the global

topology of the sensor field. The difference between MAP and

GLIDER includes the choice of this abstraction—namely, the

medial axis graph in MAP and the combinatorial Delaunay

graph on landmarks in GLIDER—as well as how this abstrac-

tion is used to guide localized routing. Specifically, GLIDER

relies on a carefully selected set of landmarks to discover the

global topology of the network, while MAP eliminates such

artifact and depends only on the inherent properties of the

sensor field. MAP depends only on the connectivity graph

and does not require the communication network be a unit

disk graph. MAP consists of two protocols: the Medial Axis

Construction Protocol (MACP) that constructs the medial

axis and the corresponding naming scheme at the initializa-

tion stage of the network; and the Medial Axis based Routing

Protocol (MARP), which, with the help of a compact medial

axis graph, routes packets by local gradient descent with only

the names of source and destination nodes.

The construction of the medial axis has several steps. See

Fig. 1 for an example. We first select a set of samples on hole

boundaries (including the outer boundary) (Fig. 1 (ii)). By

connecting nearby samples, we find most of the boundary

nodes (Fig. 1 (iii)). The medial axis is identified as the set of

nodes with at least two closest points on boundaries (Fig. 1

(iv) and (v)), and is represented by a medial axis graph which

is a combinatorial graph with a size proportional to the num-

ber of large geometric features. This medial axis graph is very

compact and is known to every sensor. The medial axis graph

of Fig. 1 has two vertices, one edge and one self-loop. Each

sensor is given a name with respect to the medial axis graph

(Fig. 1 (vi)). In particular, for each sensor w on the medial

axis, we define a chord as the shortest path (tree) from w to

one of its closest sensor node on the boundary. A sensor’s

name includes the chord on which it stays, and a normalized

distance to its corresponding medial axis sensor. Such a nam-

ing scheme partitions the sensor field into canonical regions

inside each of which a local Cartesian coordinate system is

defined with one axis as an edge of the medial axis graph and

the other axis as a chord of a vertex of that medial axis edge.

The local Cartesian coordinate systems are glued together in

exactly the same way as indicated by the edge adjacency of

the medial axis graph, and provide a smooth and natural road

system for the MAP routing algorithm.

MAP supports localized point-to-point routing with only

the knowledge of the names of source and destination nodes.

The name of the destination can be obtained with a distributed

hash table or other location services (such as [25]). MAP rout-

ing has two stages. Routing is first planned on the abstract

medial axis graph which is usually of a small size, and then

realized in each canonical region by reactive local gradient

descent routing. By using the medial axis graph in a global

planning step, a source can find the reference path, defined

as the shortest path in the medial axis graph, from the node

in the medial axis corresponding to the source to the one

corresponding to the destination. The actual routing rule is

of manhattan-type, i.e., first trying to match the medial axis

point with that of the destination and route in parallel with

the reference path, and then trying to match the distance to

the medial axis point with that of the destination and route

along chords. Both routing in parallel with the medial axis

and along chords can be realized by efficient local gradient

descending in the local coordinate systems of the canoni-

cal regions. Although nodes on boundaries and the medial

axis are important for representing the global geometry and
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Fig. 1 We create a scenario of a dense sensor network deployed inside an eclipse-shaped geometric region with a circular obstacle in the middle.

There are 3000 sensor nodes, each with a communication radius of 1. The locations of the nodes are discarded after we create the scenario. The

global geometry and topology of the network are inferred from the communication network. The sequence of figures illustrates how the medial

axis of a sensor network is constructed. (i) A sensor network; (ii) A small sample of hand picked boundary nodes in the network; (iii) Discovery of

more boundary nodes based on the sampled boundary nodes; (iv) Locally identified nodes on the medial axis; (v) The medial axis after a clean-up

of noises; (vi) Balanced shortest-path trees rooted on the medial axis

topology, they play the same role as the other nodes in the ac-

tual MAP routing. The construction of the medial axis is only

at the initialization stage with modest preprocessing over-

head. Routing is implemented in a localized fashion and thus

is scalable.

In summary, MAP has the following good

properties:� Location-free: no geographical location is required and

only the connectivity graph suffices;
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Fig. 2 An example of the medial axis of the boundary of a closed region R (only the part of the medial axis in the interior of R is shown). ∂ R is

shown by thick curves. The medial axis A has a cycle, which means that the region R has a punched hole. (i) The medial axis of ∂ R and two medial

vertices; (ii) The naming scheme. (iii) The road system on R. Two canonical cells C1 and C2 may share a common medial vertex but no common

chord; (iv) Routing from p to q� Expressive: our medial axis based infrastructure captures

the large geometric and topological features of a sensor

field;� Compact: the medial axis can be represented by a graph

of a size proportional to the complexity of large geometric

and topological features;� Lightweight: the construction and maintenance of the me-

dial axis is lightweight;� Efficient: the medial axis based routing algorithm uses local

gradient descent and is localized;� Load balancing: the medial axis based routing algorithm

does not overload any nodes because of design defect;� Robust to network model: MAP does not require that the

network model is a unit disk graph and is very robust to

variations in the network model.

3 Medial axis based naming and routing in continuous
Euclidean domain

In this section we present the medial-axis-based naming and

routing schemes for a continuous region in the Euclidean

plane. All the concepts can be illustrated very nicely for the

continuous case. In the next section, we will describe how to

adapt these ideas to a discrete sensor field.

3.1 Medial axis

We first review the definition of medial axis [5] for a con-

tinuous curve in the Euclidean plane. The medial axis of a

curve F is a set of points in the plane which have two or

more (instead of one) closest points in F . In order words,

for a point on the medial axis, if we grow a ball until it hits

F , then the ball has two or more tangent points on F . The

medial axis can be thought of as the Voronoi cell boundaries

of the Voronoi diagram1 defined on an infinite set of points

on F . In this section, we study the medial axis of a bounded

region in the Euclidean place. Suppose R is a bounded open

set in R2, we denote by ∂ R the boundary curve of R. The

medial axis of ∂ R is denoted by A. It has been proved that for

a piecewise analytic boundary in the plane, the medial axis

is composed of a finite number of continuous curves [10].

Strictly speaking, the medial axis of ∂ R has two parts in the

interior and the exterior of R respectively. In this paper we

focus on the part inside R. For each point a on the medial

axis, we can draw a maximal disk inside R with two or more

tangent points on ∂ R. The line segment connecting a point

a on the medial axis with its tangent point on ∂ R is called

a chord of a. We define a medial ball Br (a) to be a (closed)

ball centered at a ∈ A with radius r , which is tangent to ∂ R
at more than one point, and has no point of ∂ R in its interior

Br (a) − ∂ Br (a). r is called the medial radius of the point

a ∈ A, denoted as r (a). A point on A with at least three clos-

est points in ∂ R is called a medial vertex. A segment on the

medial axis bounded by two medial vertices is denoted as a

medial edge. Figure 2 shows an example.

1 The Voronoi diagram of a set of points S in the Euclidean plane is a

planar graph that partitions the plane into convex cells such that all the

points inside a cell have the same closest neighbor in S. In particular,

a point on the Voronoi cell boundary has equal distance to at least two

points in S. Further information about Voronoi diagrams can be found

in [11].
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The medial axis A of ∂ R retains all the topological infor-

mation of the region R. To be precise, it has been shown that

any bounded open subset in Rk is homotopy equivalent2 to its

medial axis [10, 26]. Therefore, the medial axis can be used

as a guideline on how to route from one point to another since

it is a compact structure with exactly the same topological

features as the underlying domain.

3.2 Naming scheme

Each point in R is assigned a name. We denote by |pq|
the Euclidean distance between p, q. A point p’s name is

a triple N (p) = (x(p), y(p), d(p)), where x(p) ∈ A, y(p) ∈
∂ R

⋃{⊥}, with ⊥ representing ‘invalid’, d(p) ∈ [0, 1]. If

a point p is on the medial axis A, we define its name as

(p, ⊥, 0). If p is not a point on the medial axis, we de-

fine its name as N (p) = (x(p), y(p), d(p)), where p stays

on a chord x(p)y(p), with x(p) ∈ A, y(p) ∈ ∂ R and d(p)

being the normalized distance from p to x(p). Namely,

d(p) = |px(p)|/r (x(p)), with r (x(p)) as the medial radius

of x(p), r (x(p)) = |x(p)y(p)|. We also call the point x(p) the

medial point of p, the point y(p) the boundary point of p, and

d(p) its height, 0 ≤ d(p) ≤ 1. See Fig. 2 (ii) for an example.

The naming scheme is a valid scheme, because each point

has a unique name. To prove this, we first show a couple of

lemmas.

Lemma 3.1. For a point p not on the medial axis, if p is on
a chord xy, with x ∈ A, y ∈ ∂ R, then y is p’s only closest
point on ∂ R.

Proof: Since p is not on the medial axis A, p has only

one closest point on ∂ R. Assume p’s closest point on ∂ R
is y′ �= y. Then |xy′| ≤ |xp| + |py′| < |xp| + |py| = |xy|,
by triangular inequality. This leads to a contradiction to the

fact that xy is a chord. �

Lemma 3.2. If p is not on the medial axis, there is a unique
chord through p.

Proof: Since p is not on the medial axis, p has one and only

one closest point on ∂ R, denoted as y. Please see Fig. 3. The

ball centered at p with radius |py|, B|py|(p), is tangent to ∂ R
at only one point y and has no other points of ∂ R inside. Now

we define a family of balls B|xy|(x), where x is on the line

2 Two maps f and g from X to Y are homotopic if there exists a con-

tinuous map H : X × [0, 1] 	→ Y with H (x, 0) = f (x) and H (x, 1) =
g(x). Two spaces X and Y have the same homotopy type if there are

continuous maps f : X 	→ Y and g : Y 	→ X such that g ◦ f is homo-

topic to the identity map of X and f ◦ g is homotopic to the identity

map of Y . In other words, the maps f and g define a one-to-one corre-

spondence of the topological features such as connected components,

cycles, holes, tunnels, etc., and how these features are related.

y

p
x0

Fig. 3 Each point p not on the medial axis has exactly one chord though

it

defined by p, y with p on the interior of the line segment xy.

As x moves away from p, the ball B|xy|(x) is enlarged. Take

x0 as the first node such that B|x0 y|(x0) is tangent to at least

two points on ∂ R. Thus x0 is on the medial axis since it is

tangent to at least two points on ∂ R. So the line segment x0 y
is a chord through p.

Next we show that p cannot stay on two chords. Assume

otherwise, p is on two chords xy and x ′y′. If y �= y′, by

Lemma 3.1, p has two closest points, which is not possible.

If y = y′, then x, x ′, y = y′ are collinear. Suppose that x is

on the interior of x ′y. Then the medial ball of x is completely

inside the medial ball of x ′. The medial ball of x has at least

two points of ∂ R on its boundary, one of which must be inside

the medial ball of x ′. That leads to a contradiction. �

Now we can prove Theorem 3.3.

Theorem 3.3. Every point in R is assigned a unique name.

Proof: When p ∈ A, the theorem is true. When p is not on

the medial axis, there is a unique chord xy through p, by

Lemma 3.2. By our naming scheme, p’s name is defined as

N (p) = (x, y, |xp|/|xy|). Suppose two points p, q have the

same name, N (p) = N (q), then they are on the same chord

x(p)y(p) (same as x(q)y(q)). Further d(p) = d(q), so p, q
must be the same point. �

The above naming scheme can be thought of as a Carte-

sian coordinate system aligned with the medial axis. For the

purpose of routing, some of the points in R are also given lo-

cal polar coordinates. For each medial vertex a, a has at least

three closest points on ∂ R. We assign local polar coordinates

to all the points within the medial ball Br (a). Specifically,

we take b ∈ ∂ R as one of the closest point of a. Assign a po-

lar coordinate C(b) = (1, 0) to b. Each point p inside Br (a)

is assigned a polar coordinate C(p) = (|ap|/r, ∠bap) (an

angle is measured counterclockwise) with respect to a. See

Fig. 2 (ii) for an example. From now on we will call N (p)

the name of p and C(p) its polar coordinates.

3.3 Road system

The naming scheme naturally produces a road system on the

region R. The medial axis A and all the chords of medial
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vertices partition the region R into a set of canonical cells

{Ci }, i = 1, . . . , m. Each canonical cell C is bounded by two

chords, a medial edge and a segment of the boundary ∂ R.

Each medial edge belongs to two canonical cells. A point on

the medial axis with k chords is adjacent to k canonical cells.

We define an h-latitude curve as a collection of points in C
with height h, 0 ≤ h ≤ 1, and an x-longitude curve as a chord

in C with medial point x . It is easy to see that an x-longitude

curve in C is a continuous line segment. The following the-

orem shows that the h-latitude curve is also continuous.

Lemma 3.4. Inside a canonical cell, any two chords have
no common intersection.

Proof: Suppose two chords xy, x ′y′ have a common inter-

section z, with x, x ′ ∈ A, y, y′ ∈ ∂ R. If z = x = x ′, then x
has two chords inside the same canonical cell, which is a con-

tradiction with the definition of canonical cells. Otherwise,

z is not on the medial axis and stays on two chords, which is

a contradiction to Lemma 3.2. So the lemma is proved. �

Denote by SR(p, q) the shortest path between p, q inside

a domain R. The distance between two points p, q inside R,

i.e., the length of the shortest path SR(p, q), is denoted as

dR(p, q).

Theorem 3.5. For a canonical cell C partitioned by the me-
dial axis and all the chords of medial vertices, the collection
of points with height h, 0 ≤ h ≤ 1, is a continuous curve.

Proof: To prove this, we show that for any point p in C
with height h, we can find a point p′ with height h within

distance ε, for any ε > 0. Suppose p stays on a chord

xy, with x ∈ A, y ∈ ∂ R. Both the medial axis A and the

boundary ∂ R are continuous, thus we can always find a

chord x ′y′, with x ′ ∈ A, y′ ∈ ∂ R, such that dA(x, x ′) ≤ δ,

d∂ R(y, y′) ≤ δ, δ = ε/(1 + 2h). This can be done as fol-

lows, we first pick a chord ab with a ∈ A, b ∈ ∂ R such

that dA(x, a) ≤ δ. If d∂ R(y, b) ≤ δ, then we take ab as the

required chord x ′y′. Otherwise, we take a point y′ on ∂ R
such that y′ is in between y and b and d∂ R(y, y′) ≤ δ. The

chord y′ stays on is denoted as x ′y′. Then x ′ must be in

between x and a on A and dA(x, x ′) ≤ dA(x, a) ≤ δ, due to

Lemma 3.4. See Fig. 4. By triangular inequality, |xy| − 2δ ≤
|x ′y′| ≤ |xy| + 2δ. We take the point p′ on the chord x ′y′

with height h. Then |xp| − 2hδ ≤ |x ′ p′| ≤ |xp| + 2hδ. Then

|pp′| ≤ ||xp| − |x ′ p′|| + dA(x, x ′) ≤ (1 + 2h)δ = ε. So the

theorem is proved. �

The latitude and longitude curves provide a Cartesian co-

ordinate system for the points inside a cell C . Routing for

two points inside the same cell can be done efficiently by

first following the latitude curve to a point on the same chord

p p′

a

by′

x′

∂R

A

y

x

Fig. 4. The h-latitude curve in a canonical cell is continuous

as the destination, then following the longitude curve to the

destination. The continuity of the h-latitude curve, proved by

Theorem 3.5, implies that such routing can be implemented

by local gradient descending. Specifically, routing follow-

ing a latitude curve (longitude curve) is simply following the

local gradient with the same height (the same medial point).

The coordinate system defined by latitude and longitude

curves is a local one, i.e., defined only on points inside a

canonical cell C . For routing across cells, we hope to transit

from one local system to another one smoothly. If two cells

C1, C2 share a common chord xy, then the point on xy with

height h is shared by the h-latitude curves in C1 and C2.

However, it is possible that a pair of medial edges e1, e2 are

adjacent (they share a common medial vertex), but the cells

C1, C2 do not share a common chord, where e1 is on the

boundary of the cell C1 and e2 is on the boundary of the cell

C2. See Fig. 2 (iii) for an example. In order to transit from

C1 to C2, we use a ‘rotary’ element at each medial vertex,

which is defined by the polar coordinate system inside the

medial ball of a medial vertex.

For the points inside a medial ball of a medial vertex u,

we define an �-angular curve as the set of points with polar

coordinates (�, ·), i.e., the circle centered at u with radius �,

for 0 ≤ � ≤ 1. The angular curves are co-centric circles with

the same center u. If two medial edges e1, e2 share a medial

vertex u and C1, C2 are two cells with e1, e2 on the boundary,

respectively, then the h-latitude curve in C1 can be connected

to the h-latitude curve in C2 by the h-angular curve of the

medial vertex u.

3.4 Routing scheme

Routing is performed by using only the names of the

source p and the destination q and the medial axis A of

the domain R. Suppose N (p) = (x(p), y(p), d(p)), N (q) =
(x(q), y(q), d(q)), where x(p), x(q) are two points on the

medial axis A. We first find the shortest path SA(x(p), x(q))

between x(p) and x(q) on A, which is denoted as the ref-
erence path. The length of the shortest path dA(x(p), x(q))

is denoted as the reference distance. An intuitive path be-

tween p, q is to route from p to x(p) on the medial axis A,
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follow SA(x(p), x(q)) until x(q) is reached, and route from

x(q) to q. However, such paths use the medial axis as a rout-

ing ‘backbone’ and A will be heavily loaded. In our routing

scheme, the routing path P(p, q) is a lifted up version of

SA(x(p), x(q)). Our routing scheme has two steps. First we

route in parallel to SA(x(p), x(q)) until we reach a point t
whose medial point is x(q). The routing path produced is de-

noted as P1(p, q). Secondly, we follow the chords of x(q) or

the angular curves of x(q) to reach the destination q . The rout-

ing path produced by the second step is denoted as P2(p, q).

Figure 2 (iv) shows an example. In the following we present

the two steps separately.

3.4.1 Routing in parallel to the medial axis

The routing path parallel to the reference path SA(x(p), x(q))

is realized by local gradient descent routing. SA(x(p), x(q))

is partitioned by medial vertices xi to medial edges xi xi−1

(the first segment and the last segment may be only part of

medial edges), x0 = x(p), xk = x(q).

Suppose that p is inside a cell C0, with x0x1 on the bound-

ary of C0, the routing path follows the d(p)-latitude curve

in C0 until it hits a chord on the boundary of C0. Now we

take a cell C1 with x1x2 on the boundary. C0 and C1 share

at least a medial vertex x1. If they share a chord x1 y1, then

the d(p)-latitude curve in C0 is automatically connected to

the d(p)-latitude curve in C1. Otherwise, we use the d(p)-

angular curve in the medial ball of x1 to transit from cell

C0 to C1. The d(p)-latitude curve in C0 is connected to the

d(p)-latitude curve in C1 by the d(p)-angular curve of the

medial vertex x1. This procedure is continued until a node t
with corresponding medial point x(q) is reached.

3.4.2 Routing on chords

The second part of the routing process starts with a node t that

has the same medial point as the destination q and the same

height as the source p, namely, x(t) = x(q), d(t) = d(p). If

x(q) is not a medial vertex, then x(q) has only two chords.

Thus either t and q are on the same chord or they are on

different chords. In the first case, routing along the x(q)-

longitude curve inside the cell containing q will reach the

destination q . In the second case, q and t are on different

cells with x(q) on the boundary. We route first along the

x(q)-longitude curve to the node x(q), then follow the second

chord to reach q . If x(q) is a medial vertex, then there is a local

polar coordinate system around x(q), thus we route from t
along the chord through t to a node t ′ with height d(q). Then

we route from t ′ to q along the d(q)-angular curve in the

local polar coordinate system of x(q).

In summary, the naming system provides a natural road

system on which routing can be done efficiently in a local-

ized manner. The routing scheme guarantees delivery for any

source and destination pair.

4 Medial axis-based naming and routing in a discrete
sensor field

The previous section explains the basic idea of using medial

axis to build a naming and routing scheme in a continuous

geometric region. All the concepts are clear and well-defined

in the continuous case. For any two points, there is a natu-

ral route indicated by the medial axis between them. The

adaptation of the concepts to a discrete sensor field, how-

ever, requires non-trivial re-design of the protocol due to

the following reasons. First, sensors do not have geographi-

cal locations. The shape of a sensor field is not known and is

only approximated by the connectivity of the sensor network.

Also the proximity of two sensors is only approximated by

the number of hops in the shortest path in the (unweighted)

communication graph. Since the hop count is always an inte-

ger, the approximate distance has non-neglectable rounding

errors. This brings more troubles to overcome since the ex-

act medial axis is very sensitive to noises on boundaries—a

small bump on the boundary may create a long branch in the

medial axis [3].

In this section, we present a protocol that overcomes all

these difficulties and constructs a robust medial axis and a

routing algorithm for sensor networks, which requires no

geographical locations and depends only on the connectivity

graph of the sensor field. Our protocol computes in a pre-

processing step a medial axis, and assigns names to all the

sensors with respect to the medial axis. At the end of the

preprocessing, a compact representation of the medial axis,

called the medial axis graph (MAG), whose size is propor-

tion to the complexity of the geometric features of the sensor

field, is stored at each node in the network. With the me-

dial axis based naming infrastructure, routing is performed

in two stages. In a global planning stage, the shortest path

between the medial points of the source and the destination

in MAG is found. The actual routing path is realized by local

gradient descent routing either by routing in parallel to the

medial edges on the globally planned path or on chords to

the destination.

4.1 Construction of medial axis

The computation of the exact medial axis is only known in

principle for semi-algebraic sets,3 yet algebraic difficulties

prevent efficient implementations even for shapes bounded

3 Each element in a semi-algebraic set is the solution of a finite system

of algebraic equations and inequalities.
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by simple curves in the plane [3]. In practice, an approxi-

mation to the medial axis is computed by using the Voronoi

diagram of a dense sampling on the boundary of a shape.

To be precise, an ε-sample X of the boundary of a shape

R is a finite set of points on the boundary ∂ R such that

each point on ∂ R is less than distance ε away from a point

in the ε-sample. For a shape in R2, the Voronoi edges

and vertices of an ε-sample X that are completely inside

the shape converge to the medial axis, when ε → 0 [7].

The construction of an approximate medial axis in a sen-

sor network uses similar ideas. We first give a general out-

line of the protocol and then explain each step in detail.

The Medial Axis Construction Protocol (MACP) runs as

follows:

1. Detect boundaries of a sensor field;

2. Construct the medial axis graph, and broadcast it to every

node in the network;

3. Name each node by local computation.

4.1.1 Detect boundaries of a sensor field

The construction of the medial axis requires a sampling

of nodes on the boundaries of the sensor field, including

the outer boundary and the boundaries of interior holes.

Each sample node knows to which hole boundary or outer

boundary it belongs. These can be realized in different

ways, either by manual identification of boundary nodes

during deployment, or by automatic detection of holes. In

particular, there are ways to detect some samples of sen-

sors on the boundaries of holes by only the connectiv-

ity of the network. If the sensors are deployed uniformly

densely in a field with large holes, sensors on the bound-

aries of holes usually have much smaller sensor density

and can be detected as such [13]. Recently a topological

method has been proposed to mark nodes on the bound-

aries of holes by detecting the breakage of wave propagation

contours [15].

Given a reasonably dense sampling of boundary nodes,

there are a number of techniques to detect the com-

plete boundary from these samples. This is essentially the

curve construction problem, namely, connecting the sam-

pling nodes to a meaningful boundary. One way to tackle

this problem is to apply the crust algorithm [1, 2] to dis-

crete networks. In practice, a simple and effective algo-

rithm is to ask the close-by sample nodes to discover

each other through local flooding, and include all the

nodes on the shortest paths between them as new bound-

ary nodes. Such local discovery can be executed by different

nodes simultaneously. The boundary nodes in Fig. 1 (iii)

were detected in this way from the samples as shown in

Fig. 1 (ii).

4.1.2 Construct the medial axis graph

For a communication network represented by an unweighted

graph G = (V, E) and a subset S ⊆ V on the boundaries of

the sensor network, we define a node to be on the medial

axis if it has equal hop counts to two closest boundary nodes.

This node is called a medial node. The medial axis in the

discrete case is defined as the subgraph G M ⊆ G spanned by

the medial nodes M .

The medial nodes defined above are noisy. It is known that

in the continuous case the medial axis is sensitive to noises on

boundaries [3]. In particular, a small bump on the boundary

can incur a long branch in the medial axis. This instability

is more severe for a discrete network. For example, all the

nodes that are one-hop away from two boundary nodes are

medial nodes by the definition, which are clearly undesirable.

Similarly, a node that has equal distance to two close-by

nodes on the same boundary is also unwanted. So we want

to eliminate the unstable branches on the medial axis and

keep those that correspond to genuine geometric features. In

particular, we disregard those unstable medial nodes whose

closest boundary nodes are on the same boundary and are

within a small distance.

Medial nodes can be identified through local flooding.

Specifically, each boundary node initiates the flooding of a

message which contains its ID and the boundary it belongs to,

as well as a counter that records how many hops the message

has travelled. If a node receives a packet from a boundary

node that is further away from its current nearest boundary

node(s), it stops forwarding this packet. If the boundary nodes

initiate their flooding at approximately the same time, and

each packet travels at approximately the same speed, then a

packet is dropped once it reaches the medial axis. This cuts

down the total number of packets delivered and keeps the

total communication cost low. As a result, each node learns

its nearest boundary node(s) and can determine if it itself is

a medial node or not. Due to integral rounding error, it is

possible that the middle point of an edge has equal distance

to two or more boundary nodes. In this case, we arbitrarily

round it to an endpoint of the edge. Unstable medial nodes are

ignored. Figure 1 (iv) shows a set of medial nodes. In the end,

we have a set of medial nodes, which we classify into two

types I and II. A medial node u of type I has equal distances

(in hops) to two or more nodes on different boundaries. We

call these boundaries the closest boundaries of u. The rest

are of type II.

An important step in the construction of the medial axis

is to guarantee that the medial nodes are connected in the

correct way. For the continuous case, the medial axis in-

side the geometric region is connected with each minimal

cycle surrounding exactly one obstacle. Our construction is

based on this observation and that the discrete sensor field

is a reasonably good approximation of the underlying shape.
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For two boundaries i and j , if there exists a set of medial

nodes of type I whose closest boundaries include i, j , we

connect them into a short path Pi j and include all the nodes

on this path in the medial axis. For any boundary i , we con-

nect the paths Pi j , for all j , into a cycle. Two endpoints of

different paths are called adjacent if they are connected on

some cycle. For k endpoints a1, a2, . . . , ak , k ≥ 3, respec-

tively on different paths P1, P2, . . . , Pk , if ai and ai+1 are

adjacent, for i = 1, . . . , k − 1, then we use a star-like tree

to connect them. We denote the root of the tree as a medial

vertex of the medial axis graph. All of these operations can

be implemented by a very small flooding in a local neigh-

borhood in a progressive manner. Nearby medial nodes con-

nect themselves into paths. Nearby paths connect themselves

into cycles or by a tree rooted at medial vertices. Similarly,

we use limited flooding to connect all type-II medial nodes

into paths. These paths and the type-I cycles are connected

by star-like trees into one connected piece. Finally we trim

away short branches which may be caused by noise on the

boundaries and are of no help for routing. Now the medial

axis is composed of a number of cycles and paths nicely

glued together. All the medial nodes with degree one or at

least three are medial vertices. As an example, Fig. 1 (v)

shows the medial axis after the medial nodes, as shown in

(iv), are connected. At this point, we call all the nodes on

the medial axis medial nodes, with a little abusing of the

notation.

The medial axis constructed this way includes all the me-

dial nodes and a set of edges that connect them in a meaning-

ful way. It captures the geometric shape and the topological

properties of a sensor network. We use the medial axis graph

(MAG) as a combinatorial representation of the medial axis,

which is made available to every sensor in the network. The

set of vertices of MAG is the set of medial vertices. Each path

between two medial vertices in the medial axis corresponds

to an edge in MAG. The edges in MAG are weighted by

the number of hops of the corresponding paths in the medial

axis. The size of MAG is only proportional to the number of

large geometric and topological features of the sensor field.

For example, the MAG for the scenario in Fig. 1 (v) has only

two vertices and two edges (one of them is a self-loop). The

MAG for the scenario in Fig. 9 has only 17 vertices and 26

edges. Thus we can afford to let every sensor keep such a

compact graph.

After the construction of the medial axis, we let a node

flood the network, pull the information about the me-

dial axis, and construct the abstracted medial axis graph.

This graph is then broadcast to every sensor. In addition,

each node in a medial edge remembers which medial edge

it is in, its neighboring nodes in that medial edge, and

how many hops it is from each endpoint of the medial

edge.

4.1.3 Cartesian coordinate systems

The medial axis of a sensor network is used as a reference to

name every sensor node. In a continuous domain, a node is

named by which chord it stays on. In a discrete sensor field,

we use shortest path trees rooted at medial nodes to approxi-

mate chords. A node is named by which shortest path tree is

stays on. To build the shortest path tree rooted at the medial

axis, we start from the medial axis and progressively com-

pute the closest medial node for each sensor. Every medial

edge separates two canonical cells. So for a medial node v

in the interior of a medial edge. v should have at most two

shortest path trees rooted at itself, one on each side of the

medial edge. Recall that each node knows its closest bound-

ary and can decide which side of the medial edge it stays on4.

Therefore, for each child u of v with a shortest path subtree

T (u), we perform a majority vote to assign T (u) to the side

on which most of the nodes in T (u) agree. A medial vertex

may have more than two shortest-path trees rooted on it cor-

responding to multiple canonical cells. Here we consider the

pairs of trees corresponding to two canonical cells sharing

the same medial edge. The nodes in the shortest path tree

on one side of the medial edge are assigned positive height

values. The nodes on the other side of the medial edge are

assigned negative height values.

Each node is assigned a name by its relative position to

the medial axis. Basically each node v is assigned an x-range

[�(v), k(v)] and a height h(v), where the x-range specifies to

which part of the medial axis v corresponds, and the height

specifies how far v is from the medial axis. In the medial axis

graph, a medial edge actually corresponds to a medial axis

path in the sensor network. See Fig. 5 as an example. Suppose

the medial path has in total m nodes. Then the j-th node

on the path is assigned an x-range [ j − 1, j] and a height

value 0.

Now we describe how to name the nodes in the same

shortest path tree. The assignment of names starts from the

root, a node on the medial axis, and propagates down its

shortest path tree. See Fig. 6 as an example. Suppose a node

v is given a name with an x-range [�(v), k(v)] and a height

h(v). Suppose v has c children. Then we uniformly partition

the x-range of v into 2c + 1 subintervals and assign one even

interval to each child. See Fig. 6. Notice that the collection

of x-ranges of v’s children does not fully cover the x-range

4 This is simple for a medial edge that has two different closest bound-

aries. For a medial edge whose closest boundaries belong to the same

hole boundary, either the corresponding boundary nodes are in two con-

nected pieces or in one connected piece. In the latter case, the medial

edge has a medial vertex of degree one as its endpoint; we use any

boundary node closest to that medial vertex to naturally partition the

boundary nodes into two connected pieces. Then we treat the two pieces

as two different boundaries.
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Fig. 5 Assign each node a name with respect to the medial axis. In

this figure, the medial axis is drawn in thick blue horizontal line. Nodes

on the medial axis are represented by solid circle. Black solid edges

represent the balanced shortest path trees rooted at nodes on medial

axis. The communication edges that are not tree edges are drawn in

dotted line segments. The part bounded by the dashed curve are two

shortest path trees rooted at a medial node, one on each side of the

medial edge

[3, 4]

[3.64, 3.68]

[3.2, 3.4]

hmax

hmax

Fig. 6. Assign each node a name with respect to the medial axis

of v. The purpose of these gaps is for easy node insertion

and deletion, as we will describe in Section 4.3. Suppose the

height of the shortest path tree is z. It is stretched to hmax in

the naming system. (hmax is a parameter that can be adjusted.)

Thus a nodew that is i hops away from its root (a medial node)

is assigned a height value of h(w) with |h(w)| = hmax · i/z.

The sign of h(w) depends on which side of the medial edge

the shortest path tree containing w stays.

4.1.4 Polar coordinate systems

Nodes around medial vertices are also assigned polar coor-

dinates. Corresponding to each medial vertex of degree three

or more in MAG, we construct a polar coordinate system.

First of all, each medial vertex v with degree at least three is

identified by several nearest boundary nodes. Such an identi-

fication is readily available in the process of constructing the

medial axis graph. Suppose these boundary nodes are r hops

away on average from v. The nodes within r hops from v are

to be assigned polar coordinates, in addition to their original

cartesian coordinates. The medial vertex v floods the r -hop

neighborhood and constructs a shortest path tree rooted at v,

denoted by T (v). We assign polar coordinates to the nodes

in T (v) in a way very similar to what we explained before.

Specifically, the root v is given a polar coordinate with an

angular range [0, 2π ) and a radial coordinate 0. For a node

u, its angular range is divided into 2c + 1 small intervals if

u has c children in T (v). Each child is assigned one interval.

The radial coordinate of a node is its hop count distance to

the medial vertex v.

One non-trivial challenge in the assignment of polar co-

ordinates is to align the branches in the shortest path tree

T (v) in a way that is consistent with their true alignment in

the physical network. The difficulty is that we do not know

the orientations of the nodes in T (v) relative to the medial

vertex v. For this purpose we identify all the maximal nodes

in T (v) that do not have any neighbor in the sensor network

with higher hop count distance from v. That set of nodes,

which we denote by L(v), naturally includes all the hop r
nodes from v. Let the nodes in L(v) locally discover each

other and connect themselves into a cycle. We start from the

cycle to establish a good ordering of the nodes around v.

Specifically, we first assign to each node w in the cycle an

angle a(w) based on the circular ordering of those nodes in

the cycle, and also assign w a weight that equals 1. Denote by

Nk(v) the set of nodes that are k hops away from v. We use

the ordering of the nodes in Nk(v) as an reference to estab-

lish an ordering of those nodes in Nk−1(v), for k = 2, . . . , r .

The ordering of nodes in Nr (v) naturally comes from the or-

dering in the cycle L(v). A node w in Nr−1(v) is assigned

an angle that is the weighted average5 of the angles of the

nodes in Nr (v) that are neighbors of w in the sensor network,

if such neighboring nodes exist. Then a weight is assigned

to w which is the sum of the weights of those neighbors in

Nr (v). Then for nodes in Nr−2(v), Nr−3(v), . . ., N1(v), they

are assigned angles and weights in a similar way. Essentially

we propagate the ordering information from L(v) inwards.

In the end, all the nodes in T (v) are assigned an angle each.

Then we assign the angle ranges of the polar coordinates to

nodes, starting with the root of T (v) and propagate outwards.

Specifically, the nodes in N1(v) are assigned angle ranges in

a way that is consistent with the ordering of their angle val-

ues obtained above. Then the children of a node w ∈ N1(v)

are assigned intervals of w’s angle range in a way consistent

with the ordering of their angle values, and so on.

To summarize, by the Medial Axis Construction Protocol,

we construct a medial axis and its compact representation

MAG, together with a shortest path forest rooted at medial

axis nodes and some trees for polar coordinate systems. Each

node in the sensor network only stores a small amount of in-

formation, namely, information about its one-hop neighbors

and a small size medial axis graph, as shown in Fig. 7.

4.2 Medial axis based routing

Our MAP routing scheme uses the names of the source and

the destination. A source node can obtain the name of the

destination node in several ways. If the source knows the

5 We note here that the weighted average is taken modula 2π .
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Node{
the medial axis graph (MAG);
names of itself and one-hop neighbors;
a bit to record if the node is on the medial axis;
the neighboring medial axis nodes

}

Fig. 7. Information stored at a node

ID of the destination, we can use a scalable location service

(such as [25]) to provide the ID-name correspondence for

each sensor. A source node can also specify the name of the

destination directly, since our naming scheme has an intuitive

meaning. For applications such as content-based distributed

hash table, sensors can hash data to a reservoir for a query to

fetch. In this case, the source gets the name of the destination

from the output of a hash function.

With the medial axis based naming infrastructure, the Me-

dial Axis based Routing Protocol (MARP) runs as follows:

1. In the global planning step, find the shortest path

SA(x(p), x(q)) in the medial axis graph A for the medial

points of source p and destination q;

2. Route in parallel to SA(x(p), x(q)) until a node with the

same medial point as the destination q is reached;

3. Route in the shortest path tree rooted at that medial point

to reach the destination q.

The global planning step is performed at the source node

by a shortest path algorithm on MAG. In the following we will

focus on the medial-axis based greedy routing in the sensor

network. The basic idea is the same as in the continuous

case. The reference path on the medial axis, SA(x(p), x(q)),

is partitioned into segments by medial vertices. Suppose we

are currently at a node v in a shortest path tree whose root is

in a medial edge xi xi+1, 1 ≤ i ≤ k − 1, with xi as a medial

vertex, x1 = x(p), xk = x(q). We hope to route in parallel

with xi xi+1. For this purpose, we set a temporary routing

goal as the node with height value h(p) in a shortest path tree

rooted at xi+1. We route toward the temporary routing goal

in parallel with the medial edge xi xi+1; when we reach the

tree rooted at xi+1 that corresponds to the polar coordinate

system (we actually don’t have to reach the temporary routing

goal), we route in the polar coordinate system of xi+1 to get

to a node corresponding to the next medial edge xi+1xi+2,

and update the temporary routing goal accordingly. Finally,

when we reach a node whose shortest path tree has the same

root as the destination q does, we can route easily in those

shortest path trees to get to q .

Now we focus on how to route greedily towards the tem-

porary goal in parallel with the medial edge xi xi+1. Suppose

we are currently at a node v. We pick w, a neighbor of v, that

is ‘closer’ to the temporary routing goal than v is as the next

hop. The ‘closeness’ is defined in a way similar to the Eu-

clidean distance. We say that w is ‘closer’ to the temporary

routing goal than v is if the following condition is satisfied:� (k(w) − �(xi+1))2 + (h(w) − h(p))2 < (k(v) − �(xi+1))2

+ (h(v) − h(p))2 if the x-range of v, [�(v), k(v)] is smaller

than that of xi+1, [�(xi+1), k(xi+1)];� (�(w) − k(xi+1))2 + (h(w) − h(p))2 < (�(v) − k(xi+1))2

+ (h(v) − h(p))2 otherwise.

To avoid passing the same node twice, we always follow

three rules:

1. Never route to a descendant (to avoid going up and down

in the same tree);

2. Never route to the other side of the medial edge (specifi-

cally, h(v) and h(w) should have the same sign);

3. Never route backward with respective to the medial edge

(specifically, we should have k(w) ≥ k(v) if the x-range of

v is smaller than that of xi+1, and �(w) ≤ �(v) otherwise).

If no such neighbor w exists,—namely, when no greedy

progress can be made,—we route to the parent of v. This

routing method guarantees that we can reach a shortest path

tree rooted at xi+1, because at least in the medial edge we

can always make greedy progress.

The above routing method is for routing inside a canonical

cell under the Cartesian coordinates of x and height h. When

a packet enters the polar coordinate range of a medial vertex,

it is routed in the polar coordinate system. It remembers the

angle where it starts and tries to route circularly around the

medial vertex searching for a node in the next canonical cell.

Again there are several basic rules. First a packet tries to keep

the same hop distance to the medial vertex. It never routes to

a node with a higher hop-distance value. If a packet cycles

back and passes the angle where it started, it is forwarded 1-

hop towards the medial vertex. In the worst case, the packet

is delivered to the medial vertex and then forwarded to the

correct canonical cell.

A small modification to the algorithm can substantially

improve the performance of MAP. The idea is to keep a very

small routing table, e.g., within 4 hops, at each node. This is

because that the virtual coordinates generated by MAP may

have a small mismatch with the real node positions and the

connectivity in the communication graph. By using a small

routing table, a node has more possibility to proceed greed-

ily towards its (temporary) goal. That will not only shorten

routing paths but also improve load balancing, because now

there is less chance to routing toward the medial axis.

In summary, by the MAP routing protocol a source per-

forms a global path planning in the very compact medial

axis graph, and local greedy routing hop-by-hop guided by

the globally planned path on MAG. Delivery is guaranteed

since a packet never gets stuck.
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Fig. 8 If a new node v (in red) is added to the sensor network, we

connect it to the shortest path tree of a node on the medial axis and

assign it a name. If a node (in solid black) is deleted from the sensor

network, its descendants find links to other parts of the tree and are

assigned new names

4.3 Network dynamics

In a sensor network, links may come and go, nodes may be

inserted and deleted. Our MAP naming and routing scheme

can efficiently handle dynamics such that only local changes

are necessary. The medial axis and the shortest path forest

rooted on the medial axis are repaired. If a node also changes

its name, it informs the location service of such changes.

Figure 8 illustrates how these changes are handled.

Namely, when a new node v is inserted, v performs a one-

hop broadcasting to find its one-hop neighbors. Then v is

connected to the shortest path forest of the medial axis node

by choosing its parent as its one-hop neighbor with smallest

hop distance to the medial axis. Then v finds a gap on the

x-coordinate range of its parent p(v). In Fig. 8, v finds a gap

[3, 3.33], partitions the gap equally into three sub-intervals

and stays on one of them, say [3.11, 3.22]. The x-coordinate

ranges of all the other children of p(v) are not affected. If

p(v) is of k hops away from the medial axis, v is of k + 1

hops away. The height value of v is assigned according to its

parent p(v). Namely, h(v) = k+1
k · h(p(v)).

When a node v is deleted from the network, we do nothing

if v is a leaf on the shortest path tree to the medial axis. If

v has descendants, then we connect their descendants to the

shortest path trees through other nodes, in the same way as the

node insertion scenario. If v also stays on the medial axis, its

neighbors on the medial axis initiate a local flooding to find

each other and include all the nodes that stay on their shortest

paths in the medial axis. Then new names are assigned to

these nodes involved in the update.

If a link between two nodes appears, nothing is changed. If

a link between two nodes disappears, we do nothing as long

as the link is neither a link between a node u and its parent

on u’s shortest path tree, nor a link on the medial axis. If a

link on the medial axis disappears, two medial nodes connect

themselves by their shortest path and includes the nodes on

this path to the medial axis. If a link between a node u and its

parent disappears, then we may need to assign a new name to

u. Similarly u finds among its one-hop neighbors the one with

smallest hop distance to the medial axis as its new parent. u’s

name is updated according to its new parent. u’s descendants,

if any, update their name accordingly.

We also note that the updates to the virtual coordinates are

only performed upon permanent changes or when necessary.

If the nodes or links go down temporarily, we do not update

their coordinates. Instead, due to the greedy flavor of the

routing algorithm, the packet will be delivered as long as there

is one neighbor in the favorable direction. Thus the routing

algorithm is robust to random temporary link failures.

5 Simulation

We have implemented the MAP protocol and conducted ex-

tensive simulation for various types of environments. In this

section we introduce two experiments for sensor networks

deployed in a university campus and airport terminals. The

university campus is a typical outdoor environment, as shown

in Fig. 9, while airport terminals are representative of indoor

scenarios, as shown in Fig. 10. Both of them have complex

geometry and/or non-trivial topology.

The university campus has a 620 m by 650 m rectangle as

an outer boundary and 10 buildings inside. We deployed n
(n = 5735 in Fig. 9) sensors, each of which has a coverage

radius of 10 meters. The sensors were deployed with a grid

model with perturbation. Each sensor deviates from its grid

position with a normal distribution with a standard deviation

of σ = 2 meters. We use the unit disk graph on the sensors

as the graph model. We note that the communication graphs

used in the experiments are actually quite sparse. The average

degree of the communication graph is only 5.4067 in Fig. 9.

The airport terminals have a maximum x-span of 1080 me-

ters and a y-span of 480 meters. It consists of three terminals

that are connected by a corridor. We deployed n (n = 5204

in Fig. 10) sensors, each of which has a coverage radius of

10 meters. Again the sensors were deployed with the same

grid model with perturbation as before. The average degree

of the communication graph is 5.4502 in Fig. 10.

In these experiments, our focus is to verify the validity

of our ideas. We focus on the topological level of the MAP

protocol and study its routing performance, load balancing

as well as its robustness to network models. Many impor-

tant issues on MAC layer, such as channel fading and ac-

knowledgement packets, have not yet been considered in the

current simulation and will be addressed in future work. We

compared MAP with GPSR [20], a widely known geographic

location-based routing protocol. GPSR makes routing deci-

sions based on the geographical location information. It has

two routing modes. In a greedy mode, a node routes the mes-

sage to a one-hop neighbor whose geographical location (2D

Euclidean coordinates in this case) is closest to the destina-

tion. If a node has no neighbor closer to the destination, it
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Fig. 9 A scenario of a university campus. Each sensor has a normalized coverage radius of 1. (i) A sensor network of 5735 nodes deployed on a

campus; (ii) The medial axis; (iii) The shortest path forest rooted on the medial axis; (iv) The medial axis graph (MAG) stored at each sensor
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Fig. 10 A scenario of airport terminals. Each sensor has a normalized coverage radius of 1. (i) A sensor network of 5204 nodes; (ii) The medial

axis
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enters the perimeter routing mode. The packet is then routed

by the ‘right-hand rule’ along the face of a planar subgraph

such as Gabriel Graph (GG), Relative Neighborhood Graph

(RNG) until it reaches a node where greedy routing can be

performed again. In our simulation, we use the restricted

Delaunay Graph (RDG) [18] as the underlying planar sub-

graph. A RDG is a graph spanner, i.e., the shortest path in

RDG is at most a small constant factor times as long as that

in the original communication graph. However, neither GG

nor RNG in the original GPSR protocol is a graph spanner. It

has been shown that GPSR based on RDG produces shorter

paths than GPSR based on other non-spanner graphs such as

GG or RNG, especially in the perimeter mode [18].

5.1 Quality of routing paths and load balancing

We measure the quality of routing paths in two ways, i.e., the

number of hops and the total Euclidean length of the routing

paths. We randomly pick 12000 source and destination pairs

uniformly. Each experiment was performed 50 times. The

results are shown in Fig. 11.

For the i th source and destination pair, we denote by

hi and Hi the numbers of hops in the routing paths pro-

duced by MAP and GPSR, respectively. We denote by �i

and Li the Euclidean lengths of the routing paths produced

by MAP and GPSR. In Fig. 11, the second column, av-
erage ratio of hops, is defined as 1

N

∑N
i=1 hi/Hi , where

N = 50 × 12000 = 6 × 105 is the total number of source/

destination pairs. The third column is the standard deviation

of hi/Hi over the N pairs. Similarly, the average ratio of
lengths is defined as 1

N

∑N
i=1 �i/Li , and the standard devia-

tion of the ratio of lengths is defined accordingly. The ratio

of total hops and the ratio of total lengths are defined as
∑

i hi∑
i Hi

and
∑

i �i∑
i Li

, respectively.

We have found that MAP generates routing paths of com-

parable lengths both in the number of hops and in the total

routing on campus
ratio of ratio of ratio of ratio of

hops total lengths total
average dev. hops average dev. lengths

n = 5000 1.011 0.386 0.874 1.040 0.398 0.904
n = 5500 1.014 0.412 0.880 1.049 0.424 0.919
n = 6000 1.045 0.411 0.912 1.085 0.437 0.963
n = 6500 1.078 0.430 0.935 1.122 0.440 0.996
n = 7000 1.087 0.432 0.948 1.143 0.441 1.012

routing in airport terminals
n = 5000 1.117 0.550 0.876 1.129 0.579 0.920
n = 5500 1.065 0.557 0.759 1.104 0.584 0.812
n = 6000 1.081 0.618 0.754 1.119 0.697 0.822
n = 6500 1.092 0.628 0.767 1.121 0.686 0.842
n = 7000 1.097 0.619 0.762 1.132 0.678 0.858

Fig. 11 Performance of routing on a university campus and in airport ter-

minals. Each experiment was performed 50 times. In each experiment,

12000 source and destination pairs were selected uniformly randomly

n = 5000 5500 6000 6500 7000
Campus MAP 1.522 1.787 1.855 1.954 1.096

GPSR 2.524 2.850 2.940 3.025 3.104
Airport MAP 2.856 3.102 3.405 3.729 3.819

GPSR 3.773 4.307 4.658 4.817 4.972

Fig. 12. The normalized standard deviation of traffic load on sensors

Euclidean distance, as shown in Fig. 11. However, MAP

achieves much better load balancing. In sensor networks,

load balancing is a very important issue. Overloading a par-

ticular sensor node will drain its battery. Sharing of a common

channel by many parties increases the possibility of conflict

and the delay. We compared load balancing of MAP with

GPSR. For the same family of source/destination pairs, we

drew for each sensor v a bar with its height equal to the

total number of routing paths though v. Figure 13 (iii) and

(iv) show the histograms for MAP and GPSR respectively. It

can be seen easily that the routing paths generated by GPSR

concentrate heavily on the boundaries of holes, while sen-

sors are more uniformly loaded by MAP. The reason is that

geographical location-based routing schemes route greedily

towards the destination based on Euclidean coordinates. As

a result, routing paths tend to follow straight lines and can

easily hit boundaries. When that happens, packets follow the

boundary by ‘right-hand rule’ until greedy routing can be

resumed. Such an operation heavily overloads nodes near

boundaries. Comparatively, MAP captures the geometry of

the environment and performs routing in parallel with the

reference paths on the medial axis, thus it avoids the creation

of heavily loaded area. Figure 13 (i) and (ii) show a couple of

scenarios of the routing paths produced by MAP and GPSR.

The normalized standard deviation, defined as the standard

deviation divided by the mean value, of the load on individ-

ual nodes is shown in Figure 12, where MAP consistently

has lower deviation values.

5.2 Robustness to network model

A commonly used model for wireless sensor networks is the

unit disk graph model, where each node has a fixed commu-

nication radius. Two nodes can directly communicate if and

only if they are within the communication radius. However,

the unit disk graph model is a simplified model and is often

far from the reality. The existence of communication links

can significantly deviate from the unit distance constraint due

to reasons such as multi-path fading. It is often observed that

sensor nodes within a short communication range may not be

able to communicate, while nodes with three or more times

the distance can have stable links [17]. A routing scheme

that heavily depends on the properties of unit disk graphs is

thus not practical in reality. The MAP naming and routing

scheme only depends on the connectivity graph. We show by
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Fig. 13 (i) and (ii) show the comparison of routing paths generated by MAP and GPSR between the same pair of source and destination nodes. Solid

circle represents the source and hollow circle represents the destination. The darker path was generated by MAP and the lighter path was generated

by GPSR. (iii) and (iv) show the comparison of load balancing of MAP and GPSR. 5500 sensors were deployed. (iii) is the load of MAP, (iv) is the

load of GPSR

simulation that it is very robust to variations in the network

model.

We have tested the robustness of MAP by using the Quasi-

unit disk graph model [24]. Our Quasi-UDG model is charac-

terized by a simple parameter α. When two nodes are within

distance 1 − α, a link between them always exists. If two

node are more than 1 + α away, a link between them does

not exist. If the distance of two nodes is between 1 − α and

1 + α, a link between them exists with probability p. In order

to keep the average node degree in the network approximately

a constant, we choose p = (2 − α)/4.

When α is large, a quasi-UDG looks very different from

a UDG at the local neighborhood level. But the medial axis

still captures the correct topology. This can be seen from

Fig. 14 MAP on the Quasi-UDG (α = 0.8) in a campus scenario. 5500 sensors were deployed. (i) The medial axis; (ii) A histogram of load by MAP

on each node
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routing on campus routing in airport terminals
ratio of ratio of norm. ratio of ratio of norm.
total total dev. of total total dev. of
hops lengths load hops lengths load

α = 0.0 1.000 1.000 1.787 1.000 1.000 3.102
α = 0.2 1.224 1.316 1.608 1.238 1.367 1.927
α = 0.4 1.109 1.376 1.602 1.092 1.411 2.024
α = 0.6 1.045 1.415 1.630 0.948 1.376 2.086
α = 0.8 0.918 1.428 1.687 0.950 1.469 2.108

Fig. 15 Performance of MAP on sensor networks in a campus scenario

under different graph models. 5500 sensors were deployed. Each ex-

periment was performed 50 times. In each experiment, 12000 source

and destination pairs were selected uniformly randomly

Fig. 14(i), where the medial axis in a Quasi-UDG with α =
0.8 is shown in the university campus scenario. We notice

that the medial axis actually has self-crossings. However, we

have found that MAP maintains stable performance on both

the construction of medial axis and routing.

We also compared the routing performance under UDG

and Quasi-UDG models in a number of scenarios. As a typ-

ical example, Fig. 15 shows the routing results with 5500

sensors deployed on a university campus. The ratio of total
hops (lengths) is the ratio of the total number of hops (length)

of the routing paths in the Quasi-UDGs to that in the UDGs

(where α = 0). As before, we call the number of routing

paths passing a sensor the load on the sensor. The fourth and

the seventh columns of Fig. 15 are the normalized standard

deviation of the load on sensors. Although the routing graphs

cannot be the same for Quasi-UDG and UDG, they are both

approximating the same underlying geometric domain. Note

that in the Quasi-UDG model, the communication ranges of

nodes are still small compared to the obstacles’ sizes. We

have found that the performance of routing is very stable for

different α, both in terms of routing path lengths and load

balancing. It is shown by the results in Fig. 15. An example

of the sensor load histogram for MAP with α = 0.8 is shown

in 14 (ii).

6 Discussions

6.1 Routing on manifolds

The MAP naming and routing scheme can be extended to rout-

ing in other geometric spaces, in particular, a 2-dimensional

manifold embedded in a 3-dimensional space. One such case

is a sensor field deployed on an irregular terrain. One can

define the medial axis of the manifold under the geodesic

distance metric, which is a collection of continuous curves

lying on the manifold. Any point can be given a name with

respect to the medial axis in the same way as what MAP does.

For a set of dense samples of nodes on such a manifold, the

length of the shortest path between two nodes is a reasonably

good approximation of their geodesic distance [4]. Since we

use the shortest path distance metric in the design of MAP,

it is straightforward to extend the MAP naming and routing

protocol to nodes on a manifold.

6.2 Geometric maps

One merit of MAP is that it requires no knowledge of the

geographical locations of the nodes or the shape of the sensor

field. In some cases, such as airport terminals or warehouses,

the map of the sensor field is available and the construction

of the medial axis can be simplified. When the geometric

shape R of a sensor field is known, we can first construct

the medial axis A of the boundary ∂ R. This can be done by

using standard techniques such as the crust algorithm [1].

Sensors near the geometric medial axis A can be marked by

an examination of their proximity to A. The remaining part

of MAP is the same.

6.3 Global load balancing

We have shown by simulation that the MAP routing protocol

achieves very good load balancing. One reason is that on the

lower level we route in parallel with the medial axis such

that routes starting from different sources smoothly ‘flow

through’. Load balancing can be further improved at the ab-

stract level. In the global planning stage, a routing path is

selected by the shortest path routing algorithm on the medial

axis graph (MAG). For a case where the sensor field has many

‘corridors’ with different widths, it is more desirable to route

through a wide corridor than a narrow corridor. Therefore,

we can attach a weight to each medial node which equals the

maximum height (before normalization) of its shortest path

tree. An edge on the medial axis graph has a total weight as

the sum of weights of the medial nodes on the corresponding

medial path. The weight of an edge can be understood as its

‘capacity’. In this way the globally planned routing path can

take into account the capacity of different edges such that

the medial edge corresponding to a wide corridor is more

preferable than the medial edge corresponding to a narrow

one with the same length.

6.4 Location-free routing protocols

MAP belongs to the category of location-free routing pro-

tocols for sensor networks, where the routing rule is free of

geographical information but rather based on virtual coordin-

ates. We will give a quick overview of location-free protocols

as well as a comparison of their design flavors.

Rao et al. [28] is the first paper on location-free protocols.

They proposed an iterative scheme that embeds the connec-

tivity graph in a 2D Euclidean plane such that the embedded

virtual coordinates are used instead of the real geographical

Springer



Wireless Netw

locations for greedy geographical routing such as GPSR [20].

When packets get stuck at local minima, flooding is employed

to deliver the packets. With a similar spirit, Bruck et al. [8]

used local angle information to find a good embedding of the

nodes in the 2D Euclidean plane. Further they showed that the

local angle information is sufficient for finding a planar span-

ner of unit-disk graphs without the knowledge of geograph-

ical locations. In general such approaches compute a global

embedding of sensor nodes in a 2-dimensional space. Find-

ing such a global embedding is expensive in terms of both

computation and communication, and will have large distor-

tion if the sensors are actually deployed in a 3-dimensional

space.

Fang et al. [12] took a different approach. Their scheme

does not use any global embedding but rather takes an ab-

straction of the global topology of the sensor field. Such an

abstraction, namely, a combinatorial graph on a subset of

carefully selected landmarks, captures large topological fea-

tures (such as where the holes are and how to get around

them). The nodes are partitioned into tiles with respect to

their closest landmarks. Each node is given a virtual coor-

dinate, which is a function of the hop distances to only a

subset of nearby landmarks. Both inter and intra-tile routing

are performed in a greedy fashion under the virtual coordin-

ate system. Using hop distances to landmarks to build virtual

coordinates was also explored by Fonesca et al. [14] and

Caruso et al. [9], where nodes are given global landmark-

based virtual coordinates without the consideration of the

topology of the sensor field.

MAP is similar to GLIDER in the way that MAP does not

construct any global embedding either. The major difference

is that MAP uses the medial axis of the sensor field, instead of

the combinatorial Delaunay graph on landmarks, to represent

the global topology. The main unsolved problem in GLIDER

is a deeper understanding of the selection of landmarks and

its effect on routing performance. The major drawback of

MAP is that sensor fields are restricted to 2D manifolds. It is

unclear how to extend the current scheme to sensors deployed

in 3-dimensional space. It remains as interesting future work

to conduct a thorough network-level comparison of all these

location-free routing protocols [8, 9, 12, 14, 28] under various

network topologies.
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