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Abstract—Flash memory is an electronic non-volatile memory
with wide applications. Due to the substantial impact of block
erasure operations on the speed, reliability and longevity of
flash memories, writing schemes that enable data to be modified
numerous times without incurring the block erasure is desirable.
This requirement is addressed by floating codes, a coding scheme
that jointly stores and rewrites data and maximizes the rewriting
capability of flash memories. In this paper, we present several new
floating code constructions. They include both codes with specific
parameters and general code constructions that are asymptoti-
cally optimal. We also present bounds to the performance of
floating codes.

I. INTRODUCTION

Flash memory is a type of electronic non-volatile memory
(NVM) with wide applications. It stores data in floating-gate
cells, where each cell has q states: 0, 1, · · · , q− 1. To increase
or decrease the state of a cell, charge is injected into or
extracted from the cell using the hot-electronic mechanism or
the Fowler-Nordheim tunneling mechanism [1]. An interesting
feature of flash memories is their block erasure operation.
Cells in a flash memory are organized into blocks, with each
block containing 105 or so cells. The state of a cell can be
raised individually (called cell programming). But to decrease
the state of a cell, the flash memory needs to erase the whole
block (i.e., lowering the states of all the cells to the minimum
value) and then re-program all the cells. Such an operation is
called block erasure/programming. It is well known that block
erasures can substantially reduce the writing speed, reliability
and longevity of flash memories [1], with the benefit of a
lower circuitry complexity. For storage schemes, it is important
to minimize block erasures, especially for applications where
data are modified frequently.

Floating codes [4] address this requirement by maximizing
the number of times data can be rewritten (i.e., modified)
between two block erasures. A floating code jointly stores
multiple variables in n cells and with each rewrite, the cells’
states keep increasing. No block erasure is necessary until the
cell states reach the maximum state value. A floating code
maps the state of cells to the stored variables and, through
the joint coding approach, the ability to support rewrites can
be substantially improved. Floating codes generalize the well
known WOM (write-once memory) codes (where a single
variable is considered) [3], [6].

The known results on floating codes are limited. Exist-
ing code constructions are mainly for two to three binary
variables [4]. In this paper, we present several new code
constructions based on varied approaches. They include both

codes with specific parameters and code constructions for
general parameters. We analyze their performance and bounds,
and show the asymptotic optimality of most of the presented
codes.

II. NOTATION

Let v1, v2, · · · , vk be k variables. Each variable vi has an
alphabet of size l: {0, 1, · · · , l − 1}. (v1, v2, · · · , vk) is called
the variable vector, and V denotes the set of all lk variable
vectors. Let c1, c2, · · · , cn be the states of n cells. Each
cell state ci has one of q possible states: {0, 1, · · · , q − 1}.
(c1, c2, · · · , cn) is called the cell state vector, and C denotes
the set of all qn cell state vectors. The weight of a cell state
vector is ∑n

i=1 ci.

Definition 1. [4] A floating code is a mapping D : C → V ∪
{⊥}. For α ∈C and β∈V, if D(α) = β, it means that the cell
states α represent the variable values β; if D(α) = ⊥, it means
that α does not represent any value of the variables. �

A rewrite means to change the value of one of the k
variables. Initially, the cell state vector is (0, 0, · · · , 0), and
they represent the variable vector (0, 0, · · · , 0). A floating
code is for rewriting data between two block erasures; so for
each rewrite, the state of a cell can only increase or remain
the same. A rewrite changes the cell states so that the new cell
state vector represents the new variable vector. Let t denote the
number of rewrites that are guaranteed to be feasible by using
the floating code, regardless of what the sequence of rewrites
are. Clearly, t is a finite number. Given the parameters n, q, k, l,
a floating code that maximizes t is called optimal.

Example 2. A floating code for n = k = 5, q = 4, l = 2
is shown in Fig. 1. The code has a cyclic property: If the cell
state vector (c1 = a1, c2 = a2, · · · , cn = an) represents the
variable vector (v1 = b1, v2 = b2, · · · , vk = bk), then the
cell state vector (c1 = a2, c2 = a3, · · · , cn−1 = an, cn = a1)
represents the variable vector (v1 = b2, v2 = b3, · · · , vk−1 =
bk , vk = b1). For simplicity, for every set of cell state vectors
that are cyclic shifts of each other, only one of them is shown
in Fig. 1 as their representative.

If a sequence of rewrites change the variables as
(0, 0, 0, 0, 0) → (1, 0, 0, 0, 0) → (1, 0, 1, 0, 0) →
(1, 0, 0, 0, 0) → (1, 0, 0, 0, 1) → (1, 0, 1, 0, 1) →
(1, 0, 1, 1, 1), the cell state vector can change as
(0, 0, 0, 0, 0) → (1, 0, 0, 0, 0) → (1, 0, 1, 0, 0) →
(2, 1, 1, 1, 1) → (2, 1, 1, 1, 2) → (2, 1, 2, 1, 2) →
(2, 1, 2, 2, 2). A general code construction for
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n = k, l = 2, t = 2(q − 1), including this code as a
special example, is shown in Section III. �
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Figure 1. A floating code with n = k = 5, l = 2, q = 4, t = 6. The numbers
inside (resp. beside) a node are the cell state vector (resp., variable vector).
The code has a cyclic property. The layer of a cell state vector is the number
of rewrites it takes for the cells to each that state.

We present an upper bound to t for general floating codes.
Theorem 3. For i = 1, 2, · · · , k, define si as follows: (1) If
l = 2 and i is even, si = ∑ j=0,2,··· ,i (

k
j); (2) if l = 2 and i

is odd, si = ∑ j=1,3,··· ,i (
k
j); (3) if l > 2, si = ∑i

j=0 (k
j)(l −

1) j. Also, define wi as the smallest positive integer such that
(n+wi

n ) − (n+i−1
n ) � si. Let m∈ {1, 2, · · · , k} be the integer

such that wm
m � wj

j for j = 1, 2, · · · , k, .
For any floating code, t � � n(q−1)

wm
� · m + min{m −

1, n(q − 1) mod wm}.
Proof: si is the number of values that the variable vector

can possibly take after i rewrites. (By symmetry, si does not
depend on the initial value of the variable vector.) Consider
m consecutive rewrites. They increase the weight of the cell
state vector by at least m. For any x � m, the number of ways
to raise the states of n cells such that the weight of the cell
state vector increases by at least m and at most x is (n+x

n )−
(n+m−1

n ). The m consecutive rewrites can change the variable
into sm possible values, each of which corresponds to at least
one way of raising the cell states. So by the definition of wi,
there is a sequence of m consecutive rewrites that increases
the weight of the cell state vector by at least wm. Choose
� n(q−1)

wm
� such sequences of rewrites (one after another), and

they make the weight of the cell state vector be at least n(q −
1)− [n(q − 1) mod wm]. After that, since the weight cannot
exceed n(q − 1), there is a sequence of m rewrites that is
not feasible due to the lack of room for the weight increase.
Also, each rewrite increases the weight by at least one. So
after the initial � n(q−1)

wm
� sequences of rewrites (which consist

of � n(q−1)
wm

� · m rewrites in total), at most min{m − 1, n(q −
1) mod wm} more rewrites are guaranteed to be feasible. So
t � � n(q−1)

wm
� · m + min{m − 1, n(q − 1) mod wm}.

The bound in Theorem 3 compares favorably with the upper
bounds in [4] when k or l is relatively large. For example,
when n = 4, q = 8, k = 4, l = 4, Theorem 3 gives t � 11,
and the bounds in [4] show t � 14.

III. CODE CONSTRUCTION FOR n = k
In this section, we present a floating code for n = k � 3,

l = 2 and arbitrary q. Codes for more general parameters
will be presented in the following sections. It will be proved
that when n = k = 3, the code presented here is optimal. An
example of the code has been shown in Example 2 and Fig. 1.
We now present the general code construction. (Note that the
code has a cyclic property, as explained in Example 2.) In the
following, define smin = min{c1, c2, · · · , cn} and smax =
max{c1, c2, · · · , cn}.

Construction 4. (Code for n = k � 3, l = 2 and arbitrary
q) The cell state vectors (c1, c2, · · · , cn) are mapped to the
variable vectors (v1, v2, · · · , vk) in the following way:

• Type I: If c1 = c2 = · · · = cn, then vi = 0 for 1 � i � k.
• Type II: If smax = smin + 1, then vi = ci − smin for 1 �

i � k.
• Type III: If (c1, c2, · · · , cn) = (smin, smin + 2, smin +

1, smin + 1, · · · , smin + 1) – that is, it starts with
smin, smin + 2 and is followed by n − 2 smin + 1’s – then
vi = 1 for 1 � i � k.

• Type IV: If (c1, c2, · · · , cn) = (smin, smin + 2, smin +
2, smin + 1, smin + 1, · · · , smin + 1) – that is, it starts
with smin, smin + 2, smin + 2 and is following by n − 3
smin + 1’s – then v2 = 0 and vi = 1 for i �= 2, 1 � i � k.

• Cyclic law: If we cyclically shift any cell state vector
mentioned above by i positions (0 � i � n − 1), the
corresponding variable vector also cyclically shifts by i
positions. �

To explain how the code is used for rewriting, let’s first
define layer number. Every cell state vector has a layer
number (see Fig. 1 for examples), which is the number of
rewrites it takes for the cells to reach that state. For notational
convenience, if C is a cell state vector of type I (resp., II, III
or IV), then we call a cyclic shift of C type I (resp., II, III
or IV) as well. For this code, the layer number of a cell state
vector α = (c1, c2, · · · , cn) is determined as follows:

• If α is of type I, it is in layer 2c1.
• If α is of type II, let x denote the number of cells whose

states are smax, then it is in layer 2smin + x.
• If α is of type III, it is in layer 2smin + n.
• if α is of type IV, it is in layer 2smin + n + 1.
For a cell state vector in layer i � 0, a rewrite al-

ways changes it into a cell state vector in layer i + 1.
For example, if n = k = 5 and the current cell
state vector is (0, 2, 1, 1, 1) (type III, layer 5, representing
(v1, v2, · · · , v5) = (1, 1, 1, 1, 1)), and we want to change the
variable vector to (1, 1, 1, 0, 1), we can change the variable
state vector to (2, 2, 2, 1, 2) (type II, layer 6). It is simple to
verify through case enumeration that for any cell state vector in
layer i < 2(q − 1), there are k cell state vectors in layer i + 1
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it can change into that correspond to the k possible rewrite
requests. So we get:

Theorem 5. The code in Construction 4 has t = 2(q − 1).

Corollary 6. When k = 3, the code is optimal.

Proof: By the Theorem 2 of [4], for any floating code
with n � k(l − 1) − 1, t � [n − k(l − 1) + 1](q − 1) +
� [k(l−1)−1](q−1)

2 �. So when n = k = 3 and l = 2, t �
2(q − 1). That matches the performance of this code.

IV. COMPOSITE CODES WITH 3 � k � 6
In this section, we present a family of codes for 3 � k � 6

and l = 2. Due to the space limitation, we present the detailed
code construction for k = 4 and briefly summarize the codes
for k = 3, 5, 6. (Interested readers please refer to [5].)

Construction 7. (Code for k = 4, l = 2, n � 7 and arbitrary
q) We first show the construction for a simplified case: q = 2.
Here every valid cell state vector (i.e., a cell state vector that
represents variables) has at least three cells at state 0. The seg-
ment of cells before (resp., behind) the second (resp., second-
last) cell at state 0 is called the head (resp. tail). (For example, if
the cell state vector is (0, 1, 0, 0, 1, 1), then the head is (0, 1),
the tail is (0, 1, 1).) For simplicity of explanation, denote the
cell state vector by (a1, a2, · · · , ai , 0, · · · , 0, bj, · · · , b2, b1).
Here the head and the tail have length i and j, respectively. Note
that both of them contain exactly one cell at state 0.

The two variables v1, v2 are determined by the head as
follows: (1) v1 = v2 = 0 if i is odd and ai = 0; (2)
v1 = v2 = 1 if i is odd and ai �= 0; (3) v1 = 0, v2 = 1 if
i is even and ai �= 0; (4) v1 = 1, v2 = 0 if i is even and ai = 0.

The two variables v3, v4 are determined by the tail in the
same way. Note that here b1 replaces a1, b2 replaces a2, and so
on; and v3 (resp. v4) replaces v1 (resp., v2).

For a rewrite, if we need to modify the head (resp., tail), we
always change the leftmost (resp., rightmost) cell that gives the
desired result. A rewrite changes the state of exactly one cell.
The process ends when only three cells at state 0 are left.

If q > 2, we use the cell states layer-by-layer: first use cell
states 0 and 1 as above; then use cell levels 1 and 2 in the same
way; then use cell levels 2 and 3 · · · Each rewrite raises only
one cell’s state except during the transition from one layer to
the next. �

Example 8. Let k = 4, l = 2, n = 7, q = 4. If the variable
vector changes as (0, 0, 0, 0) → (1, 0, 0, 0) → (1, 1, 0, 0) →
(1, 1, 1, 0) → (0, 1, 1, 0) → (0, 1, 0, 0) → (0, 1, 0, 1) →
· · · , the cell states change as (0, 0, 0, 0, 0, 0, 0) →
(1, 0, 0, 0, 0, 0, 0) → (1, 0, 1, 0, 0, 0, 0) →
(1, 0, 1, 0, 0, 0, 1) → (1, 0, 1, 1, 0, 0, 1) →
(1, 2, 1, 1, 1, 1, 1) → (1, 2, 1, 1, 1, 2, 1) → · · · �

Theorem 9. For the code in Construction 7, if n is even, t =
(n − 6)(q − 1) + 3; if n is odd, t = (n − 5)(q − 1) + 2.

Proof: It is not hard to see that every rewrite raises one
cell’s state by one, unless the rewrite causes the transition
from one layer to the next. During that transition, if n is even

(resp., odd), at most four (resp., three) cells need to be set to
the higher state of the new layer. So the first layer supports
n − 3 rewrites and every subsequent layer supports at least
n − 6 (if n is even) or n − 5 (if n is odd) rewrites.

The following results summarize the codes for k = 3, 5 and
6. (For details of the code constructions, please see [5].)

• When k = 3, l = 2, n � 5, if n is even, there is a code
with t = (n − 4)(q − 1) + 2; otherwise, there is a code
with t = (n − 3)(q − 1) + 1.

• When k = 5, l = 2, n � 9, there is a code with t >
(n − 10 − 2 log2 n)(q − 1) + 3.

• When k = 6, l = 2, n � 12, there is a code with t >
(n − 17 − 6 log2 n)(q − 1) + 5.

All the four codes presented here have t = n(q − 1) −
o(nq). Since every rewrite raises the cell states (up to q − 1),
the codes are all asymptotically optimal in n, the number of
cells, and in q, the number of cell levels.

V. INDEXED CODE

The codes introduced above are for the joint coding of a few
variables. In this section, we introduce a code construction,
indexed code, for general k.

Construction 10. (Indexed code) Divide the k variables into a
groups: g1, g2, · · · , ga. For the n cells, set aside a small number
of cells as index cells and divide the other cells into b groups:
h1, h2, · · · , hb. Here a and b are chosen parameters, and b � a.
For 1 � i � a, the variables of gi are coded using a floating
code and are stored in hi. Afterwards, every time a cell group
can no longer support any more rewriting (say it stores gi), store
gi in the next unused cell group. The index cells are used to
remember which cell group stores which variable group. (The
details of the index cells is the topic of study in this section.) �

We first show that the indexed code is asymptotically
optimal in n and q. Let there be

√
n − o(

√
n) cell groups,

each containing
√

n − o(
√

n) cells. At most logqa index cells
are needed on average per cell group. Apply known floating
codes, such as those presented in Section IV, to each variable
group. Those codes can support

√
n(q− 1)− o(

√
nq) rewrites

in each cell group. There can be at most a partially used cell
groups at any moment, so in the end,

√
n− o(

√
n) cell groups

are fully used. So the indexed code enables n(q − 1)− o(nq)
rewrites.

The simplest way to use index cells is to use logq a
index cells for each cell group to remember which variable
group it stores. However, when n is sufficiently large, much
fewer index cells are necessary. The best coding strategy is
to remember the mapping between the a partially used cell
groups and the a variable groups, which is a permutation.
(The unused, partially used, and fully used cell group are
differentiated in the following way. Cells in unused groups
are at state 0. Make cells in a fully used group all have state
q− 1. Ensure that in a partially used group, at least one cell is
not at state q − 1. The last step costs the support for at most
one rewrite, depending on the used floating code.)
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Example 11. Let a = 3 and b = 6. Initially, the cell group
hi stores the variable group gi for i = 1, 2, 3. Assume that as
rewriting continues, first h4 is used to store g2, then h5 is used
to store g1, then h6 is used to store g2. We use a permutation
(π1, π2, π3) to record the information that the i-th partially
used cell group stores the πi-th variable group, for i = 1, 2, 3.
Then, the permutation changes as (1, 2, 3) → (1, 3, 2) →
(3, 2, 1) → (3, 1, 2). The index cells are used to remember the
permutation. Note that the permutation changes at most b − a
times.

We now show a coding strategy for the index cells. First,
build a mapping between the permutations and binary vectors
of length four as follows.

binary (0,0,0,0) (0,0,0,1) (0,0,1,0) (1,0,1,0) (1,0,0,0) (1,0,0,1)

vector (0,1,1,1) (0,1,1,0) (0,1,0,1) (1,1,0,1) (1,1,1,1) (1,1,1,0)

permutation (1,2,3) (3,1,2) (2,3,1) (2,1,3) (1,3,2) (3,2,1)

For every change of the permutation, only one bit in the
binary vector needs to change. (Note that every such change
shifts one number to the end of the permutation.) For in-
stance, if the permutation changes as (1, 2, 3) → (1, 3, 2) →
(3, 2, 1) → (2, 1, 3) → (2, 3, 1), the binary vector can change
as (0, 0, 0, 0) → (1, 0, 0, 0) → (1, 0, 0, 1) → (1, 1, 0, 1) →
(0, 1, 0, 1). Use a floating code that stores the four bits in the
binary vector (such as the code for four variables in Section IV),
and this code also records the permutation. By Theorem 9, only

b
q−1 + o(b) index cells are needed, which is close to one index
cell on average for every q − 1 cell groups when b is large. �

The design of general coding schemes for index cells is
beyond the scope of this paper. In the following, We present
a lower bound for the number of index cells that are needed
for remembering the permutation (i.e., the mapping between
partially used cell groups and the variable groups).

Theorem 12. The number of cells needed for indexing is at
least b−a

q−1 + a
2 − 1 if (a − 2)(q − 1) < 2(b − a), and at least

2(b−a)
q−1 if (a − 2)(q − 1) � 2(b − a).

Proof: Assume that an indexing scheme that uses x cells
for indexing is given. We first prove that they can only guaran-
tee the recording of at most (x − a + 2)(q − 1) + (a−2)(q−1)

2
changes of the permutation if x > a − 2, and at most x(q−1)

2
changes of the permutation if x � a − 2.

Let’s consider the case x > a − 2 first. Let (s1, s2, · · · , sx)
denote the states of the x cells. Initially, (s1, s2, · · · , sx) =
(0, 0, · · · , 0) and the permutation is (1, 2, · · · , a). Let A =
(s1, s2, · · · , sa−2) denote the first a − 2 cells’ states, and let
B = (sa−1, sa, · · · , sx) denote the last x − a + 2 cells’ states.
Define the weight of A (resp., B) as ∑a−2

i=1 si (resp., ∑x
i=a−1 si).

The permutation is a permutation of a numbers; and when
it changes, a number is moved to the back. So there are a − 1
possible ways to change a permutation each time. When the
permutation changes, some cell states need to be raised. Since
there are only a − 2 cells in A, at any time, if all the a − 1
ways to change the permutation increase only the weight of A

(not the weight of B), there must be one way of changing the
permutation that increases the weight of A by at least two.

We now choose a sequence of changes to the permutation
as follows. Assume that i � 0 changes have been chosen.
For the (i + 1)-th change, if all the a − 1 ways to change
the permutation increase only the weight of A (not the weight
of B), choose the (i + 1)-th change as one that increases the
weight of A by at least two (we call such a change type I);
otherwise, choose the (i + 1)-th change as one that increases
the weight of B by at least one (we call such a change type
II). Since the maximum weight of A is (a − 2)(q − 1) and
the maximum weight of B is (n − a + 2)(q − 1), there can
be at most (a−2)(q−1)

2 changes of type I and at most (n − a +
2)(q − 1) changes of type II. So the number of changes of
permutation that the indexing scheme guarantees to record is
at most (x − a + 2)(q − 1) + (a−2)(q−1)

2 .
The case x � a − 2 is simpler. By the same argument, we

can choose a sequence of changes of the permutation such
that every change increases ∑x

i=1 si by at least two. So the
number of changes of permutation that the indexing scheme
guarantees to record is at most x(q−1)

2 .
Since there are a variable groups and b cell groups, there

can be b − a changes of permutation. So an indexing scheme
needs to have (x − a + 2)(q − 1) + (a−2)(q−1)

2 � b − a if
x > a− 2 and have x(q−1)

2 � b− a if x � a− 2. Thus we get
x � b−a

q−1 + a
2 − 1 if x > a − 2 and x � 2(b−a)

q−1 if x � a − 2.

So when (a−2)(q−1)
2 < b − a, we must have x > a − 2 and

therefore have x � b−a
q−1 + a

2 − 1. When (a−2)(q−1)
2 � b − a,

we either have x > a − 2 � 2(b−a)
q−1 , or have x � a − 2 and

therefore have x � 2(b−a)
q−1 . So the conclusion holds.

VI. CONSTRUCTIONS BASED ON COVERING CODES

There have been no existing floating code constructions for
l > 2 (i.e., non-binary alphabets) [4]. In this section, we
present a new method that converts floating codes with large
alphabets to floating codes with small alphabets (including
the binary alphabet) by using covering codes. The idea is to
map a variable with a large alphabet to a vector of a small
alphabet such that when the variable changes its value (i.e.,
is rewritten), only a few (preferably one) entries in the vector
change their values. Based on this method, we can obtain a
series of bounds and code constructions for large alphabets.

Construction 13. (Mapping based on linear covering codes)
Let v be a variable of alphabet size l. Choose an (n0, k0) linear
covering code of alphabet size l0, which has length n0 and
dimension k0. The requirement is ln0−k0

0 � l. The code has
ln0−k0
0 cosets of the codewords. Among them, choose any l

cosets, and map them to the l values of v. �

Example 14. Let v be a variable that takes its value from an
alphabet of size l = 4: {0, 1, 2, 3}. Choose the simple (3, 1)
repetition code. As a result, the mapping from v to bit vectors
of length 3 is as follows:
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vector (0,0,0) (1,0,0) (0,1,0) (0,0,1)
(1,1,1) (0,1,1) (1,0,1) (1,1,0)

v 0 1 2 3

To design a floating code for variables v1, v2, · · · , vk
of alphabet size 4, we first map them to binary vari-
ables {wi, j|1 � i � k, 1 � j � 3}, where
each binary vector (wi,1, wi,2, wi,3) represents vi. Then we
use a floating code for the 3k binary variables. Every
rewrite for (v1, v2, · · · , vk) maps to exactly one rewrite for
(w1,1, w1,2, · · · , wk,3). (For instance, if k = 2 and (v1, v2)
changes as (0, 0) → (0, 3) → (0, 2) → (3, 2) → (3, 1),
the binary vector (w1,1, w1,2, w1,3, w2,1, w2,2, w2,3) will corre-
spondingly change as (0, 0, 0, 0, 0, 0) → (0, 0, 0, 0, 0, 1) →
(0, 0, 0, 1, 0, 1) → (0, 0, 1, 1, 0, 1) → (0, 0, 1, 1, 0, 0).) So if
the floating code supports t rewrites for the binary variables, it
also supports t rewrites for the 4-ary variables v1, v2, · · · , vk.
�

It is important for the selected linear covering code to
have a small covering radius, because when the large-alphabet
variable changes, the covering radius of the code equals
the number of entries in the small-alphabet vector that may
change.

Let R denote the covering radius of the (n0, k0) covering
code in Construction 13. Let t(n, q, k, l) denote the greatest
number of rewrites that a floating code can guarantee to sup-
port, when k l-ary variables are stored in n cells with q states.
(Namely, t(n, q, k, l) is the optimal value of t for floating codes
with parameters n, q, k, l.) The following theorem compares
the coding performance for different alphabets.

Theorem 15.

t(n, q, k, l) � �t(n, q, kn0, l0)/R�
Proof: Map the variables v1, v2, · · · , vk of alphabet size l

to kn0 variables of alphabet size l0 with Construction 13. Build
an optimal floating code C for the kn0 variables of alphabet
size l0, which guarantees t(n, q, kn0, l0) rewrites.

For the (n0, k0) covering code, every vector of length n0 is
within Hamming distance R from a codeword. So by the sym-
metry of linear codes, for every vector and each of the ln0−k0

0
cosets, there is a vector in the coset that is within Hamming
distance R from the former vector. So when we rewrite vi
(1 � i � k), we are correspondingly rewriting at most R l0-
ary variables. So C supports �t(n, q, kn0, l0)/R� rewrites for
v1, v2, · · · , vk. So t(n, q, k, l) � �t(n, q, kn0, l0)/R�.

By using known covering codes [2], we can obtain a number
of bounds for floating codes with large alphabets in terms of
the performance of floating codes with binary alphabets. We
report some of the results in Fig. 2. (For the full set of results,
please refer to [5].) Since there has been a number of floating
code constructions for binary variables (especially the codes
presented in this paper), floating codes with large alphabets
can also be built. Due to the space limit, we report the codes
in [5].

1. For m � 2, l � 2m, t(n, q, k, l) � t(n, q, k(2m − 1), 2).
2. For l � 211, t(n, q, k, l) � �t(n, q, 23k, 2)/3�.
3. For a � b � 1 and l � 2a−b, t(n, q, k, l) �

�t(n, q, ka, 2)/
 a−b
2 ��.

4. For b � 4, a � 2b−2 and l � 2a−b, t(n, q, k, l) �
�t(n, q, ka, 2)/(� a

2 � − 2(b−4)/2)�.
5. For l � 27, t(n, q, k, l) � �t(n, q, 23k, 2)/2�.
6. For l � 219, t(n, q, k, l) � �t(n, q, 47k, 2)/5�.
7. For all a � 1 and l � 2a−1, t(n, q, k, l) �

�t(n, q, ka, 2)/� a
2 ��.

8. For all a � 2 and l � 2a−2, t(n, q, k, l) �
�t(n, q, ka, 2)/� a−1

2 ��.
9. For all a � 3 and l � 2a−3, t(n, q, k, l) �

�t(n, q, ka, 2)/� a−2
2 ��.

10. For a � 6, l � 2a−4, t(n, q, k, l) � �t(n, q, ka, 2)/� a−4
2 ��.

11. For a � 7, l � 2a−5, t(n, q, k, l) � �t(n, q, ka, 2)/� a−5
2 ��.

12. For a � 14, l � 2a−6, t(n, q, k, l) � �t(n, q, ka, 2)/� a−8
2 ��

13. For a � 19, l � 2a−7, t(n, q, k, l) � �t(n, q, ka, 2)/� a−9
2 ��.

14. For all b � 2, a � 22b − 1 and l � 2a−2b−1, t(n, q, k, l) �
�t(n, q, ka, 2)/� a−2b

2 ��.
15. For all b � 2, a even and l � 2a−2b, t(n, q, k, l) �

�t(n, q, ka, 2)/� a−2(2b−1)/2

2 ��.
16. For all b � 2, a odd and l � 2a−2b, t(n, q, k, l) �

�t(n, q, ka, 2)/� a−2(2b−1)/2−1
2 ��.

17. For a � 127 and l � 2a−8, t(n, q, k, l) �
�t(n, q, ka, 2)/� a−16

2 ��.
18. For all m � 3 and l � 22m+1, t(n, q, k, l) �

�t(n, q, k(2m+1 + 2m − 4), 2)/2�.
19. For all m � 4 and l � 22m, t(n, q, k, l) �

�t(n, q, k(2m+1 − 4), 2)/2�.
20. For all m � 1 and l � 24m, t(n, q, k, l) �

�t(n, q, k(22m+1 − 2m − 1), 2)/2�.
21. For all m � 2 and l � 24m+1, t(n, q, k, l) �

�t(n, q, k(22m+1 + 22m − 2m − 2), 2)/2�.
22. For all m � 2 and l � 24m+2, t(n, q, k, l) �

�t(n, q, k(222m+2−2m−2), 2)/2�.
23. For all m � 2 and l � 24m+3, t(n, q, k, l) �

�t(n, q, k(22m+2 + 22m+1 − 2m − 2), 2)/2�.

Figure 2. The relationship between floating codes with l > 2 and floating
codes with l = 2. Here t(n, q, k, l) denotes the optimal value of t (the number
of rewrites) for a floating code with the parameters n, q, k, l.
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