
Efficient Indexing Data Structures for
Flash-Based Sensor Devices

SONG LIN

University of California, Riverside

DEMETRIOS ZEINALIPOUR-YAZTI

University of Cyprus

and

VANA KALOGERAKI, DIMITRIOS GUNOPULOS, and WALID A. NAJJAR

University of California, Riverside

Flash memory is the most prevalent storage medium found on modern wireless sensor devices
(WSDs). In this article we present two external memory index structures for the efficient retrieval of

records stored on the local flash memory of a WSD. Our index structures, MicroHash and MicroGF
(micro grid files), exploit the asymmetric read/write and wear characteristics of flash memory

in order to offer high-performance indexing and searching capabilities in the presence of a low-

energy budget, which is typical for the devices under discussion. Both structures organize data

and index pages on the flash media using a sorted by timestamp file organization. A key idea

behind these index structures is that expensive random access deletions are completely eliminated.

MicroHash enables equality searches by value in constant time and equality searches by timestamp

in logarithmic time at a small cost of storing index pages on the flash media. Similarly, MicroGF

enables spatial equality and proximity searches in constant time. We have implemented these index

structures in nesC, the programming language of the TinyOS operating system. Our trace-driven

experimentation with several real datasets reveals that our index structures offer excellent search

performance at a small cost of constructing and maintaining the index.

Categories and Subject Descriptors: C.2.M [Computer-Communication Networks]: Miscella-

neous; H.3.2 [Information Storage and Retrieval]: Information Storage; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Wireless sensor networks, flash memory, access methods

An earlier version of this article appeared in Zeinalipour-Yazti et al. [2005]. This work was sup-

ported in part by grants from NSF ITR Nos. 0220148 and 0330481.

Authors’ addresses: S. Lin, Department of Computer Science and Engineering, University of

California, 900 University Avenue, Riverside, CA 92521; D. Zeinalipour-Yazti (corresponding au-

thor), Department of Computer Science, University of Cyprus, P.O. Box 20537, 1678, Nicosia,

Cyprus; email: dzeina@cs.ucy.ac.cy; V. Kalogeraki, D. Gunopulos, W. A. Najjar, Department of Com-

puter Science and Engineering, University of California, 900 University Avenue, Riverside, CA

92521.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that the copies are not made or distributed for profit or direct commer-

cial advantage, and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, or to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permission@acm.org.
C© 2006 ACM 1553-3077/06/1100-0468 $5.00

ACM Transactions on Storage, Vol. 2, No. 4, November 2006, Pages 468–503.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 469

1. INTRODUCTION

Rapid developments in wireless technologies and microelectronics have
spawned a new generation of economically viable embedded sensor systems
for monitoring and understanding the physical world [Warneke et al. 2001;
Szewczyk et al. 2004; Intanagonwiwat et al. 2000; Sadler et al. 2004; Madden
et al. 2002; Xu et al. 2004; Zeinalipour-Yazti et al. 2005]. Traditional sensing
devices utilized over the years in meteorology, manufacturing, and agriculture
are characterized by their passive mode of operation, considerable size, and
wired connection to some centralized processing unit that enables storage and
analysis. Wireless sensor devices (WSDs), on the other hand, are tiny comput-
ers on chips that are often no bigger than a coin or credit card. These devices,
equipped with a low-frequency processor (≈4–58MHz) and a wireless radio, can
sense parameters such as light, sound, temperature, humidity, pressure, noise
levels, and movement at extremely high resolutions. This multitude of features
constitute WSDs’ powerful devices that can be used for in-network processing,
filtering, and aggregation [Madden et al. 2003; Madden et al. 2002; Yao and
Gehrke 2003]. The applications of sensor networks range from environmental
monitoring (such as atmosphere and habitant monitoring [Szewczyk et al. 2004;
Sadler et al. 2004]) to seismic and structural monitoring [Xu et al. 2004] and
industry manufacturing (such as factory and process automation [Crossbow
2005; Madden et al. 2002]).

One of the key challenges in this new era of sensor networks is the storage and
retrieval of sensor data [Dai et al. 2004; Zeinalipour-Yazti et al. 2005; Ganesan
et al. 2005]. Traditional techniques such as Madden et al. [2003], Deligiannakis
et al. [2004], and Intanagonwiwat et al. [2000], work in a centralized way:
The acquisition of data from the physical world is succeeded by transmission
of the respective data to the sink (querying node). The centralized repository,
which contains the full resolution of sensor data, can then be utilized to resolve
different types of queries. Such centralized data acquisition scenarios have a
common problem of large energy consumption, as the whole universe of readings
is transferred towards the sink, thus leading to a shorter sensor lifetime.

In long-term deployments, it is often less expensive to keep a large win-
dow of measurements in situ (at the generating site) [Zeinalipour-Yazti et al.
2005] and transmit specific information to the sink only when requested. For
example, biologists analyzing a forest are usually interested in the long-term
behavior of the environment. Therefore, sensors are not required to transmit
their readings to the sink at all times. Instead, the sensors can work unat-
tended and store their readings locally until certain preconditions are met, or
when the sensors receive a query over the radio that requests the respective
data. Such in-network storage conserves energy from unnecessary radio trans-
missions, which can be used to increase the sampling frequency of the data,
and hence the fidelity of the measurements, in reproducing the actual physical
phenomena.

Currently, the deployment of sensor technology is severely hampered by the
lack of efficient infrastructure to store locally large amounts of sensor data mea-
surements. The problem is that the local RAM memory of sensor nodes is both

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

470 • S. Lin et al.

volatile and very limited (≈2KB–64KB). In addition, the nonvolatile on-chip
flash memory featured by most sensors is also very limited (≈32KB–512KB).
However, the limited local storage of sensor devices is expected to change soon.
Several sensor devices, such as the RISE hardware platform [Neema et al.
2005; Banerjee et al. 2005], include off-chip flash memory which supplements
each sensor with several megabytes of storage. Flash memory has a number of
distinct characteristics compared to other storage media: First, each page (typ-
ically, 128B–512B) can only be written a limited number of times (≈10,000–
100,000). Second, pages can only be written after they have been deleted in
their entirety. Additionally, a page deletion always triggers the deletion of its re-
spective block (≈8KB–64KB per block). Due to these fundamental constraints,
efficient storage management becomes a challenging task.

The problem that we investigate in this article is how to efficiently organize
the flash memory of a sensing device. Our desiderata are:

(1) To provide efficient access to the data stored on flash by time or value, for
both equality and range queries generated by the user.

(2) To increase the longevity of flash memory by spreading writes out uniformly
so that the available storage capacity does not diminish at particular re-
gions of the flash media.

We present two new indexes, MicroHash and MicroGF, which serve as
primitive structures for efficiently indexing temporal environmental and geo-
graphical data. Note that the data generated by sensor nodes has two unique
characteristics: (i) Records are generated at a given point in time (i.e., these are
temporal records), and (ii) the recorded readings are numeric values in a limited
range. For example, a temperature sensor might only record values between
-40F to 250F with one decimal point precision, while the barometric pressure
module used in the Mica weather board [Polastre 2003] measures pressure in
the range 300mb to 1100mb, again with one decimal point precision [Polastre
2003]. Traditional indexing methods used in relational database systems
[Fagin et al. 1979; Litwin 1980] are not suitable, as these are mainly geared
towards magnetic disks and do not take into account the asymmetric read/write
behavior of flash media. MicroHash and MicroGF have been implemented in
nesC [Gay et al. 2003] and use the TinyOS [Hill et al. 2000] operating system.

This article builds on our previous work in Zeinalipour-Yazti et al. [2005],
in which we presented the design and results of our MicroHash index. In this
article, we introduce several new improvements, such as an online compression
algorithm and experimental evidence for efficient page read techniques. Addi-
tionally, we also develop an efficient solution to the problem of indexing 2D geo-
graphical information. Specifically, we present the design of the MicroGF index
structure and experimentally demonstrate the advantages of such a structure
against two popular alternatives: grid files and quadtrees.

Our contributions in this article can be summarized as following:

(1) We present the design and implementation of MicroHash, a novel
index structure for supporting equality queries in environmental

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 471

Fig. 1. The architecture of a typical wireless sensor.

sensor nodes with limited processing capabilities and a low energy
budget.

(2) We propose the design and implementation of MicroGF, a novel index struc-
ture for supporting spatial queries in sensor nodes equipped with GPS ca-
pabilities.

(3) We present efficient algorithms for inserting, deleting, and searching data
records stored on flash media using our algorithms.

(4) We describe the prototype implementation of MicroHash and MicroGF,
and demonstrate the efficiency of our approach with an extensive exper-
imental study using atmospheric readings from the University of Washing-
ton [ATMO 2005], the Great Duck Island study [Szewczyk et al. 2004], and
geographical readings from INFATI [Jensen et al. 2005].

The remainder of the article is organized as follows: In Section 2 we present
the memory hierarchy of a sensor node and a characterization of its performance
characteristics using the RISE sensor. In Section 3 we formally define the in-
dexing problem, and then describe our data structures in Section 4. Sections 5
and 6 describe the MicroHash index, search algorithms, and search optimiza-
tions, while Section 7 presents the MicroGF algorithm. Section 8 presents our
experimental methodology and Section 9 the results of our evaluation. Finally,
we discuss related work in Section 10 and conclude the article in Section 11.

2. THE MEMORY HIERARCHY

In this section, we briefly overview the architecture of a sensor node, with a
special focus on its memory hierarchy. We also study the distinct characteristics
of flash memory and address the challenges with regard to energy consumption
and access time.

2.1 System Architecture

The architecture of a sensor node (see Figure 1) consists of a microcontroller
unit (MCU) which is interconnected to the radio, in addition to sensors, a
power source, and the LEDs. The MCU includes a processor, a static RAM
(SRAM) module, and an on-chip flash memory. The processor runs at low

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

472 • S. Lin et al.

frequencies (≈ 4–58MHz), which reduces power consumption. SRAM is mainly
used for code execution, while in the latest generation of sensors, such as Yale’s
58MHz XYZ node [Lymberopoulos and Savvides 2005] and Intel’s 12MHz iMote
(http://www.intel.com), it can also be used for in-memory (or SRAM) buffering.
The choice of the right energy source is application specific. Most sensors ei-
ther deploy a set of AA batteries or solar panels [Sadler et al. 2004]. Therefore
a sensor node might have a very long lifetime.

The on-chip flash provides a small nonvolatile storage area (32KB–512KB)
for storing the executable code or for accumulating values for a small window of
time [Madden et al. 2003]. A larger external storage can also be supplemented
to a sensor using the serial peripheral interface (SPI), which is typically found
on these devices. For example, in the RISE platform, nodes feature a larger
off-chip flash memory which provides the sensor with several GBs of storage.

Although it is currently not clear whether Moore’s law will apply to the
size and price of sensor units or their hardware characteristics, we believe that
future sensor nodes will feature more SRAM and flash storage, as more complex
in-network processing applications increase memory and CPU demands.

2.2 Overview of Flash Memory

Flash memory is the most prevalent storage media used in current sensor sys-
tems because of its many advantages, including: (i) nonvolatile storage, (ii) sim-
ple cell architecture, which allows easy and economical production, (iii) shock
resistance, and (iv) fast read access and power efficiency. These characteris-
tics establish flash memory as an ideal storage media for mobile and wireless
devices [Dipert and Levy 1994].

There are two different types of flash memory, NOR flash and NAND flash,
which are named according to the logic gate of their respective storage cells.
NAND flash is the newer generation of flash memory, which is characterized
by faster erase time, higher durability, and higher density. NOR is an older
type of flash which is mainly used for code storage (e.g., for the BIOS). Its main
advantage is that it supports writes at a byte granularity, as opposed to the
page granularity used in NAND flash. NOR flash also has faster access times
(i.e., ≈200ns) than NAND (50–80μs), but lacks in all other characteristics, such
as density and power efficiency.

For the rest of the article, we will focus on characteristics of NAND memory,
as this is the type of memory used for the on-chip and off-chip flash of most
sensors, including the RISE platform. According to Micron (http://www.micron.
com/), NAND memory was the fastest growing memory market in 2005 ($8.7
billion). Although reading from a NAND flash can be performed at any gran-
ularity, ranging from a single byte to a whole block (typically, 8KB–64KB), it
features a number of distinct constraints, summarized as the following:

(1) Delete Constraint: Deleting data stored on flash memory can only be per-
formed at block granularity (i.e., 8KB–64KB).

(2) Write Constraint: Writing data can only be performed at page granularity
(typically, 256B–512B) after the respective page (and its respective 8KB–
64KB block) has been deleted.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 473

Table I. Performance Parameters for NAND Flash

NAND Flash installed on a Sensor Node
Page Read Page Write Block Erase

1.17mA 37mA 57mA

Time 6.25ms 6.25ms 2.26ms

Data Rate 82KBps 82KBps 7MBps

Energy 24μJ 763μJ 425μJ

Flash Idle Flash Sleep
0.068mA 0.031mA

Time N/A N/A

Data Rate N/A N/A

Energy 220μJ/sec 100μJ/sec

These parameters are for NAND Flash using a 3.3V voltage, 512B

page size, and 16KB block size.

(3) Wear Constraint: Each page can only be written a limited number of times
(typically 10,000–100,000).

The design of our index structures in the remainder of this article considers
these aforementioned constraints.

2.3 Access Time of NAND Flash

Table I presents the average measurements that we obtained from a series of
microbenchmarks using the RISE platform, along with a HP E3630A constant
3.3V power supply and a Fluke 112 RMS multimeter. Our first observation is
that reading is three orders of magnitude less power demanding than writing.
On the other hand, block erases are also quite expensive, but can be performed
much faster than the former two operations. Note that read and write opera-
tions involve the transfer of data over the SPI bus, which becomes the bottleneck
in the time to complete the operation. Specifically, reading and writing on flash
media without utilization of the SPI bus can be achieved in ≈50μs and ≈200μs,
respectively [Wu et al. 2003b]. Finally, our results are comparable to measure-
ments reported for the MICA2 mote in Dai et al. [2004] and the XYZ sensor
in Lymberopoulos and Savvides [2005].

Although these are hardware details, the application logic needs to be aware
of these characteristics in order to minimize energy consumption and maximize
performance. For example, the deletion of a 512B page will trigger deletion of a
16KB block on flash memory. Additionally, the MCU has to rewrite the rest of
the unaffected 15.5KB. One of the objectives of our index design is to provide an
abstraction which hides these hardware-specific details from the application.

2.4 Energy Consumption of NAND Flash

Another question is whether it is less expensive to write to flash memory, rather
than transmitting over the RF radio. We used the RISE mote to measure the
cost of transmitting the data over a 9.6Kbps radio (at 60mA), and found that
transmitting 512B (one page) takes, on average, 416ms or 82,368μJ. Comparing
this with the 763μJ required for writing the same amount of data to local
flash, along with the fact that transmission of one byte is roughly equivalent to

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

474 • S. Lin et al.

executing, 1120 CPU instructions, makes local storage and processing highly
desirable.

A final question we investigated is how many bytes we can store on local
flash before a sensor runs out of energy. Note that this applies only to the
case where the sensor runs on batteries. Double batteries (AA) used in many
current designs operate at a 3V voltage and supply a current of 2,500 mAh
(milliAmp-hours). Assuming, similarly to Polastre [2003], that only 2200mAh
is available and that all current is used for data logging, we can calculate that
AA batteries offer 23, 760J (2200mAh * 60 * 60 * 3). With a 16KB block size
and 512B page size, we would have one block delete for every 32 page writes
(16KB/512B). Writing a page, according to our measurements, requires 763μJ,
whereas the cost of performing a block erase is 425μJ. Therefore, writing 16KB
of data requires

Write16K B = (32pages ∗ 763μJ) + (425μJ) = 24, 841μJ. (1)

Using the result of the preceding equation, we can derive that by utilizing the
23, 760J offered by the batteries, we can write ≈15GB before running out of
batteries ((23,760J * 16KB) / 24,841μJ). The interesting point is that even in
the absence of a wear-leveling mechanism, we would be able to accommodate
the 15GB without exhausting the flash media. However, this would not be true
if we used solar panels [Sadler et al. 2004], which provide a virtually unlimited
power source for each sensor device. Another reason why we want to extend the
lifetime of flash media is that the batteries of a sensor node could be replaced
in cases where the devices remain physically accessible.

3. PROBLEM DEfiNITION

In this section we provide a formal definition of the indexing problems that the
MicroHash and MicroGF structures address. We also describe how these cope
with the distinct characteristics of flash memory.

Let S denote some sensor that acquires readings from its environment every
ε seconds (i.e., t = 0, ε, 2ε, . . .). At each time instance t, the sensor S obtains a
temporal data record drec = {t, v1, v2, . . . , vx}, where t denotes the timestamp
(key) on which the tuple was recorded, while vi (1 ≤ i ≤ x) represents the value
of some reading (such as humidity, temperature, light, longitude and latitude,
etc.).

Also, let P = {p1, p2, . . . , pn} denote a flash media with n available pages.
A page can store a finite number of bytes (denoted as psize

i), which lim-
its the capacity of P to

∑n
i=0 psize

i . Pages are logically organized in b blocks
{block1, block2, . . . , blockb}, each block containing n/b consecutive pages. We as-
sume that pages are read on a page-at-a-time basis and that each page pi

can only be deleted if its respective block (denoted as pblock
i) is deleted as well

(write/delete constraint). Finally, due to the wear constraint, each page can only
be written a limited number of times (denoted as pwc

i).
The MicroHash index supports efficient value-based equality queries and

efficient time-based equality and range queries. These queries are defined as
follows.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 475

Definition 3.1. (Value-Based Equality Queries). A 1D query Q(vi, a) in
which the field values of attribute vi are equivalent to value a.

For example, the query q = (temperature, 95F) can be used to find time
instances (ts) and other recorded readings when the temperature was 95F.

Definition 3.2. (Time-Based Range and Equality Queries). A 1D query
Q(t, a, b) in which the time attribute t is between the lower and upper bounds
a and b, respectively. The equality query is a special case of the range query
Q(t, a, b) in which a = b.

For example, the query q = (ts, 100, 110) can be used to find tuples recorded
in the 10 second interval.

The MicroGF index supports, similarly to MicroHash, time-based equality
and range queries. In addition, it supports efficient spatial queries, defined as
follows.

Definition 3.3. (Spatial Queries). A multidimensional query Q(v1, v2, . . . ,
vx, Aquer y) in which the spatial attributes v1, v2,. . . vx are in the query area
Aquer y .

For example, the query q = (x, y , city New York) can be used to find all the
positions which appeared in New York City.

Evaluating the previous queries efficiently requires that the system main-
tains an index structure along with the generated data. Specifically, while a
node senses data from its environment (i.e., data records), it also creates index
entries that point to the respective data stored on the flash media. When a node
needs to evaluate some query, it uses the index records to quickly locate the de-
sired data. Since the number of index records might be potentially very large,
these are stored on the external flash, as well. Although maintaining index
structures is a well-studied problem in the database community [Fagin et al.
1979; Litwin 1980; Ramakrishnan and Gehrke 2002], the low-energy budget of
sensor nodes, along with the unique read, write, delete, and wear constraints of
flash memory, introduce many new challenges. In order to maximize efficiency,
our design objectives are as follows.

(1) Wear-Leveling: Spread page writes out uniformly across the storage media
P in order to avoid wearing-out specific pages.

(2) Block Erase: Minimize the number of random-access deletions, as the dele-
tion of individual pages triggers the deletion of the whole respective block.

(3) Fast Initialization: Minimize the size of the in-memory structures that will
be required in order to use the index.

4. THE DATA STRUCTURES

In this section we describe the data structures created in the fast (but volatile)
SRAM to provide an efficient way to access data stored on the persistent (but
slower) flash memory. First, we describe the underlying organization of data on
the flash media and then describe the involved in-memory data structures.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

476 • S. Lin et al.

Fig. 2. Main data structures used in our nesC implementation. The example applies to the Micro-

Hash index, while the MicroGF index uses similar structures.

4.1 Flash Organization

MicroHash and MicroGF use a sorted-by-timestamp flash organization in which
records are stored on the flash media in a circular array fashion. This allows
data records to be naturally sorted based on their timestamp and therefore,
our organization is sorted by timestamp. This organization requires the least
overhead in SRAM (i.e., only one data write-out page). Additionally, as we will
show in Section 5.4, this organization addresses directly the delete, write, and
wear constraints. When the flash media is full, we simply delete the next block
following the position of the last written page. Although other organizations
in relational database systems, such as sorted or hashed on some attribute,
could also be used, they would have a prohibitive cost since the sensor would
need to continuously update written pages (i.e., perform an expensive random
page write). On the other hand, our sorted-by-timestamp organization always
yields completely full data pages, as data records are consecutively packed on
the flash media.

4.2 In-Memory (SRAM) Data Structures

The flash media is segmented into n pages, each with a size of 512B. Each page
consists of a 8B header and a 504B payload.

Specifically the header includes the following fields (also illustrated in
Figure 2): (i) a 3-bit page-type (TYP) identifier. This identifier is used to differ-
entiate between different types of pages such as data, index, directory, and root
pages; (ii) a 16-bit cyclic redundancy checking (CRC) polynomial on the payload,
which can be used for integrity checking. When CRC is handled by lower levels,
this field can be turned off; (iii) a 7-bit number of records (SIZ), which identi-
fies how many records are stored inside a page. Note that our implementation
uses fixed-size records that never span to more than one page. We chose such a
scheme, as opposed to using variable-length records, because records generated
by a sensor always have the same size. To avoid segmentation, variable-length

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 477

Fig. 3. Overview of the MicroHash structure. While a node senses data from its environment, it

also creates index entries that point to the respective data stored on flash media. When a node

needs to evaluate some query, it uses index records to quickly locate the desired data.

records would require keeping a directory inside each page, which would keep
track of the available space; (iv) a 23-bit previous page address (PPA) stores the
address of some other page on the flash media, giving in this way the capability
to create linked lists on the flash; and (v) a 15-bit page-write counter (PWC),
which keeps the number of times a particular page has been written to flash.

While the header is identical for any type of page, the payload can store four
different types of information: (i) Root Page: contains information related to the
state of the flash media. For example, it contains the position of the last write
(idx), the current cycle (cycle), and metainformation about the various indexes
stored on flash media; (ii) Directory Page: contains a number of directory records
(buckets), each of which contains the address of the last-known index page
mapped to this bucket. In order to form larger directories, several directory
pages might be chained, using the 23-bit PPA address in the header; (iii) Index
Page: contains a fixed number of index records and the 8-byte timestamp of
the last-known data record. The latter field, denoted as anchor, is exploited
by timestamp searches which can make an informed decision on which page
to follow next additionally, we evaluate two alternative index record layouts.
The first, denoted as offset layout, maintains for each data record a respective
page-id and offset, while the second layout, denoted as nooffset, maintains only
the page-id of the respective data record; and (iv) Data Page: contains a fixed
number of data records. For example, when the record size is 16B, then each
page can contain 31 consecutively packed records.

5. INDEXING IN MICROHASH

MicroHash index is an efficient external-memory structure designed to support
equality queries in sensor nodes that have limited main memory and processing
capabilities. A MicroHash index structure consists of two modules (as shown
in Figure 3): (i) a directory, and, (ii) a set of index pages. The directory consists
of a set of buckets. Each bucket maintains the address of the (chronologically)

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

478 • S. Lin et al.

newest index page that maps to this bucket. The index pages contain the ad-
dresses of the data records that map to the respective bucket. Note that there
might be an arbitrarily large number of data in the index pages. Therefore,
these pages are stored on the flash media and fetched into main memory only
when requested.

The MicroHash index is built while data is being acquired from the environ-
ment and stored on the flash media. In order to better describe our algorithm,
we divide its operation in four conceptual phases: (a) the initialization phase,
in which the root page and certain parts of the directory are loaded into SRAM;
(b) the growing phase, in which data and index pages are sequentially inserted
and organized on the flash media; (c) the repartition phase, in which the in-
dex directory is reorganized such that only directory buckets with the highest
hit ratio remain in memory; and (d) the deletion phase which is triggered for
garbage collection purposes.

5.1 The Initialization Phase

In the first phase, the MicroHash index locates the root page on flash media. In
our current design, the root page is written on a specific page on flash (page0).
If page0 is worn out, we recursively use the next available page. Therefore,
a few blocks are preallocated at the beginning of the flash media for storage
of root pages. The root page indicates what types of indexes are available on
the system and the addresses of their respective directories. Given that an
application requires the utilization of an index I , the system preloads part of
I ′s directory into SRAM (detailed discussion follows in Section 5.3). The root
and directory pages then remain in SRAM for efficiency, and are periodically
written out to flash.

5.2 The Growing Phase

Let us assume that a sensor generates a temporal record drec = {t, v1, v2, . . . , vx}
every ε seconds, where t is the timestamp on which the record was generated
and vi (1 ≤ i ≤ x) is some distinct reading (e.g., humidity, temperature, etc.).
Instead of writing drec directly to flash, we use an in-memory (SRAM) buffer
page pwrite (see Figure 4(a)). When pwrite gets full, it is flushed to the address
idx, where idx denotes the address after the last page write. Note that idx
starts out as zero and this counter is incremented by one every time a page is
written out. When idx becomes equal to the size of the flash media n, it is reset
to zero. In order to provide a mechanism for finding the relative chronological
order of pages written on flash media, we also maintain the counter c ycle,
which is incremented by one every time idx is reset to zero. The combination of
<cycle, pageid> provides the chronological-order mechanism.

Next, we describe how index records are generated and stored on the flash
media. The index records in our structure are generated whenever the pwrite

buffer gets full. At this point, we can safely determine the physical address of
the records in pwrite (i.e., idx). We create one index record ir = [idx,offset] for
each data record in pwrite (∀drec ∈ pwrite). For example, assume that we in-
sert the following 12byte [timestamp, value] records into an empty MicroHash

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 479

Fig. 4. The three indexing phases: (a) growing phase, (b) repartition phase and (c) deletion phase.

index: {[1000,50], [1001,52], [1002,52]}. This will trigger creation of the follow-
ing index records: { [0,0],[0,12],[0,24] }. Since pwrite is written to address idx, the
index records always reference data records that have a smaller <cycle,pageid>

identifier.
The MicroHash directory provides the start address of the index pages. It is

constructed by providing the following three parameters: (a) a lower bound (lb)
on the indexed attribute; (b) an upper bound (ub) on the indexed attribute; and
(c) the number of available buckets (note that we can only fit a certain number
of directory buckets in memory). For example, assume that we index temper-
ature readings which are only collected in the following known and discrete
range [−40..250], then we set lb = −40F , ub = 250F , and c = 100. Initially,
each bucket represents exactly |lb..ub|

c consecutive values, although this equal
splitting (which we call equiwidth splitting) is refined in the repartition phase
based on the data values collected at runtime.

5.3 The Repartition Phase

A drawback of the initial equiwidth bucket splitting approach is that some
buckets may rarely be used, while others may create long lists of index records.
To overcome this problem, we use the following splitting policy: Whenever a
directory bucket A links to more than τ records (user parameter), we evict
to flash the bucket B, which was not used for the longest period of time (see
Figure 4(b)). Note that this mechanism can be implemented using only two
counters per bucket (one for the timestamp and one for the number of records).
In addition to the eviction of page B, we also create a new bucket A1. Our

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

480 • S. Lin et al.

objective is to provide a finer granularity to the entries in A, as this bucket
is the most congested. Note that the values in A are not reassigned between
A and A1 as would happen in dynamic hashing techniques such as extendible
hashing [Fagin et al. 1979] or linear hashing [Litwin 1980]. The reason is that
the index pages are on flash media and updating these pages would result in
a potentially very large number of random updates (which would be extremely
expensive). Our equidepth, rather than equiwidth, bucket splitting approach
keeps in memory finer intervals for index records used more frequently.

Figure 4(b) shows that each bucket is associated with a counter s (which
indicates the timestamp of the last time the buffer was used), and a counter c
(which indicates the number of index records added since the last split). In the
example, the c = 3 value in bucket 2 (A:[10-20]) exceeds the τ = 2 threshold,
and therefore, this bucket has to be split. Before splitting the bucket, the index
forces bucket 4 (B: [30-40]) to the flash media (as this is the least-used bucket).
It then proceeds with the split into A:[10-15] and A1:[15-20]. Note that the A
list now contains values in [10–20], while the A1 list contains only values in
the range [15-20]. Any future additions to A, however, will only include values
in the range [10-15]. The idea is that we don’t want to reassign the values of
A, since these values reside on the flash media. In Section 6, we will show that
this organization preserves efficient data access.

5.4 The Deletion Phase

In this phase, the index performs a garbage collection operation of the flash
media in order to make space for any newly acquired data. The phase is trig-
gered after all n pages have been written to flash media. This operation blindly
deletes the next n/b pages, which is the whole block following the pointer idx
(see Figure 4(c)). It is then triggered again whenever n/b pages have been
written, where b is the number of blocks on the flash media. This leaves the
index with n/b clean pages that can be used for future writes. Note that this
might leave pointers from index pages referencing data which has already been
deleted. This problem is handled by our search algorithm, described in the next
section.

The distinctive characteristic of our garbage collection operation is that it sat-
isfies directly the delete constraint because pages are deleted in blocks (which
is less expensive than deleting a page-at-a-time). This makes it different from
similar operations of flash file systems [Dai et al. 2004; Woodhouse 2006] that
perform page-at-a-time deletions. Additionally, this mode provides the capabil-
ity to “blindly” delete the next block, without the need to read or relocate any
deleted data. The correctness of this operation is established by the fact that the
index records always reference data records that have a smaller <cycle,pageid>

identifier. Thus, when an index page is deleted, we are sure that all associated
data pages are already deleted.

6. SEARCHING IN MICROHASH

In this section we show how records can efficiently be located by their values
or timestamps.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 481

6.1 Searching by Value

The first problem we consider is how to perform value-based equality queries.
Finding records by their value involves: (a) locating the appropriate directory
bucket from which the system can extract the address of the last index page,
(b) reading the respective index pages on a page-by-page basis, and (c) reading
the data records referred by index pages on a page-by-page basis. Since SRAM
is extremely limited on a sensor node, we adopt a record-at-a-time query return
mechanism in which records are reported to the caller on record-by-record basis.
This mode of operation requires three available pages in SRAM: one for the
directory (dirP) and two for the reading pages (idxP,dataP), which only occupies
1.5KB. If more SRAM was available, the results could have been returned at
other granularities, as well. The complete search procedure is summarized in
Algorithm 1.

Algorithm 1 EqualitySearch

Input: value: the query (search predicate).
Output: The records that contains value.

1: Procedure EqualitySearch(value)
2: bucket = hash(value);
3: address = dirP[bucket].idxP;
4: while((idxP = loadPage(address)) != NULL)
5: for i = 0 to |idxP.size|
6: If ((dataP=loadPage(idxP[i].dataP))==NULL)
7: address=0; break;
8: If (dataP.record[idxP[i].offset]==value)
9: signal dataP.record[idxP[i].offset];

10: end for
11: address = idxP.ppa;
12: end while
13: signal finished;
14: end procedure

Note that the loadPage procedure in lines 4 and 6 returns NULL if the fetched
page is not in valid chronological order (with respect to its preceding page)
or if the fetched data records are not within the specified bucket range. We
use these termination conditions, as the index records might point to deleted
data pages. Recall that we do not update the index records during deletions
for performance reasons. The validations applied by loadPage ensure that we
can safely terminate the search procedure. Finally, since the MicroHash index
returns records on a record-at-a-time basis, we use a signal finished at the end
to indicate that the search procedure has been completed.

6.2 Searching by Timestamp

In this section we investigate time-based equality and range queries. First, note
that if index pages were stored in a separate physical location, and thus not
interleaved with data pages, the sorted (by timestamp) file organization would

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

482 • S. Lin et al.

Fig. 5. Searching by timestamp, where ts: oldest timestamp on flash (te: newest), tq : the query

(timestamp), lb: the lower bound obtained using either id xlb or id xscaled .

allow us to access any data record in O(1) time. However, this would also violate
our wear-leveling mechanism, as we wouldn’t be able to spread out the page
writes uniformly among data and index pages. Another approach would be to
deploy an in-memory address translation table such as that one used in Wu
et al. [2003a; 2003b], which would hide details of the wear-leveling mechanism.
However, such a structure might be too big, given the memory constraints of a
sensor node, and would also delay the sensor boot time.

Efficient search can be supported by a number of different techniques. One
popular technique is to perform a binary search over all pages stored on the
flash media. This would allow us to search in O(logn) time, where n is the size of
the media. For large values of n, such a strategy is still expensive. For instance,
with 512MB flash media and a page size of 512B, we would need approximately
20 page reads before we could find the expected record.

In our approach, we investigate two binary search variants, named LBSearch
and ScaleSearch. LBSearch starts by setting a pessimistic lower bound on which
page to examine next, and then recursively refines the lower bound until the
requested page is found. ScaleSearch, on the other hand, exploits knowledge
about the underlying distribution of data and index pages in order to offer
a more aggressive search method that usually executes faster. ScaleSearch
is superior to LBSearch when data and index pages are roughly uniformly
distributed on the flash media, but its performance deteriorates for skewed
distributions.

For the remainder of this section, we assume that a sensor S maintains
locally some indexed readings for the interval [ta..tb]. Also, let x < y (and
x > y) denote that the <cyclex , id xx> pair of x is smaller (and respectively
greater) than the <cycley , idxy> of y . When S is asked for a record with the
timestamp tq , it follows one of the following approaches: (i) LBSearch: S starts
out by setting the lower bound

idxlb(tq , ts)

⎧⎨
⎩

⌈
tq−ts

	
⌉

, if cycle == 0;

idx +
⌈

tq−ts

	
⌉

otherwise,

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 483

where idx is the address of the last written page and 	 a constant indicating
the maximum number of data records per page. It then deploys the LBSearch
(ts, id xlb) procedure, as illustrated in Algorithm 2. It is easy to see that in each
recursion step, LBSearch always moves clockwise (increasing time order) and
that id xlb ≤ id xtq .

Algorithm 2 LBSearch (No Anchors)

Input: tq : the query (timestamp), current: begin search address
Output: The page that contains tq .

1: Procedure LBSearch(tq , current)
2: p = readPage(current);
3: if (isIndexPage(p))
4: // logical right shift
5: return LBSearch(tq , current + 1);
6: else
7: t1 = P.record[0].ts;
8: t2 = P.record[P.lbu].ts;
9: if (t1 ≤ tq ≤ t2)

10: return P ;
11: end if
12: return LBSearch(tq , current + idxlb(tq , t2));
13: end if
14: end procedure

It is important to note that a lower bound can only be estimated if the fetched
page, on each step of the recursion, contains a timestamp value. Our discussion
so far assumes that the only pages that carry a timestamp are data pages which
contain a sequence of data records {[ts1, val1] . . . [ts1, val]}. In such a case, the
LBSearch has to shift right until a data page is located. In our experiments,
we noted that this deficiency could add, in some cases, three to four additional
page reads. In order to correct the problem, we store the last known timestamp
inside each index page (named Anchor).

(ii) ScaleSearch: When index pages are uniformly spread out across the flash
media, then a more aggressive search strategy might be more effective. In Scale-
Search, which is the technique we deployed in MicroHash, instead of using id xlb

in the first step, we use id xscaled :

idxscaled (tq , ts)

⎧⎨
⎩

⌈
tq−ta

tb−ta
∗ idx

⌉
, if cycle == 0;

idx +
⌈

tq−ta

tb−ta
∗ n

⌉
, otherwise.

We then use LBSearch in order to refine the search. Note that id xscaled might in
fact be larger than id xtq , in which case LBSearch might need to move counter
clockwise (in decreasing time order).

Performing a range query by timestamp Q(tq , a, b) is a simple extension of
the equality search. More specifically, we first perform a ScaleSearch for the
upper bound b (i.e., Q(tq , b)) and then sequentially read backwards until a is
found. Note that data pages are chained in reverse chronological order (i.e.,

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

484 • S. Lin et al.

Fig. 6. Index chaining methods: (a) MicroHash chaining and (b) elf-like chaining.

each data page maintains the address of the previous data page) and therefore
this operation is very simple.

6.3 Search Optimizations

In this section we present three optimizations that increase the performance of
the basic MicroHash approach. The first two methods alleviate the performance
penalty that incurs because of index pages which are not fully occupied. Note
that searching over partially full index pages results in an unnecessary transfer
of data between the MCU and flash cells. The first method, named elf-like
chaining (ELC), eliminates nonfull index pages, which as a result decreases the
number of pages required to answer a query. The second method, named two-
phase read, minimizes the number of bytes transferred from the flash media.
The third method attempts to minimize the amount of data that is read or
written to the flash media. This is achieved by deploying some basic run-length
encoding compression scheme while the sensor acquires the data.

6.3.1 Elf-Like Chaining (ELC). In MicroHash, index pages are chained
using a back-pointer, as illustrated in Figure 6. This method is named Mi-
croHash chaining. Inspired from the update policy of the ELF filesystem [Dai
et al. 2004], we also investigate, and later experimentally evaluate, the elf-like
chaining (ELC) mechanism. The objective of ELC is to create a linked list in
which each node, other than the last node, is completely full. This is achieved
by copying the last nonfull index page into a newer page whenever new index
records are added to the index. This continues until an index page becomes full,
at which point it is not further updated.

To better understand the two techniques, consider the following scenario (see
Figure 6): An index page on flash (denoted as pi (i ≤ n)) contains k (k < psize

i)
index records {ir1, ir2, . . . , irk} that in our scenario map to some directory bucket
v. Suppose that we create a new data page on flash at position pi+1. This triggers
the creation of l additional index records, which in our scenario map to the same
bucket v. In MicroHash chaining (MHC), the buffer manager simply allocates a
new index page for v and keeps the sequence {ir1, ir2, . . . , irl } in memory until
the LRU replacement policy forces the page to be written out. If we assume
that the new index sequence is forced out of memory at pi+3, then pi will be
back-pointed by pi+3, as shown in Figure 6. In elf-like chaining (ELC), the buffer
manager reads pi in memory and then augments it with the l new index records

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 485

Fig. 7. Sequential trashing in ELC.

(i.e., {ir1, . . . , irk , . . . , irl+k}). However, pi is not updated due to the write and
wear constraints. Instead, the buffer manager writes the new l + k sequence
to the end of flash media (i.e., at pi+3). Note that pi is now not back-pointed by
any other page and will not be utilized until the block delete, guided by the idx
pointer, erases it.

The optimal compaction degree of index pages in ELC significantly improves
the search performance of an index, as it is not required to iterate over partially
full index pages. However, in the worse case, ELC might introduce an additional
page read per indexed data record. Additionally, we observed in our experiments
(presented in Section 9) that ELC requires, on average, 15% more space than
typical MicroHash chaining. In the worst case, the space requirement of ELC
might double the requirement of MHC.

To understand the worst-case scenario in ELC, consider the scenario in
Figure 7. This time, assume that the buffer manager reads pi in memory and
then augments psize

i (a full page) new index records. This will evict pi to some
new address (in our scenario pi+2). However, some additional k records are still
in the buffer. Assume that these pages are now evicted from main memory to
some new flash position (in our scenario pi+3). So far, we utilized three pages
(pi, pi+2 and pi+3), while the index records could fit into only two index pages
(i.e., k + psize

i records, k < psize
i). When the same scenario is repeated, we say

that ELC suffers from sequential trashing and ELC will require double the
required space to accommodate all index records.

6.3.2 Two-Phase Page Reads. Our discussion so far assumes that pages
are read from the flash media on a page-by-page basis (usually, 512B per page).
When pages are not fully occupied, such as index pages, then many empty
bytes (padding) is transferred from the flash media to main memory. In order
to alleviate this burden, we exploit the fact that reading from flash can be
performed at any granularity (i.e., as small as a single byte). More specifically,
we propose the deployment of a two-phase page read in which the MCU reads
a fixed header of a page from flash in the first phase, and then reads the exact
amount of bytes in the next.

The performance of two versus single-phase reads has been experimentally
evaluated on the RISE platform [Neema et al. 2005], as is shown in Figure 8.
Note that in order to initiate a read over the flash media, there is a fixed 9-byte
overhead for accessing the SPI bus. From our experimental analysis, it can be
concluded that two-phase reading is almost always superior to its single-phase
counterpart, with the exception of pages which are adequately full (i.e., >90%).
Minimizing the page reading time significantly minimizes energy consumption
during searches.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

486 • S. Lin et al.

Fig. 8. (a) Illustration of the single-phase and two-phase page read strategies; (b) performance

comparison of strategies on the RISE platform.

6.3.3 Lossless Compression by Exploiting Temporal Locality. One common
characteristic of the real signals (or records) generated by sensing devices is that
consecutive time instances are correlated [Deligiannakis et al. 2004; Tang and
Raghavendra 2004; Szewczyk et al. 2004]. For instance, a sensor device might
generate the same temperature reading of 70F for every second in the span of
an hour. Therefore, the temperature time series is characterized by temporal
locality.

In this subsection, we describe how a sensor device might exploit this addi-
tional parameter in order to perform some basic compression of the generated
data values. Although we might argue that compression is of less importance,
since flash storage can be very large and potentially very economical, its im-
portance originates from the fact that the predominant cost in the operation of
a sensing device (that records readings on local storage) comes from the bytes
that are read or written to flash media. Therefore, we seek to reduce the amount
of data stored on the flash media by using some energy-efficient compression
algorithm that might significantly prolong the lifetime of the sensing device.

Before outlining our solution, it is important to mention that any such tech-
nique has to operate in an online fashion: The compression must be performed
before the data is stored on flash media and while being generated by the sens-
ing device. With this mode of operation, we avoid the only other alternative,
which is expensive offline compression method in which the data is compressed
in a postprocessing step. Finally, we seek to preserve the temporal order of
data records in order to keep the searching procedures, outlined in Section 6,
unaffected.

We propose the deployment of tools from the field of information theory in
order to address the online compression problem. Specifically, we utilize the
run-length encoding scheme in order to eliminate the repetitive sequences that
are a result of temporal locality. In run-length encoding, consecutive values
are replaced by a single value of the repeated value. For example the sequence
{50,60,60,60,60,60,61,61} can be represented with {1:50,5:60,2:62}, where x :

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 487

Fig. 9. Exploiting temporal locality in order to compress MicroHash records.

y denotes that value y is repeated for x consecutive time instances. In the
example, this yields a savings of two integers.

We examine how the encoding scheme can be applied in two different cases:
(i) index record compression and (ii) data record compression. In the former
case, illustrated in Figure 9(b), we identify the correlated intervals and repre-
sent them using a single index record. Recall that index records are generated
as soon as the in-memory (SRAM) buffer page pwrite, that contains the data
records, gets full. Therefore the correlated intervals are identified only within
pwrite. In this example, we can see that each index record now stores the ranges
[d2, d5] and [d7, d8], in which the temperature 60F was recorded, rather than
one index record per data record (illustrated in Figure 9(a)). In the data record
compression case, in Figure 9(c), we inverse the situation and record ranges
of data values, instead of ranges of index values. The compression is applied
incrementally and directly on the data series, which at this point resides in
pwrite. Specifically, every time pwrite gets full, we execute in time O(k) the run-
length encoding technique on the k uncompressed data records of pwrite, where
k ≤ n and n = |pwrite|. When k equals zero, then this iterative procedure termi-
nates, the respective index records are generated (using the typical MicroHash
algorithm), and pwrite is written to flash.

Although data record compression might be more storage efficient than index
record compression, the former can only be applied on 1D data records (i.e.,
(timestamp, val1) pairs). The N-dimensional case, where each data record has
the following format: r = (timestamp, val1, val2, . . . , valn), turns out to be more
complicated, as the run-length encoding is designated to only run on a single
correlated attribute rather than N attributes.

Finally, we mention that it would not be practical to apply any compression
method directly on the binary sequence of records, as this prevents us from
having direct access to each data record. For instance, suppose that we are
given the following two sensor readings in their binary representation ([ts,val]):
{[00000,00000], [00001,00000]}. Using run-length encoding, we could have en-
coded this sequence using three numbers: {14, 1, 5} (14 consecutive “0”, 1 con-
secutive “1”, and 5 consecutive “0”). However, such an encoding would not allow
us to have direct access to the individual timestamps or values of the two data
records, unless the data is first decoded.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

488 • S. Lin et al.

7. INDEXING AND SEARCHING IN MICROGF

In spatial query processing, the objective is to locate the data records which
were recorded when the sensing device was within some predicate geographic
region. For instance, a sensor device equipped with a GPS might provide the
geographic coordinates of a moving zebra [Sadler et al. 2004] or car [Jensen
et al. 2005]. A query might then be to locate the objects that were close to some
predicate landmark.

A naive method to cope with this kind of spatial query is to apply the Micro-
Hash index directly on two (or more) spatial dimensions. This would construct
one index record for each respective spatial dimension. For example, data record
< ts, x, y > can be indexed by keeping two different index records for x and
y , respectively. However, such an index structure is not very efficient, firstly
due to redundant space allocation, as we create multiple index records for each
data record, and secondly because such a division cannot efficiently capture the
locality of spatial information for both equality and range queries.

In this section we propose the MicroGF (micro grid file) index structure,
which is an external memory index structure designated for the efficient exe-
cution of spatial queries. The MicroGF index uses, similarly to MicroHash, a set
of directory and index pages to annotate where spatial data records are located
on the flash memory. The directory consists of a set of buckets which segments
the recording space into multiple cells. Each bucket maintains the address of
the (chronologically) newest index page that maps to the corresponding cell.
Index pages contain addresses of the data records that map to the respective
bucket.

7.1 MicroGF Index Data Structures

Directory page data structure: The directory of the MicroGF index structure
consists of an N-dimensional grid of cells, where N denotes the number of spa-
tial dimensions in the data records. To simplify discussion, we assume a 2D
grid of cells in the x y-plane, which represents the coordinate space of some
geographic area in which the sensing device generates spatial records. There-
fore, the MicroGF directory page consists of n*n square cells, where n is the
size of some geographic area, and where each cell contains the address of the
last-known index page that mapped into this geographic region.

Index page data structure: The index pages contain, similarly to MicroHash,
the addresses of the respective data pages. In order to improve search perfor-
mance, each index record is divided into four equal-size quadrants. This essen-
tially divides the recording space of a grid cell into four regions. Each quadrant
then maintains the address for K records which map to the specific area.

7.2 Indexing in MicroGF

The indexing procedure is triggered when the in-memory data record buffer
pwrite gets full. For each spatial record R, we follow the following insertion al-
gorithm (see Algorithm 3). First, we locate the correct grid cell to which data
record R has to be assigned. This information is encapsulated in MicroGF’s di-
rectory. From there, we extract the flash address of the (chronologically) newest

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 489

index page (Id x P) that maps to the corresponding cell.
We then utilize the find quadrant(Idx R, x, y) function, which identifies the

quadrant Q to which the data record R maps. If this quadrant has enough

Algorithm 3 Insertion

Input: MicroGF directory, data record < ts, x, y >. Output: updated MicroGF with
< ts, x, y > inserted.

1: Procedure Insert(ts, x, y)
2: Dir P = the directory entry that x, y resides in;
3: Idx P = Dir P.idx, Idx R = the first index record in Idx P;
4: Q = find quadrant(Idx R, x, y);
5: if(Quadrant Insert(Q , x, y) == success) signal finished;
6: else
7: Q.BID = find borrow quadrant(Q)
8: if(Quadrant Insert(Q.BID, x, y) == success) signal finished;
9: else

10: ifIdx P is not full
11: Id x R ′ = new index record, Q .SI D = Id x R ′,
12: Q ′ = find quadrant(Idx R′, x, y), Quadrant Insert(Q ′, x, y);
13: else
14: Idx P ′ = new index page, Idx P ′ → next = Idx P ,
15: Dir P.idx = Idx P ′, INSERT(ts, x, y);
16: end if
17: end if
18: end if
19: signal finished;
20: end procedure

space to accommodate R (i.e., if the number of indexed records is less than K),
then the insertion is completed. Otherwise, the record R is assigned to adjacent
quadrants having no records in it. These adjacent quadrants are named, for
convenience, borrow quadrants. Note that borrow quadrants are allocated only
within the same index record. If the number of records assigned to a cell does
not fit into the adjacent borrow quadrants, then a new index record (Id x R ′)
is created. In this scenario, the original quadrant Q is repartitioned into four
subquadrants, and the new index record is identified by a subregion address
(SI D).

To better understand the indexing process, assume that we have the tra-
jectory shown in Figure 10 (left). The trajectory consists of seven data points,
denoted with numbers 1 to 7. Also assume that the index record filling param-
eter K is set to 2. The first two records, 1 and 2, are inserted into quadrants 01
and 00 separately (Figure 10 (right)). Records 3 and 4 are then both inserted
into quadrant 10. As records 5 and 6 belong to quadrant 10 (but quadrant 10
is full), we check all 4 quadrants and find an empty quadrant 11, then we
borrow the quadrant of 11 to index records 5 and 6 and update the borrow
quadrant identifier (BID) of quadrant 10 as 11. When data record 7 comes,
there is no space in either the mapping quadrant (10) or borrow quadrant (11).
Therefore, we create a new index record which accommodates the new record.
Note that the BID of quadrant 10 is 11, which means we utilize 11 as the

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

490 • S. Lin et al.

Fig. 10. Creation of a MicroGF index page. The two figures show at a high level how the trajectory

on the left is encoded into a set of two index records.

borrow quadrant in which to store the data records mapped into quadrant 10.
In addition, the subregion identifier (SID) of 10 in the first index record is 2,
which means that there is no more space to index data record 7 in the first
index record, and so we use the second index record to index it with smaller
granularity.

7.3 Searching in MicroGF

Searching in MicroGF is performed by first finding the directory cell Dir P to
which the query A belongs to. Then, all the index pages that map to Dir P
are searched. For each index page, we only have to check the quadrant Q
with which A overlaps, the borrow quadrant of Q (Q .BI D), and Q’s subregion
(Q .SI D). The pseudocode of the MicroGF searching procedure is detailed in
Algorithm 4.

Algorithm 4 Query

Input: MicroGF directory, query area A.
Output: data records < ts, Px, Py > within area A.

1: Procedure Query(A)
2: Dir P = the directory entry that A overlaps;
3: Idx P = Dir P.id x;
4: while(Idx P != NULL)
5: Q = find quadrant(Idx P, A);
6: while(Q != NULL)
7: search(Q , A), search(Q .BI D, A);
8: Q = Q.SID;
9: end while

10: Idx P = Idx P → next;
11: end while
12: signal finished;
13: end procedure

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 491

7.4 The Advantages of MicroGF

Two other popular methods to index spatial records are grid files [Nievergelt
et al. 1984] and quadtrees [Samet 1984]. In grid files, a grid directory is uti-
lized to partition space into rectanglular partitions and to index the data page
containing the desired data records. However, the directory in grid files is very
large and thus cannot be maintained in SRAM, as in MicroGF. In quadtree,
the recording space is recursively decomposed into quadrants. Each of the four
quadrants becomes a node in the quadtree. A larger quadrant is a node at a
higher hierarchical level of the quadtree, and smaller quadrants appear at lower
levels. A problem with quadtree is its poor index space utilization for certain
biased data distributions. For example, if all the data records are located under
only one quadrant at each node, then only 25% of the index space is utilized.
MicroGF, however, overcomes this problem by introducing the concept of bor-
row quadrants, which results in better space utilization of the index pages for
any dataset. With more compact index pages, query processing in MicroGF is
faster and more economical. These advantages of the MicroGF index structure
are experimentally validated in Section 9.5.

8. EXPERIMENTAL METHODOLOGY

In this section we describe the details of our experimental methodology.

8.1 Experimental Testbed

We have implemented MicroHash along with a tiny LRU BufferManager in
nesC [Gay et al. 2003], the programming language of TinyOS [Hill et al. 2000].
TinyOS is an open-source operating system designed for wireless embedded
sensor nodes. It was initially developed at UC-Berkeley and has been deployed
successfully on a wide range of sensors, including our RISE mote. TinyOS uses a
component-based architecture that enables programmers to wire together, in an
on-demand basis, the minimum required components. This minimizes the final
code size and energy consumption as sensor nodes are extremely power- and
memory-limited. Moreover, nesC [Gay et al. 2003], the programming language
of TinyOS, realizes the operating system structuring concepts and execution
model.

Our implementation consists of approximately 5,000 lines of code and re-
quires at least 3KB in SRAM. Specifically, we use one page as a write buffer,
two pages for reading (i.e., one for an index page and one for a data page), one
page as an indexing buffer, one for the directory, and one final page for the root
page. In order to increase insertion performance and index page compactness,
we also supplement additional index buffers (i.e., 2.5KB–5KB).

We had to write a library that simulates the flash media using an operating
system file in order to run our code in TOSSIM [Levis et al. 2003], the simulation
environment of TinyOS. We additionally wrote a library that intercepts all
messages communicated from TinyOS to the flash library and prints out various
statistics, and one final library that visualizes the flash media using bitmap
representations.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

492 • S. Lin et al.

8.2 PowerTOSSIM—Energy Modeling

PowerTOSSIM is a power modeling extension to TOSSIM presented in
Shnayder et al. [2004]. In order to simulate the energy behavior of the RISE
sensor, we extended PowerTOSSIM and added annotations to the MicroHash
structure that accurately provide information when the power states change in
our environment. We have focused our attention on precisely capturing flash
performance characteristics, as opposed to capturing the precise performance
of other, less frequently used modules (e.g., the radio stack).

Our power model follows our detailed measurements of the RISE plat-
form [Neema et al. 2005], which are summarized as the following: We use a
14.8 MHz 8051 core operating at 3.3V with a current consumption of 14.8mA
(on), 8.2mA (idle), 0.2μA (off). We utilize a 128MB flash media, unless other-
wise mentioned, with a page size of 512B and a block size of 16KB. The current
to read, write, and block delete was 1.17mA, 37mA, 57μA, respectively, and
the time to read in the three aforementioned states was 6.25ms, 6.25ms, and
2.27ms.

Using these parameters, we performed an extensive empirical evaluation of
our power model and found that PowerTOSSIM is indeed a very useful and quite
accurate tool for modeling energy in a simulation environment. For example,
we measured the energy required to store 1MB of raw data on an RISE mote
and found that this operation requires 1526mJ , while the same operation in
our simulation environment returned 1459mJ , which has an error of only 5%.

8.3 Dataset Descriptions

Since we cannot measure environmental conditions such as temperature or
humidity in a simulation environment, we adopt a trace-driven experimental
methodology in which a real dataset is fed into the TOSSIM simulator. More
specifically, we use the following datasets:
—Washington State Climate: This is a a real dataset of atmospheric data col-
lected by the Department of Atmospheric Sciences at the University of Washing-
ton [ATMO 2005]. Our 268MB dataset contains readings on a per minute basis
between January 2000 and February 2005. The readings, which are recorded
at a weather logging station in Washington, include barometric pressure, wind
speed, relative humidity, cumulative rain, and others. Since many of these read-
ings are not typically measured by wireless sensor nodes, we only index the tem-
perature and pressure readings, and use the rest as part of the data included
in a record. Note that this is a realistic assumption, as sensor nodes may con-
currently measure a number of different parameters. Figure 11 shows the time
series for the readings used in our experiments, along with the respective value
distributions.
—Great Duck Island (GDI 2002): A real dataset from the habitat monitoring
project on Great Duck Island in Maine.1 We use readings from one of the 32
nodes that were used in the Spring 2002 deployment, which included the follow-
ing readings: light, temperature, thermopile, thermistor, humidity, and voltage.

1http://www.greatduckisland.net/

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 493

Fig. 11. Temperature (F) and barometric pressure (mb) readings recorded at an atmospheric mon-

itoring site in Washington. The last row indicates the respective distribution histograms for the

two time series.

Our dataset includes approximately 97,000 readings recorded between October
and November, 2002.
—INFATI: This is a real dataset derived from the INFATI Project [Jensen et al.
2005] carried out by Aalborg University. The readings are the GPS positions
of 24 different cars moving in the city of Aalborg, Denmark in 2001. The read-
ings include car-id, timestamp, x-coordinate, y-coordinate, etc. Our dataset in-
cludes approximately 250,000 readings recorded between January and March,
2001.

9. EXPERIMENTAL EVALUATION

In this section we present extensive experiments to demonstrate the perfor-
mance effectiveness of the MicroHash index structure. The experimental eval-
uation described in this section focuses on three parameters: (i) space overhead
of maintaining the additional index pages; (ii) search performance, which is de-
fined as the average number of pages accessed for finding the required record;
and (iii) energy consumption for indexing the data records. Due to the design of

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

494 • S. Lin et al.

Fig. 12. Space overhead of index pages with (a) varying buffer size, and (b) varying record size.

the MicroHash and MicroGF indices, each page is written exactly once during a
cycle. Therefore, there is no need to experimentally evaluate the wear-leveling
performance. Finally, we compare the performance of MicroGF with other spa-
tial indexing techniques.

9.1 Overhead of Index Pages

In the first series of experiments, we investigate the overhead of maintaining
additional index pages on the flash media. For this reason, we define the over-
head ratio � as follows: � = Index Pages

DataPages+Index Pages . We investigate the parameter

� using: (a) an increasing buffer size, and (b) an increasing data record size.
We also evaluate two different index record layouts: (a) Offset, in which an

index record has the form {pageid,offset}, and NoOffset, in which an index record
has the form {pageid}. We use the five-year time series from the Washington
State climate dataset and we index data records based on their temperature
and pressure attributes. The data record on each of the 2.9M time instances
was 18 bytes (i.e., 8B timestamp + 5x2B readings).

9.1.1 Increasing Buffer Size. Figure 12 (left) presents our results using
a varying buffer size. The figure shows that in all cases, a larger buffer helps
in fitting more index records per page, which therefore also linearly reduces
the overall space overhead. In both the pressure and temperature cases, the
NoOffset index record layout significantly reduces the space overhead, as less
information is required to be stored inside an index record.

The figure shows that indexing on pressure achieves a lower overhead. This
is attributed to the fact that pressure changes slower than temperature over
time. This leads to fewer evictions of index pages during the indexing phase,
which consequently also increases the index page occupancy.

We found that a 3KB buffer suffices to achieve an occupancy of 75–80% in
index pages. This can be viewed in the bitmap illustrations of the flash media
in Figure 13. The figures show two characteristics: (a) the number of index
pages on flash, and (b) the occupancy of these pages using a 256-bit grayscale
pixel (where black denotes an empty page). As we can see, providing a larger
buffer during the indexing phase not only decreases the number of index pages

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 495

Fig. 13. Bitmap illustrations of the flash media. Each pixel represents a page on flash media. The

left column shows the index pages (in black) and data pages (in white). The right column uses a

256-bit grayscale image to color the fullness of index pages (black=empty).

(i.e., less black pixels), on flash, but also makes these index pages more highly
occupied (i.e., less darker pixels).

9.1.2 Increasing Data Record Size. Sensor nodes usually deploy a wide ar-
ray of sensors, such as a photo sensor, magnetometer, accelerometer, and others.
Hence, the data record size on each time instance might be larger than the min-
imum 10B size (8B timestamp and 2B data value). Figure 12 (right) presents
our results using a varying data record size. The figure shows that in all cases,
a larger data record size decreases the space overhead proportion. Therefore,
it does not become more expensive to store larger data records on flash.

9.2 Searching By Timestamp

In the next experimental series, we investigate the average number of pages
that must be read in order to find a record by its timestamp. Note that if we did
not use an index, and thus had only data records on the flash, then we could
find the expected record in O(1) time, as we could manipulate the position of the
record directly. However, this would also violate our wear-leveling mechanism,
since as we wouldn’t be able to spread out the page writes evenly among data
and index pages.

We evaluate the proposed search-by-timestamp methods LBSearch and
ScaleSearch under two different index page layouts: (a) Anchor, in which every

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

496 • S. Lin et al.

Fig. 14. Search-by-timestamp performance of the MicroHash index.

index page stores the last-known data record timestamp, and (b) NoAnchor, in
which an index page does not contain any timestamp information.

Figure 14 shows our results using the Washington State climate dataset for
both an index on temperature (left) and an index on pressure (right). The figure
shows that using an anchor inside an index page is a good choice, as it usually
reduces the number of page reads by two, while it does not present a significant
space overhead (only 8 additional bytes).

The figure also shows that ScaleSearch is superior to LBSearch as it ex-
ploits the uniform distribution of index pages on the flash media. This allows
ScaleSearch to get closer to the result in the first step of the algorithm.

Finally, the figure shows that even though the time window of the query is
quite large (i.e., 5 years or 128MB), ScaleSearch is able to find a record by its
timestamp in approximately 3.5–5 page reads. Given that a page read takes
6.25ms, this operation requires according to the RISE model, only 22–32ms or
84–120μJ.

9.3 Searching by Value: MicroHash versus ELF-Like Chaining

The cost of searching a particular value on the flash media is linear with respect
to the size of flash media. However, a simple linear scan over 256 thousand pages
found on a 128MB flash media would result in an overwhelmingly large search
cost. One factor that significantly affects search performance is the occupancy
of index pages. In the basic MicroHash approach, index pages on the flash might
not be fully occupied. If index pages are not fully utilized, then a search requires
iterating over more pages than necessary.

In this section, we perform an experimental comparison of the index chain-
ing strategies presented in Section 6.3. We evaluate both MicroHash chaining
(MHC) and elf-like chaining (ELC) using a fixed 3KB buffer. We deploy the
chaining methods when temperature is utilized as the index (we obtained sim-
ilar results for pressure). Our evaluation parameters are: (a) indexing perfor-
mance (pages written) and (b) search performance (pages read).

Figure 15 (left) shows that MHC always requires less page writes than ELC.
The reason is that ELC’s strategy results in about 15% of sequential trashing,
which is the characteristic presented in Section 6.3. Additionally, ELC requires

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 497

Fig. 15. Comparing MicroHash chaining (MHC) with eLF-like chaining (ELC) using (a) insertion

performance and (b) searching performance by value.

a large number of page reads in order to replicate some of the index records.
This is presented in the ELC total plot, which essentially shows that it requires
as many page reads as page writes in order to index all records.

On the other hand, ELC’s strategy results in more linked lists of fully oc-
cupied index pages than MHC. This has as a result an improved search per-
formance, since the system is required to fetch less index pages during search.
This can be observed in Figure 15 (right), in which we present the number of
index pages read and the total number of pages (index + data). Nonetheless,
we also observe that ELC only reduces the overall read gain by about 10%. This
happens because the reading of data pages dominates the overall reading cost.
However, when searches are more frequent, then the 10% is still an advantage
and therefore ELC is more appropriate than its counterpart, MHC.

9.4 Great Duck Island Trace

We index measurements from the Great Duck Island study described in Sec-
tion 8.3. For this study, we allocate a fixed 3KB index buffer, along with a 4MB
flash media that has adequate space to store all the 97,000 20-byte data read-
ings.

In each run, we index on a specific attribute (i.e., light, temperature, ther-
mopile, thermistor, humidity, and voltage). We then record the overhead ratio
of index pages �, the energy required by the flash media to construct the in-
dex, as well as the average number of page reads that were required to find a
record by its timestamp. We omit the search-by-value results, since these are
very similar to those presented in the previous subsection.

Table II shows that index pages never require more that 30% more space on
the flash media. For some readings that do not change frequently (e.g., humid-
ity), we observe that the overhead is as low as 8%. The table also shows that
indexing the records has only a small increase in energy demand. Specifically,
the energy cost of storing the records on flash without an index was 3042mJ,
which is, on average, only 779mJ less than using an index. Therefore, maintain-
ing index records does not impose a large energy overhead. Finally, the table

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

498 • S. Lin et al.

Table II. Performance Results from Indexing and Searching the

Great Duck Island Dataset

Index On Overhead Energy ScaleSearch
Attribute Ratio �(%) Index (mJ) Avg Page Read

Light 26.47 4,134 4.45

Temperature 27.14 4,172 5.45

Thermopile 24.08 4,005 6.29

Thermistor 14.43 3,554 5.10

Humidity 7.604 3,292 2.97

Voltage 20.27 3,771 4.21

Fig. 16. Comparing MicroGF with grid files and quadtree using (a) searching performance by

value (b) space overhead of index pages.

shows that we were able to find any record by its timestamp with 4.75 page
reads, on average.

9.5 MicroGF versus Grid File and Quadtree

In this section we compare the performance of the MicroGF structure with two
hash-based spatial indexing techniques: grid files and quadtrees. We utilize
four datasets: 2 synthetic datasets with 250K random points in a 2D space, the
INFATI dataset [Jensen et al. 2005], and the weather dataset [ATMO 2005]. We
segment the recording space into 36 subregions and generate a random query
area for each subregion. We then compare the average page access number
for a query and the space overhead of index pages (� = Index Pages

DataPages+Index Pages).

As shown in Figure 16, on average, the MicroGF algorithm accesses 40% less
pages than quadtree and 80% less pages than grid files in query processing. In
addition, the index space overhead of MicroGF is 15% less than quadtree and
56% less than grid files. This is mainly attributed to the following two reasons:
(a) Borrow quadrants can utilize the index page space more efficiently; and (b)
subregion segmentation adjusts the index structure dynamically, according to
the distribution of data.

10. RELATED WORK

In this section, we review prior work on storage and indexing techniques for
sensor networks. While our work addresses both problems jointly, most prior
work has considered them in isolation.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 499

A large number of flash-based file systems have been proposed in the
last few years, including the Linux-compatible journaling flash file system
(JFFS and JFFS2) [Woodhouse 2006], and the yet another flash file system
(YAFFS) [Wookey 2006] specifically designed for NAND flash, since it is portable
under Linux, uClinux, and Windows CE.

Wear-leveling techniques for flash memory have been reported by flash card
vendors such as Sandisk [Sandisk 2006]. These techniques are executed by a
microcontroller located inside the flash card. The wear-leveling techniques are
only executed within 4MB zones and are thus local, rather than global, which
is the case in MicroHash and MicroGF. A main drawback of local wear-leveling
techniques is that the writes are no longer spread out uniformly across all
available pages. Finally, these techniques assume a dedicated controller, while
our techniques can be executed by an ordinary microcontroller of the sensor
device. Other vendors might utilize their own proprietary wear-leveling tech-
niques. However, it is difficult to compare our structure with these techniques
because most vendors usually don’t disclose any of the details with regard to
their architectures or algorithms.

Recently, various techniques have been proposed for data storage and in-
dexing in sensor networks. Matchbox is a simple file system packaged with
the TinyOS distribution [Hill et al. 2000]. It hides the lower details of wear-
leveling and provides a pointer to each file (or page, in our context) on the flash
memory. Had we used such an approach, this would have required a very large
footprint to keep track of these pointers. The efficient log-structured flash file
system (ELF) [Dai et al. 2004] is a log-like file structure designed for wear-
leveling. It works by updating the desired file page and writing it into a new
flash memory space. A few other indexing schemes have been proposed in the
context of sensor networks. One such scheme is T S AR in Desnoyers et al.
[2005], which stores data locally at sensor nodes and indexes them by higher-
tier nodes called proxies. Distributed index of features in sensor networks (DIFS
[Greenstein et al. 2003]) and multidimensional range queries in sensor net-
works (DIM [Li et al. 2003]) extend the data-centric storage approach to provide
spatially distributed hierarchies of indexes to data. All these techniques provide
index topologies at the network level, but do not provide details on how to effi-
ciently write the index information into sensor flash memories, as we do in our
approach.

An R-tree index structure for flash memory on portable devices, such as PDAs
and cell phones, has been proposed in Wu et al. [2003b]. These structures pro-
vide an efficient algorithm to compact several consecutive index units (R-tree
nodes) into a page for better space utilization and search. In addition, they
use an in-memory address translation table which hides details of the wear-
leveling mechanism. However, such a structure has a very large footprint (3–
4MB), rendering it inapplicable for all the sensor nodes (2KB–64KB RAM) we
have so far. Other hash-based techniques (like Z-ordering and grid files) have
been proposed for spatial data indexing. Z-ordering [Orenstein and Merrett
1984] divides each attribute into equal segments and imposes a linear ordering
on the domain. The position in high-dimensional space is therefore mapped to

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

500 • S. Lin et al.

a 1D array. A problem with Z-ordering is that not all the points close in the
xy-plane are close in Z-value. Another problem is that the bucket boundary of
Z-ordering is fixed at the very beginning, which makes it inefficient on nonuni-
formly distributed data. Grid file [Nievergelt et al. 1984] is another kind of
hash-based spatial index structure. The grid file partitions the space into rect-
anglular partitions and utilizes a grip directory (a matrix) to link to the data
page containing a desired point. The size of the grid directory is adjusted as in
extendible hashing. Several variants of grid files have been proposed [Seeger
and Kriegel 1990; Whang and Krishnamurthy 1985] to improve the perfor-
mance of grid files for biased distributed data. However, these algorithms read
flash data records multiple times due to bucket update, which is inefficient in
our context. As has been shown in our article, the MicroGF algorithm is robust
on biased distributed data, while overcoming small RAM and wear-leveling
problems.

Systems such as TinyDB [Madden et al. 2003] and Cougar [Yao and Gehrke
2003] achieve energy reduction by pushing aggregation and selections in the
network, rather than processing everything at the sink. Both approaches pro-
pose a declarative approach for querying sensor networks. These systems are
optimized for sensor nodes with limited storage and relatively short epochs,
while our techniques are designated for sensors with larger external flash mem-
ories and longer epochs. Note that in TinyDB, users are allowed to define fixed-
size materialization points through the STORAGE POINT clause. This allows each
sensor to gather locally in a buffer some readings which cannot be utilized until
the materialization point is created in its entirety. Therefore, even if there was
enough storage to store MBs of data, the absence of efficient access methods
makes retrieval of the desired values quite expensive.

In data centric routing (DCR), such as directed diffusion [Intanagonwiwat
et al. 2000], low-latency paths are established between the sink and sensors.
Such an approach is supplementary to our framework. In data-centric storage
(DCS) [Shenker et al. 2003], data with the same name (e.g., humidity readings)
is stored at the same node in the network, hence offering efficient location and
retrieval. However, the overhead of relocating data in the network will become
huge if the network generates many MBs of GBs of data. Finally, local signal-
based compression techniques, such as that proposed in Deligiannakis et al.
[2004], could improve the compression efficiency of our framework and their
investigation will be a topic of future research.

11. CONCLUSIONS

In this article we describe Microhash and MicroGF, which are efficient exter-
nal memory index structures that address the distinct characteristics of flash
memory in wireless sensor systems. We provide an extensive study of NAND
flash memory when this is used as a storage media of a sensor node, and val-
idate various design principles using our RISE platform. Our proposed access
methods might provide a powerful new framework to realize in situ data stor-
age in sensor networks. Additionally, we expect that these index structures

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 501

will enable new types of queries, such as temporal or top-k [Zeinalipour-Yazti
et al. 2005] queries that have not been addressed adequately to-date. Our ex-
perimental testbed, written in nesC, with real traces from environmental and
habitant monitoring, shows that the structures we propose are both efficient
and practical.

REFERENCES

ATMO 2005. Live from Earth and Mars project. University of Washington, Seattle. http://www-

k12.atmos.washington.edu/k12/grayskies/.

BANERJEE, A., MITRA, A., NAJJAR, W., ZEINALIPOUR-YAZTI, D., KALOGERAKI, V., AND GUNOPULOS, D. 2005.

Rise co-s : High performance sensor storage and co-processing architecture. In Proceedings of the
2nd Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications
and Networks.

CROSSBOW. 2005. Crossbow Technology, Inc. http://www.xbow.com/.

DAI, H., NEUFELD, M., AND HAN, R. 2004. Elf: An efficient log-structured flash file system for micro

sensor nodes. In Proceedings of the 2nd International Conference on Embedded Networked Sensor
Systems. 176–187.

DELIGIANNAKIS, A., KOTIDIS, Y., AND ROUSSOPOULOS, N. 2004. Compressing historical information in

sensor networks. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 527–538.

DESNOYERS, P., GANESAN, D., AND SHENOY, P. 2005. Tsar: A two tier sensor storage architecture

using interval skip graphs. In Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems. 39–50.

DIPERT, B. AND LEVY, M. 1994. Designing with Flash Memory. Annabooks.

FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND STRONG, H. 1979. Extendible hashing—A fast access

method for dynamic files. ACM Trans. Database Syst. 4, 3, 315–344.

GANESAN, D., GREENSTEIN, B., PERELYUBSKIY, D., ESTRIN, D., AND HEIDEMANN, J. 2005. Multi-

Resolution storage and search in sensor networks. ACM Trans. Storage 1, 3, 277–315.

GAY, D., LEVIS, P., VON, B., WELSH, M., BREWER, E., AND CULLER, D. 2003. The nesc language: A holis-

tic approach to networked embedded systems. In ACM SIGPLAN Conference on Programming
Language Design and Implementation.

GREENSTEIN, B., ESTRIN, D., GOVINDAN, R., RATNASAMY, S., AND SHENKER, S. 2003. Difs: A distributed

index for features in sensor networks. In Proceedings of the 1st IEEE International Workshop on
Sensor Network Protocols and Applications.

HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D., AND PISTER, K. 2000. System architecture

directions for networked sensors. SIGPLAN Not. 35, 11, 93–104.

INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. 2000. Directed diffusion: A scalable and robust

communication paradigm for sensor networks. In Proceedings of the ACM IEEE Conference on
Mobile Computing and Networking.. 56–67 Tech. Rep. TR = 79.

JENSEN, C., LAHRMANN, H., PAKALNIS, S., AND RUNGE, J. 2005. The infati data. Time Center.

LEVIS, P., LEE, N., WELSH, M., AND CULLER, D. 2003. Tossim: Accurate and scalable simulation of

entire tinyos applications. In Proceedings of the 1st ACM Conference on Embedded Networked
Sensor Systems.

LI, X., KIM, Y., GOVINDAN, R., AND HONG, W. 2003. Multi-Dimensional range queries in sensor

networks. In Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems.

LITWIN, W. 1980. Linear hashing: A new tool for file and table addressing. In 6th International
Conference on Very Large Data Bases. 212–223.

LYMBEROPOULOS, D. AND SAVVIDES, A. 2005. Xyz: A motion-enabled, power aware sensor node plat-

form for distributed sensor network applications. In Proceedings of the 4th International Sympo-
sium on Information Processing in Sensor Networks.

MADDEN, S., FRANKLIN, M., HELLERSTEIN, J., AND HONG, W. 2002. Tag: A tiny aggregation service for

ad-hoc sensor networks. ACM SIGOPS Oper. Syst. Rev. 36, 131–146.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

502 • S. Lin et al.

MADDEN, S., FRANKLIN, M., HELLERSTEIN, J., AND HONG, W. 2003. The design of an acquisitional query

processor for sensor networks. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 491–502.

NEEMA, S., MITRA, A., BANERJEE, A., NAJJAR, W., ZEINALIPOUR-YAZTI, D., GUNOPULOS, D., AND KALOGER-

AKI, V. 2005. Nodes: A novel system design for embedded sensor networks. In Proceed-
ings of the Internatonal IEEE Conference on Information Processing in Sensor Networks
(IPSN).

NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK, K. 1984. The grid file: An adaptable, symmetric

multi-key file structure. ACM Trans. Database Sys. 9, 1, 38–71.

ORENSTEIN, J. AND MERRETT, T. 1984. A class of data structures for associative searching. In Pro-
ceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. 181–

190.

POLASTRE, J. 2003. Design and implementation of wireless sensor networks for habitat monitor-

ing. Master’s Thesis. University of California, Berkeley.

RAMAKRISHNAN, R. AND GEHRKE, J. 2002. Database management systems, 3rd ed. McGraw-Hill,

New York.

SADLER, C., ZHANG, P., MARTONOSI, M., AND LYON, S. 2004. Hardware design experiences in zebranet.

In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems.

227–238.

SAMET, H. 1984. The quadtree and related hierarchical data structures. ACM Comput. Surv. 16, 2,

187–260.

SANDISK 2006. Sandisk flash memory cards—Wear leveling. http://sandisk.com/pdf/oem/

WPaperWearLevelv1.0.pdf.

SEEGER, B. AND KRIEGEL, H. 1990. The buddy-tree: An efficient and robust access method for

spatial data base systems. In Proceedings of the 16th International Conference on Very Large
Databases. 590–601.

SHENKER, S., RATNASAMY, S., KARP, B., GOVINDAN, R., AND ESTRIN, D. 2003. Data-Centric storage in

sensornets. ACM SIGCOMM Comput. Commun. Rev. 33, 1, 137–142.

SHNAYDER, V., HEMPSTEAD, M., CHEN, B., WERNER-ALLEN, G., AND WELSH, M. 2004. Sim-

ulating the power consumption of large-scale sensor network applications. In Proceed-
ings of the 2nd International Conference on Embedded Networked Sensor Systems. 188–

200.

SZEWCZYK, R., MAINWARING, A., POLASTRE, J., ANDERSON, J., AND CULLER, D. 2004. An analysis of a

large scale habitat monitoring application. In Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems. 214–226.

TANG, C. AND RAGHAVENDRA, C. 2004. Compression techniques for wireless sensor networks. In

Wireless Sensor Networks. Kluwer Academic, Norwell, MA, 207–231.

WARNEKE, B., LAST, M., LIEBOWITZ, B., AND PISTER, K. 2001. Smart dust: Communicating with a

cubic-millimeter computer. IEEE Computer. 34, 1, 44–51.

WHANG, K. AND KRISHNAMURTHY, R. 1985. Multilevel grid files. Res. Rep. RC11516, IBM, Yorktown

Heights, New York.

WOODHOUSE, D. 2006. Jffs: The journalling flash file system. http://sources.redhat.com/jffs2/

jffs2.pdf.

WOOKEY. 2006. Yaffs - A filesystem designed for nand flash. In Linux Conference of Tutorials.

Leeds, UK.

WU, C., CHANG, L., AND KUO, T. 2003a. An efficient b-tree layer for flash memory storage sys-

tems. In the 9th International Conference on Real-Time and Embedded Computing Systems and
Applications.

WU, C., CHANG, L., AND KUO, T. 2003b. An efficient r-tree implementation over flash-memory

storage systems. In Proceedings of the 11th ACM International Symposium on Advances in Geo-
graphic Information Systems. 17–24.

XU, N., RANGWALA, S., CHINTALAPUDI, K., GANESAN, D., BROAD, A., GOVINDAN, R., AND ESTRIN, D. 2004.

A wireless sensor network for structural monitoring. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems. 13–24.

YAO, Y. AND GEHRKE, J. 2003. Query processing in sensor networks. In Conference on Innovative
Data Systems Research.

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

Efficient Indexing Data Structures for Flash-Based Sensor Devices • 503

ZEINALIPOUR-YAZTI, D., LIN, S., KALOGERAKI, V., GUNOPULOS, D., AND NAJJAR, W. 2005. Microhash:

An efficient index structure for flash-based sensor devices. In Proceedings of the 4th USENIX
Conference on File and Storage Technologies (FAST). 31–44.

ZEINALIPOUR-YAZTI, D., NEEMA, S., GUNOPULOS, D., KALOGERAKI, V., AND NAJJAR, W. 2005. Data acqui-

sion in sensor networks with large memories. In 1st IEEE International Workshop on Networking
Meets Databases (NetDB).

ZEINALIPOUR-YAZTI, D., VAGENA, Z., GUNOPULOS, D., KALOGERAKI, V., TSOTRAS, V., VLACHOS, M., KOUDAS,

N., AND SRIVASTAVA, D. 2005. The threshold join algorithm for top-k queries in distributed sen-

sor networks. In Proceedings of the 2nd International Very Large Data Base Workshop on Data
Management for Sensor Networks. 61–66.

Received June 2006; revised ; accepted July 2006

ACM Transactions on Storage, Vol. 2, No. 4, November 2006.

