
2010 IEEE Information Theory Workshop - ITW 2010 Dublin

Constrained Codes for Phase-change Memories

Anxiao (Andrew) Jiang
Computer Science and Eng. Dept.

Texas A&M University

College Station, TX 77843

Email: ajiang@cse.tamu.edu

Jehoshua Bruck
Electrical Engineering Department

California Institute of Technology

Pasadena, CA 91125

Email: bruck@caltech.edu

Hao Li
Computer Science and Eng. Dept.

Texas A&M University

College Station, TX 77843

Email: hao@cse.tamu.edu

Abstract—Phase-change memories (PCMs) are an important
emerging non-volatile memory technology that uses amorphous
and crystalline cell states to store data. The cell states are
switched using high temperatures. As the semi-stable states
of PCM cells are sensitive to temperatures, scaling down cell
sizes can bring significant challenges. We consider two po-
tential thermal-based interference problems as the cell density
approaches its limit, and study new constrained codes for them.

I. INTRODUCTION

Phase-change memories (PCMs) are an important emerging

non-volatile memory (NVM) technology. Its basic storage unit,

a PCM cell, has at least two states: the amorphous state and

the crystalline state. To achieve higher storage capacity, multi-

level cells (MLCs) are being developed, where additional

partially crystalline states are used [1]. We model the q ≥ 2
states of a PCM cell by q levels – levels 0, 1, . . . , q − 1 –

where level 0 is the amorphous state, level 1, . . . , q − 2 are

the partially crystalline states, and level q−1 is the crystalline

state. As a cell becomes more crystallized, its level increases.

The level of a PCM cell is switched using high temperatures.

A cell can be heated by a high cell-melting temperature (about

600oC ∼ 700oC) to change to level 0 (amorphous state),

or be heated by a more moderate temperature to increase its

level (i.e., to a more crystallized state). To model the direct

switching of states, we use the diagram in Fig. 1 (for q = 4
as an example) [3]. We see that the cell can be changed from

any level i ∈ {1, 2, . . . , q − 1} directly to level 0 (called a

RESET operation), and from any level i directly to level j for

0 ≤ i < j ≤ q − 1 (called a SET operation). However, for

0 < j < i ≤ q − 1, to change it from level i to level j, both

the RESET and SET operations are needed.

PCMs are under active study and development due to their

very attractive potentials. Compared to the widely used flash

memories, PCMs can potentially scale to much smaller cell

sizes and achieve higher storage capacity. They can also have

substantially better endurance, data retention and read/write

speed [1]. However, scaling down cell sizes can also bring

significant challenges, and solving them will be key to the

PCM development [1]. A major and widely acknowledged

challenge is the thermal issue, because the amorphous and

partially-crystalline states are only semi-stable states, and high

environmental temperatures can further crystalize the cell, i.e.,

unintentionally increase the cell level [1], [5].

We consider two potential challenges when the PCM’s cell

0 1 2 3

Fig. 1. The transitions among q cell levels. (Here q = 4.) The forward and
backward edges represent the SET and RESET operations, respectively.

density scales toward its limit. The first one is the thermal

crosstalk problem, namely, when a cell is RESET (to level 0)

by the high melting temperature, the heat affects its adjacent

cell and makes it further crystalized [1], [5]. Note that this may

happen both when the adjacent cell is not being programmed

and when it is being SET, unless it is already in the fully

crystalized state (level q − 1). It is because in both cases, the

semi-stable cell state is sensitive to high temperatures.

The second problem is the local thermal accumulation

problem. When cells are repeatedly programmed, the heat can

accumulate in the area [5]. This residual heat can be a major

factor that limits the writing bandwidth of PCMs, because the

writing accuracy is sensitive to temperature [1], [5]. When

the cell density scales toward its limit, relative to the high

I/O speed, it can take nontrivial time for the locally generated

heat to spread out uniformly in the memory chip. So if an

application repeatedly writes a cluster of adjacent cells at very

high speed, the accumulated heat may appear localized [5]. In

that case, it is worth considering whether there exist schemes

that can make the thermal accumulation more balanced.

The above problems have been considered in [1], [5] from

the device and system perspectives. In this paper, we consider

coding techniques for these potential challenges. For the

thermal crosstalk problem, we use a scheme that removes

the crosstalk interference, and then study coding techniques

that reduce the programming cost (measured by the number

of RESET operations). For the local thermal accumulation

problem, we study coding techniques that impose time and

space constraints on writing, to help the heat generated by

programming be more balanced spatially.

Constrained coding is an important area of coding tech-

niques, and has been applied successfully to both magnetic

recording and optical recording [4]. Compared to conventional

constrained coding, the codes studied in this paper are for a

different setting and sometimes require very different coding

978-1-4244-8263-4/10/$26.00 © 2010 IEEE

techniques. It is also notable that for PCMs, the constraints are

not limited to just within a codeword. They are introduced by

the difference between old codewords and the new codewords

that overwrite them, because only cells that are programmed

can generate heat, which may affect other cells.

The rest of the paper is organized as follows. In Section II,

we present symbol-constrained codes for the thermal crosstalk

problem. In Section III, we present space-time constrained

codes for the local thermal accumulation problem. In Sec-

tion IV, we present the concluding remarks. Due to space lim-

itation, we leave some detailed analysis in the full paper [2].

II. SYMBOL-CONSTRAINED CODES

In this section, we study coding techniques for the thermal

crosstalk problem. Let c1, c2, . . . , cn be n cells. For i ∈
{1, 2, . . . , n} , [n], let ℓi ∈ {0, 1, . . . , q − 1} denote the

level of ci. In this paper, we consider the cells as a one-

dimensional array. (The concepts can be extended to higher

dimensions, too.) Two cells ci and cj are neighbors if and

only if |i − j| = 1. Let γ ∈ {1, 2, . . . , q − 1} be a parameter.

We consider the following simple model for thermal

crosstalk: When a cell ci is RESET to level 0, the thermal

crosstalk from ci (at that moment) will increase its neighboring

cell’ level ℓj (for j = i ± 1) by at most γ, unless the

neighboring cell cj is also being RESET at that moment.

(However, a cell level cannot exceed q − 1, the stable fully-

crystalline state. And a SET operation does not affect the

neighboring cells due to its considerably lower temperature.)

Let C ⊆ {0, 1, . . . , q − 1}n be a code, whose rate R(C)

is defined as
log2|C|

n
. (Clearly, R(C) ≤ log2 q.) A rewrite is

to change the cell levels from the current codeword X =
(x1, . . . , xn) ∈ C to a new codeword Y = (y1, . . . , yn) ∈ C.

For i ∈ [n], if xi > yi, then the rewrite needs to RESET ci

(and then SET ci if yi > 0). For j = i±1, if ci is RESET and

yj < min{xj + γ, q − 1}, then the rewrite needs to RESET

cj as well, because otherwise the thermal crosstalk from ci

may make ℓj greater than yj . Therefore, a RESET operation

applied to a cell can trigger the RESET of its neighboring cell,

and this effect can propagate to many cells. Let us define a

RESET segment in codeword Y as a maximum run of symbols

yi, yi+1, . . . , yj (where 1 ≤ i ≤ j ≤ n) such that: (1) ∀
i′ ∈ {i, . . . , j}, yi′ < min{xi′+γ, q−1}; (2) ∃ i′′ ∈ {i, . . . , j}
such that xi′′ > yi′′ . By our above analysis, the rewrite must

RESET all the cells in a RESET segment (before setting them).

To rewrite cells using parallel programming, it is natural

to use the following two-step procedure: First, RESET all the

cells in RESET segments of the new codeword; then, SET all

the cells whose levels are still lower than their values in the

new codeword. (The second step has no crosstalk effect.)

Example 1. Let n = 11, q = 4 and γ = 3.
Assume the cells need to change from an old
codeword (1, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1) to a new codeword
(0, 3, 2, 2, 1, 2, 2, 2, 3, 1, 2). First, we RESET the cells
{c1, c3, c4, c5, c6, c7, c8}. (After this step, the cell levels will
be (0, 3, 0, 0, 0, 0, 0, 0, ℓ9, 1, 1), where ℓ9 ∈ {1, 2, 3}. (Since

cell c8 is RESET, the thermal crosstalk from c8 may make ℓ9
be greater than its original value 1.) Then, we SET the cells
{c3, c4, c5, c6, c7, c8, c9, c11}, to increase the cell levels to
(0, 3, 2, 2, 1, 2, 2, 2, 3, 1, 2).

We define the cost of a rewrite operation as the number of

cells that are RESET during rewriting. (In Example 1, the cost

is 7.) The number of RESETs is a very important cost mea-

surement because PCM cells have a limited longevity: PCM

cells can endure about 106 ∼ 108 RESETs (or SET-RESET

cycles) before becoming non-functional [1], [3]. Note that for

the rewrite, for every cell that needs to decrease its level,

the whole RESET segment containing it is forced (triggered)

to be RESET, too. This motivates us to study constrained

codes where RESET segments have limited lengths. Given this

constraint, we seek capacity-achieving codes.

In this paper, we focus on the case γ = q − 1 (the worst-

case scenario for thermal crosstalk). We define an unstable

segment in a codeword X = (x1, . . . , xn) as a maximum

run of symbols xi, xi+1, . . . , xj (where 1 ≤ i ≤ j ≤ n)

such that for i′ ∈ {i, . . . , j}, xi′ < q − 1. The length of

this unstable segment is j − i + 1. When the memory writes

X , an unstable segment in it will become a RESET segment

if any of the cells in that unstable segment needs to decrease

its level (compared to the old codeword). For a code C, if in

all its codewords the unstable segments’ lengths are at most

k, then during rewriting, the length of every RESET segment

is at most k.

Definition 2. SYMBOL-CONSTRAINED CODES

Let k be a positive integer. A code C ⊆ {0, 1, . . . , q − 1}n is
k-limited if in every codeword of C, every unstable-segment’s
length is at most k. (It is also called a symbol-constrained code.)

The k-limited codes are a constrained system S over alpha-

bet Σ , {0, 1, . . . , q − 1}. An example for q = 4, k = 3 is

shown in Fig. 2. We see that it generalizes the (d = 0, k)-
run-length-limited (RLL) codes [4] from the binary alphabet

to the q-ary alphabet. Its Shannon capacity is cap(S) =
limn→∞ sup 1

n
log N(n;S), where N(n;S) is the number of

words of length n in S. We have constructed a k-limited code

for q = 4 and k = 1, which has a rate 6 : 5 finite-state

encoder. Its rate is 1.2 bits/cell, close to the Shannon capacity

(which can be shown to be 1.203). When the code is used for

storing data, assuming that the input information bits have

a uniform i.i.d. distribution, for every rewrite, the ratio of

the average number of RESET operations to the number of

information bits is 0.228. This compares favorably with the

no-coding method (i.e., storing 2 bits per cell), which has a

higher ratio of 0.345. So symbol-constrained codes can reduce

RESETs. (For more details of the code, see [2].)

We note that rewriting codes for reducing the RESET op-

erations for PCMs have been studied in [3], where interesting

WOM-like codes have been used. However, the study in [3] did

not consider any thermal interference problem. We also stress

that the codes in [3] and the codes we study are two drastically

different approaches. While the codes in [3] always RESET

0 1 2 3

2 2 2

1 1 1

0 0 0

3
3 3

3

Fig. 2. Shannon cover of the 3-limited codes (constrained system), for q = 4.

TABLE I
SHANNON CAPACITY (BITS PER CELL) OF k-LIMITED CODES

q\k 1 2 3 4 5 6

2 0.694 0.879 0.947 0.975 0.988 0.994

3 1.000 1.303 1.432 1.496 1.531 1.552

4 1.203 1.585 1.756 1.846 1.899 1.931

5 1.357 1.797 2.000 2.110 2.176 2.218

6 1.481 1.968 2.196 2.322 2.399 2.449

7 1.585 2.111 2.360 2.499 2.585 2.642

8 1.675 2.234 2.501 2.651 2.745 2.807

9 1.754 2.342 2.624 2.785 2.885 2.953

10 1.824 2.438 2.734 2.904 3.010 3.082

11 1.888 2.525 2.834 3.011 3.123 3.199

12 1.946 2.604 2.924 3.108 3.225 3.305

13 2.000 2.677 3.008 3.198 3.319 3.402

14 2.050 2.745 3.084 3.281 3.406 3.492

15 2.096 2.807 3.156 3.358 3.487 3.576

16 2.139 2.866 3.223 3.430 3.563 3.654

all cells at the same time (to get a fresh start for rewriting), we

use constrained codes that are based on local constraints, and

cells are most likely RESET in different rewrites. And with

our constrained-coding approach, slide-block decoders can be

built to locally decode information bits efficiently.

The following theorem presents the Shannon capacity of the

symbol-constrained codes, for arbitrary q and k. Due to the

space limitation, we present its full proof in [2].

Theorem 3. Let q ≥ 2 and k ≥ 1 be integers. Let

f(λ) = λk+2 − qλk+1 + (q − 1)k+1.

The equation f(λ) = 0 has at most three real-valued solutions,
one of which is q − 1. Among those real-valued solutions, if
q = k + 2, let λ∗ be the solution with the greatest absolute
value; otherwise, among the (at most two) real-valued solutions
unequal to q − 1, let λ∗ be the solution with the greater
absolute value. Then the Shannon capacity of k-limited codes
is log2 |λ

∗| bits per cell.

Based on Theorem 3, the Shannon capacity of symbol-

constrained codes for different q and k are shown in Table I.

III. SPACE-TIME CONSTRAINED CODES

In this section, we study coding techniques for a different

interference problem: the local thermal accumulation problem.

It is known that when cells are repeatedly programmed,

adjacent cells can be crystallized/disturbed [5]. We seek codes

for rewriting data that can balance heat better. This motivates

us to study the space-time constrained codes defined below.

Let c1, . . . , cn be n PCM cells, whose levels are denoted

by ℓ1, . . . , ℓn ∈ {0, . . . , q − 1}. Let V = {0, 1, . . . , v − 1} be

an alphabet of size v. The data stored in the n cells takes its

value from the alphabet V . A code C is a mapping from the cell

levels L , (ℓ1, . . . , ℓn) ∈ {0, . . . , q − 1}n to the data values

V . We allow it to be a many-to-one mapping (instead of a one-

to-one mapping). The code C has two associated functions: a

decoding function Fd and an update function Fu. The decoding

function Fd : {0, . . . , q − 1}n → V tells us that the cell

levels L represent the data Fd(L) ∈ V . The update function

Fu : {0, . . . , q − 1}n × V → {0, . . . , q − 1}n tells us that if

the old cell levels are L and we want to write the new data

s ∈ V into the cells, we will change the cell levels to Fu(L, s).
(Clearly, we should have Fd (Fu (L, s)) = s.) A rewrite can

change the data to any value in V . Here we do not consider

the thermal crosstalk problem. So when a rewrite changes an

old codeword X = (x1, . . . , xn) ∈ {0, . . . , q − 1}n to a new

codeword Y = (y1, . . . , yn), for i ∈ [n], a cell ci needs to be

programmed only if xi 6= yi. We define the rewrite cost as the

number of cells that are programmed, |{i ∈ [n] | xi 6= yi}|,
which is the Hamming distance between X and Y . To balance

programming-generated heat, we study the following code.1

Definition 4. SPACE-TIME CONSTRAINED CODES

Let α, β, p be positive integers. A code is (α, β, p)-
constrained if for any α consecutive rewrites and for any
segment of β cells – namely, ci, ci+1, . . . , ci+β−1 for some
i ∈ [n] – the total rewrite cost of those β cells (over those α
rewrites) is at most p. (It is also called a space-time constrained
code.)

We note that the space-time constrained codes are interest-

ing because although the system can keep moving data that

are frequently rewritten to balance heat, such an approach may

cause substantial overhead for file-system/compiler design

and their optimization. And for content-addressable systems,

where the address of data is determined by the content of the

data (e.g., by using a hash function) for fast data retrieval,

relocating data can also be very challenging. In this paper,

as the starting point of understanding space-time constrained

codes, we study the time and space constraints separately.

A. Time-constrained Codes

We first study time-constrained codes with α ≥ 1, β =
1, p = 1. This is the simple case where every cell can be

programmed at most once in every α consecutive rewrites.

Note that the rate of the code C is defined as
log2 v

n
bits per

cell. It is easy to see that a simple idea based on time division

can give us a code of rate
log2 q

α
bits per cell, as follows: Let

n = α⌈logq v⌉, and divide the n cells evenly into α groups

(call them the 0th, 1st, 2nd, . . . , (α − 1)-th cell groups); for

i = 1, 2, 3 · · · , for the i-th rewrite we write the data into the

(i mod α)-th cell group. When n → ∞ (which also means

1The model can be generalized by differentiating the cost of RESET and
SET operations. In PCMs, the RESET operation uses a higher temperature
that the SET operation, but has a shorter duration of time.

v → ∞), the code rate approaches
log2 q

α
bits per cell. So the

question is if there exist codes of higher rates.

Note that the challenge for designing time-constrained codes

is that we cannot afford to remember for every cell how

long ago the cell was programmed for the last time (up to

α past rewrites), because that alone will cost log2 α bits of

storage space for every cell. (Consider the case q = 2.) So the

programming of cells needs to be synchronized in some way

so that this information cost can be reduced. We now present

a general time-constrained code construction for q = 2 that

uses the write-once memory (WOM) codes [6] as sub-codes.

Let D be a WOM code that stores data of alphabet size

w in m cells of q = 2 levels. Denote the alphabet of the

stored data by W = {0, 1, . . . , w − 1}. The code D also has

a decoding function Fd(D) : {0, 1}m → W and an update

function Fu(D) : {0, 1}m × W → {0, 1}m. WOM codes

have a unique property: with every rewrite, the cell levels can

only increase, not decrease [6]. Let t denote the number of

rewrites the code D can guarantee to support. (Let the initial

cell levels all be zero.) Clearly, due to the unique property of

WOM codes, t is a finite number.

Example 5. Let w = 4, m = 3, q = 2. Let L′ , (ℓ′1, ℓ
′
2, ℓ

′
3) ∈

{0, 1}3 denote the three cell levels. The following WOM code
D was presented by Rivest and Shamir [6] with t = 2:

L′ 000 100 010 001 110 101 011 111

Fd(D)(L
′) 0 1 2 3 3 2 1 0

If the t = 2 rewrites first write the data as 2, the rewrite it as
1, the code will first let L′ be (0, 1, 0), the change it to (0, 1, 1).

Let E be an “elevator code” that mimics D but allows

the cell levels to increase and decrease in a synchronized

way, described as follows. E also stores data of alphabet

size w in m cells of q = 2 levels. Plainly speaking, for

the first α rewrites, E rewrites data in the same way as

D; then it pushes all the m cell levels to q − 1 = 1; for

the next α rewrites, E rewrites data by decreasing cell

levels, in exactly the opposite way of D; then it pushes all

the m cell levels to 0; then the third batch of α rewrites

are implemented in the same way as D again; and so on.

We now formally define the decoding function Fd(E) and

the update function Fu(E) of E . Let us call a sequence of

rewrites the 0th, 1st, 2nd, 3rd · · · rewrites. For i = 0, 1, 2 . . . ,

let L′
i denote the cell levels after the i-th rewrite, and let

ei ∈ W denote the data that the i-th rewrite writes into

the cells. (Clearly, we should have Fd(E) (L′
i) = ei.) Then

if 0 ≤ (i mod 2α) ≤ α − 1, Fd(E) (L′
i) = Fd(D) (L′

i);
otherwise, Fd(E) (L′

i) = Fd(D) ((q − 1, · · · , q − 1) − L′
i). If

i ≡ 0 mod 2α, Fu(E)

(

L′
i−1, ei

)

= Fu(D) ((0, · · · , 0) , ei).
If 1 ≤ (i mod 2α) ≤ α − 1, Fu(E)

(

L′
i−1, ei

)

=
Fu(D)

(

L′
i−1, ei

)

. If i ≡ α mod 2α, Fu(E)

(

L′
i−1, ei

)

=
(q − 1, . . . , q − 1) − Fu(D) ((0, · · · , 0) , ei). If

α + 1 ≤ (i mod 2α) ≤ 2α − 1, Fu(E)

(

L′
i−1, ei

)

=
(q − 1, . . . , q − 1) − Fu(D)

(

(q − 1, · · · , q − 1) − L′
i−1, ei

)

.

Example 6. Let D be the WOM code in Example 5, and let E
be the “elevator code” defined as above. Then when the rewrites
change the data as 1 → 2 → 3 → 2 → 3 → 1 → · · · , the code
E changes the cell levels as (0, 0, 0) → (1, 0, 0) → (1, 0, 1) →
(1, 1, 1) → (1, 1, 0) → (0, 1, 0) → (0, 0, 0) → (0, 0, 1) →
(0, 1, 1) → (1, 1, 1) → · · ·

We now construct the code C that stores data of alphabet

size v in n cells of q = 2 levels. Let v = w
t

gcd(t,α) ,

where gcd (t, α) is the greatest common divisor of t and

α. Let n = m(t+α)
gcd(t,α) . We see the stored data as a vector

X =
(

x1, x2, . . . , x t
gcd(t,α)

)

∈ {0, 1, . . . , w − 1}
t

gcd(t,α) .

For i = 0, 1, 2 · · · , let Xi denote the data (vector) that

the i-th rewrite writes into the n cells. We divide the n
cells evenly into t+α

gcd(t,α) groups, and call them the 0th,

1st, · · · , (gcd (t, α) − 1)-th groups. (Every cell group has m
cells.) We implement a sequence rewrites as follows. For

i = 0, 1, 2 . . . , let g(i) = ⌊ i
gcd(t,α)⌋. Then for the i-th

rewrite, the t
gcd(t,α) elements of Xi are, respectively, written

into the
(

g(i) mod t+α
gcd(t,α)

)

-th,
(

g(i) + 1 mod t+α
gcd(t,α)

)

-

th, · · · ,
(

g(i) + t
gcd(t,α) − 1 mod t+α

gcd(t,α)

)

-th cell groups.

(After the rewrite, the data can be decoded from those cell

groups as well.) Every cell group uses the “elevator code” E to

rewrite data. (For a cell group, after it is used for t consecutive

rewrites, all its cell levels will be pushed to zero or q−1 when

the next rewrite comes. The it will rest for α − 1 rewrites.)

We can see that every cell group will be programmed in t+1
consecutive rewrites, then not programmed for another α − 1
consecutive rewrites, and then repeat this process. In such a

period of t+α rewrites, the cell levels are either all increasing

or all decreasing; since q = 2, every cell can be programmed

only once. So every cell is programmed at most once for every

α consecutive rewrites. So C is a time-constrained code.

The only detail left to specify is how to know the value of i
mod 2(t+α) when the i-th rewrite happens, which is needed

in the above coding process. (It is used to compute g(i) and to

implement the “elevator code.”) This value can be obtained by

using a simple “counter” of 2(t+α) cells of q = 2 levels. Let

ℓ′1, ℓ
′
2, . . . , ℓ

′
2(t+α) denote their levels. We cyclically program

the cells; for every rewrite, we change the level of one cell.

We see
∑2(t+α)−1

j=1

∣

∣

∣
ℓ′j − ℓ′2(t+α)

∣

∣

∣
equals i mod 2(t + α). So

we can get the wanted value, and every cell in the counter is

programmed exact once for every 2(t + α) > α rewrites.

Let w → ∞, fix t as a constant, and we choose the

smallest m such the WOM code D exists. By the known

results on WOM codes [6], when t = 2, m ≈ 1.294 log2 w;

when t = 3, m ≈ 1.549 log2 w; · · · ; for sufficiently large t,
m ≈ t

log2 t
· log2 w. The rate of the time-constrained code C

is limw→∞
log2 v

n+2(t+α) = limw→∞

t
gcd(t,α)

log2 w

m(t+α)
gcd(t,α)

= t
t+α

· log2 w

m
.

By the known values of
log2 w

m
[6], we show the rate of C in

the following table, and compare it with 1
α

(the rate of the

code using time sharing). We see that the code C can achieve

a higher rate.

α 4 5 6 7 8

1/α 0.250 0.200 0.167 0.143 0.125

t = 2 0.258 0.221 0.193 0.172 0.155

rate t = 3 0.277 0.242 0.215 0.194 0.176

of C t = 4 0.280 0.249 0.224 0.204 0.187

t = 5 0.277 0.250 0.227 0.208 0.192

The following theorem presents an upper bound to the rate

of time-constrained codes. Due to the space limitation, we

present its sketched proof. For its full proof, please refer to [2].

Theorem 7. Define vmax as

vmax , max
∆=1,2,...,⌊n

α
⌋

∆
∑

i=0

(

n − (α − 1)∆

i

)

(q − 1)i.

Then the rate of (α, 1, 1)-constrained codes that use n cells of
q levels is upper bounded by (log2 vmax) /n bits per cell.

Proof: We present the sketch of the proof here. Given a

time-constrained code C that stores data of alphabet size v in n
cells of q levels, we greedily select a sequence of rewrites such

that at each rewrite, the number of programmed cells is locally

maximized. For i = 1, 2, 3 · · · , let δi denote the number of

cells programmed by the i-th rewrite. Construct a sequence of

positive integers ∆−α+2, . . . ,∆−1,∆0,∆1,∆2,∆3, . . . this

way. First, let ∆0 = ∆−1 = · · · = ∆−α+2 = 0; then,

for i = 1, 2, 3 · · · , let ∆i be the smallest integer such that

v ≤
∑∆i

k=0

(n−
Pi−1

j=i−α+1 ∆j

k

)

(q − 1)k. Based on the greedily

chosen rewrite sequence, it can be proved by induction that

for i = 1, 2, 3 . . . , δi ≥ ∆i. It can also be shown that for

i > j ≥ 1, ∆i ≥ ∆j . Since the sequence ∆1,∆2,∆3 · · ·
cannot keep strictly monotonically increasing, there must exist

positive integers i∗ and ∆ such that when i ≥ i∗, ∆i = ∆.

Based on the way that ∆1,∆2,∆3 · · · are defined, we see that

the theorem holds.

B. Space-constrained Codes

We now study space-constrained codes with α = 1, β ≥ 1
and p = 1. This is the simple case where for every segment of

β cells – namely, ci, ci+1, ci+β−1 for some i ∈ [n] – a rewrite

will program at most one cell in the segment. Note that the

code uses n cells of q levels to store data of alphabet size v.
We derive an upper bound for the rate of space-constrained

codes. Let ~x = (x1, x2, . . . , xn) ∈ {0, 1, . . . , q − 1}n be

a vector that is not equal to (0, 0, . . . , 0). We call ~x a β-

constrained vector if for any two non-zero entries xi and

xj in ~x, we have |i − j| ≥ β. Let Mn,β be the set of all

β-constrained vectors. We see that with a space-constrained

code, if the current cell levels are L′ = (ℓ′1, ℓ
′
2, . . . , ℓ

′
n), a

rewrite can change it only to the cell-level states in the set

{L′ +~x | ~x ∈ Mn,β}. (For all the entries in the vector L′ +~x,

take modulo q.) Since the stored data have v distinct values,

and a rewrite can change the data from any value to any other

value, we have v ≤ |Mn,β |+1. So for space-constrained codes

that use n cells of q levels, the code rate is upper bounded by
log2(|Mn,β |+1)

n
bits per cell.

We now compute the value of |Mn,β |. When n ≤ β,

|Mn,β | = n(q − 1) because only one entry in a vector

~x ∈ Mn,β can be non-zero. Now consider the case n ≥ β +1.

Let ~x = (x1, . . . , xn) be a generic vector in Mn,β . If xn−1 =
xn−2 = · · · = xn−β+1 = 0, then there are |Mn−β,β |·q+(q−1)
ways to choose the values of x1, . . . , xn−β and xn. If one of

the elements in {xn−1, xn−2, . . . , xn−β+1} is not zero, then

xn must be zero; and it is not hard to see that in this case,

the number of choices for ~x is |Mn−1,β | − |Mn−β,β |. So we

have the recursion

|Mn,β |
= |Mn−β,β | · q + (q − 1) + (|Mn−1,β | − |Mn−β,β |)
= |Mn−1,β | + (q − 1) |Mn−β,β | + q − 1

Along with the β initial values |Mn,β | = n(q − 1) for n =
1, 2, . . . , β, we can use the above recursion to solve for |Mn,β |.

Note that when q = 2, the vectors in Mn,β correspond to

the codewords of length n in the (d = β − 1, k = ∞)-RLL

constrained system [4], except that Mn,β does not contain the

all-zero codeword. Therefore, when q = 2 and n → ∞, the

rate of the space-constrained code is upper bounded by the

capacity of the (β − 1,∞)-RLL constrained system.

IV. CONCLUSION

In this paper, we consider thermal interference problems for

PCMs, which can be challenging when the cell density scales

toward its limit [1], [5]. We consider the thermal crosstalk

problem and the local thermal accumulation problem, and

propose new constrained codes for solving them. We have

studied the capacity of the constrained codes and some code

constructions. For the symbol-constrained codes, the capacity

and code construction for small γ (corresponding to less

serious crosstalk between cells) still need to be studied. For

space-time constrained codes, the capacity and construction

of codes with both space and time constraints still need to be

understood. They remain as our future research topics.

ACKNOWLEDGMENT

This work was supported in part by the NSF CAREER

Award CCF-0747415, the NSF grant ECCS-0802107, and by

an NSF-NRI award.

REFERENCES

[1] G. W. Burr et al., “Phase change memory technology,” Journal of Vacuum

Science and Technology, vol. 28, no. 2, pp. 223–262, Mar. 2010.
[2] A. Jiang, J. Bruck and H. Li, “Constrained codes for phase-change

memories,” online: http://faculty.cse.tamu.edu/ajiang/PCM.pdf.
[3] L. A. Lastras-Montano, M. Franceschini , T. Mittelholzer, J. Karidis and

M. Wegman, “On the lifetime of multilevel memories,” in Proc. IEEE

International Symposium on Information Theory, Seoul, Korea, 2009, pp.
1224–1228.

[4] B. H. Marcus, R. M. Roth and P. H. Siegel, An introduction to coding

for constrained systems, 5th Edition, 2001, online: http://www.math.ubc.
ca/marcus/Handbook/index.html.

[5] A. Pirovano et al., “Reliability study of phase-change nonvolatile mem-
ories,” IEEE Trans. Device and Materials Reliability, vol. 4, no. 3, pp.
422–427, Sep. 2004.

[6] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,”
Information and Control, vol. 55, pp. 1–19, 1982.

