
International Symposium on Information Theory and its Applications, ISITA2008
Auckland, New Zealand, 7-10, December, 2008

On The Capacity of Flash Memories

Anxiao (Andrew) Jiang† and Jehoshua Bruck‡

† Computer Science Department
Texas A&M University

College Station, TX, 77843, U.S.A.
E-mail: ajiang@cs.tamu.edu

‡ Electrical Engineering Department
California Institute of Technology

Pasadena, CA, 91125, U.S.A.
E-mail: bruck@caltech.edu

Abstract

Flash memories are the most widely used type of non-
volatile electronic memories. Compared to magnetic
recording and optical recording, flash memories have the
unique property that their cell levels, which represent data,
are programmed using an iterative procedure that monotoni-
cally shifts each cell level upward toward its target value. In
this paper, we study the capacity of flash memories to store
data. We explore the relationship among their capacity, pro-
gramming precision and programming time. The study is
focused on the capacity of single cells, and an optimal pro-
gramming algorithm is presented.

1. INTRODUCTION

Flash memories are the most widely used type of non-
volatile electronic memories (NVMs) due to their physical
endurance and high performance [2]. In a flash memory,
floating-gate cells are organized as blocks, with104 to 106

cells per block. The memory stores data in the cells by ap-
propriately setting the cells’ levels, where a cell’s level can
be increased or decreased by injecting charge into the cell or
removing charge from the cell. In current flash memories,
discrete cell levels are chosen to represent data. Therefore,
a cell withq levels can storelog2 q bits. Most current prod-
ucts use single-level cells, whereq = 2. To increase data
density, multi-level cells, whereq > 2, are being actively
explored [2].

Flash memories have a prominent feature of cell pro-
gramming. Although a cell’s level can be efficiently in-
creased via charge injection, to decrease it, the whole block
must be erased (i.e., all cell levels be lowered to the min-
imum value) and then reprogrammed. On the other hand,
the precision of charge injection is limited, which means
that the actual increase in cell level usually differs from the
aimed increase. Due to the prohibitively high cost of block
erasure/reprogramming [5], in the current technology, a cell

This work was supported in part by NSF CAREER Award CCF-
0747415, and by NSF grant ECCS-0802107.

is programmed using a conservative approach: the mem-
ory circuit iteratively injects charge into the cell and then
measures the level [1, 3, 4]. Initially, the cell is at level 0,
which is the minimum value of the cell level. In each round,
some charge is injected into the cell, and the new cell level
is measured. The injection is small enough so that the risk
of over-shooting is sufficiently small. The cell level shifts
upward monotonically with each round, until it reaches the
target value.

In this paper, we study the capacity of flash memories
for storing data. We focus on the capacity of single flash
cells. LetA denote the maximum value that a cell level
can take. The actual cell level can be any number in the
continuous range[0,A]. Divide [0,A] into ` intervals:

[0, a1), [a1, a2), · · · , [a`−2, a`−1), [a`−1,A],

and map them tò information symbols:{1, 2, · · · `}. The
intervals are set in a way such that to store the symbol
i ∈ {1, 2, · · · , `} in the cell, we can shift the cell level from
0 to thei-th interval (via a cell-programming method) with
guaranteed success. Thecapacity is defined as the maxi-
mum amount of information that can be stored in a cell with
this approach. That is, the capacity equalslog `, where the
value` is maximized under the flash memory’s constraints
on cell programming.

We study the relationship among the capacity of a cell,
the programming precision, and the programming time.
Different from other conventional storage media (e.g., mag-
netic and optical recording), writing in flash memories is
a multi-stage process because it takes multiple rounds and
the programming strategy is adaptively chosen after every
round based on the actual cell level. The number of rounds
used to program a cell is a strong indicator of the program-
ming time. In this work, we present a solution that de-
rives the capacity of flash cells. We also present a cell-
programming algorithm that achieves the capacity.

The paper is organized as follows. In Section 2, a pro-
gramming model for flash cells is introduced. In Section 3,
the capacity of a flash cell is derived. In Section 4, an ef-
ficient programming algorithm that achieves the capacity is
obtained. In Section 5, the conclusions are presented.

2. Cell Programming Model

Let [0,A] denote the continuous range of values that a
cell level can take. Given a positive integerk, let [k] denote
the set{1, 2, · · · , k}. Divide [0,A] into ` intervals

{πi|i ∈ [`]},

whereπ1 = [0, a1), πi = [ai−1, ai) for 2 ≤ i ≤ `− 1, and
π` = [a`−1,A].1 These intervals are mapped to symbols in
the alphabet[`]. ∀ i ∈ [`], if a cell stores the information
symboli, its cell level should be in the intervalπi.

We assume the flash memory circuit to have a program-
ming resolution∆. In a round of programming, the cir-
cuit aims to increase a cell’s level byi∆, for some integer
i. This aimed cell-level increase,i∆, is controlled by the
discrete adjustment of the programming voltage or current.
Due to noise in the charge-injection process, the actual in-
crease of the cell level deviates from the aimed value. The
programming noise can be characterized by a probability
density function:

fx0 ,i∆ : [κlow(x0, i∆),κup(x0, i∆)) → R+,

whereκlow andκup denote the minimum value and the max-
imum value of the noise, respectively, when the initial cell
level is x0 and the aimed increase of the cell level isi∆.
Both κlow andκup are functions ofx0 and i∆. When the
programming noise isx, the actual cell level after program-
ming becomesx0 + i∆ + x.

It is not easy to accurately model the programming
noise. The distributionfx0 ,i∆ varies among cells [2]. In
this paper, we assume the following constraints:

κlow = i∆(1−ε), κup = i∆(1 + δ),

for some parametersε ∈ (0, 1) andδ > 0. This model
has the property that the actual increase of the cell level
is always positive, and the higher the aimed cell-level in-
crease is, the larger the noise can be. By settingε andδ

sufficiently large, we can make sure that the actual noise
is contained in the region[κlow(x0, i∆),κup(x0, i∆)) =
[i∆(1−ε), i∆(1 + δ)). The model can be refined if more
knowledge on the programming noise is known.

A flash cell is programmed using multiple rounds,
where the cell level is increased in each round. The number
of rounds of programming is a strong indicator of the total
time used for programming. Let’s user to denote the max-
imum number of rounds allowed to be used for program-
ming a cell. Then the storage capacity of a cell is not only a
function of the programming noise, but also the parameter

1The inclusion and exclusion of the two boundary values are chosen
for mathematical convenience, and are easy to deal with in practice. The
same holds for the inclusion and exclusion of boundary values for other
notations in the paper.

r, because the more rounds of programming are used, the
smaller the intervalsπ1, · · · , π` can be. There is a trade-
off between the programming time and the capacitylog `.
A programming process can be represented byr integers
z1, z2, · · · , zr, where in thei-th round (i ∈ [r]), the mem-
ory circuit aims to increase the cell level byzi∆. (Before
programming, the cell level is zero. After programming, the
cell level falls in the intervalπ j if the information symbol
to store isj ∈ [`]. Herezi can be zero because once the cell
level enters the intervalπ j, the programming ends.) Each
integerzi is set adaptively based on the actual cell level be-
fore thei-th round starts.2

Definition 1 Let U (θ, x, i) denote the minimum real num-
ber that satisfies the following constraint: there is a pro-
gramming strategy that can guarantee to shift the cell level
from x into the range

[θ,U (θ, x, i))

using at mosti rounds of programming.

U (θ, x, i) is a monotonic function ofθ: ∀ θ1 < θ2,
U (θ1, x, i) ≤ U (θ2, x, i). Therefore, to maximize the stor-
age capacity, which is equivalent to maximizing`, the cell-
level intervals should be set as follows:

a1 = ∆(1−ε); ∀ i ∈ [`− 1] \ {1}, ai = U (ai−1, 0, r).

Since the minimum aimed increase of the cell level is∆, it
is simple to see thatπ2 = [∆(1−ε), ∆(1 + δ)).

Example 1 Let r = 1. Consider thei-th cell-level inter-
val πi = [ai−1, ai) = [ai−1,U (ai−1, 0, 1)), where i ∈
[`− 1] \ {1}. To shift the cell level from 0 into the range
[ai−1,U (ai−1, 0, 1)) with just one round of programming,
the aimed increase of the cell levelj∆ should satisfy the
conditions

j∆(1−ε) ≥ ai−1, j∆(1 + δ) ≤ U (ai−1, 0, 1).

The minimum value forj is d ai−1
∆(1−ε) e. So

U (ai−1, 0, 1) = d ai−1

∆(1−ε)
e∆(1 + δ).

Defineb1, b2, · · · , b`−2 asb1 = 1, b2 = d 1+δ
1−ε e, b3 =

dd 1+δ
1−ε e 1+δ

1−ε e, b4 = ddd 1+δ
1−ε e 1+δ

1−ε e 1+δ
1−ε e, · · · Then, the cell-

level intervals that maximize the storage capacity are:

π1 = [0, ∆(1−ε)), π2 = [∆(1−ε), b1∆(1 + δ)),

πi = [bi−2∆(1 +δ), bi−1∆(1 +δ)) for i ∈ [`− 1] \ {1, 2},

π` = [b`−2∆(1 + δ),A].
2As described before, a cell level cannot be greater thanA. For sim-

plicity, we assume that the flash memory circuit can change the cell level to
A with just one round of programming by using sufficiently strong charge
injection. In the mathematical model of this paper, it means to setz1 suffi-
ciently large.

Knowing how to computeU (θ, x, i) helps compute the
storage capacity. That is the focus of the next section. It is
also necessary to know how to program a cell given the cell-
level intervals. A cell-programming algorithm is a function
that, given the current cell levelx, the target cell-level inter-
val πi and the number of remaining rounds of programming
j, the aimed increase of the cell level in the next round of
programming:

g : [0,A]× {πi|i ∈ [`]} × [r] → {0, ∆, 2∆, · · · }.

Example 2 LetA = 10, ∆ = 0.5, ε = 0.3, δ = 0.5 and
r = 4. A storage scheme is shown in Fig.1(1) that divides
[0,A] into ` = 12 cell-level intervals. As an illustration,
when the information symbol to store is 7 (namely, the tar-
get cell-level interval is[3.75, 4.55)), the cell-programming
algorithm is shown in Fig.1(2). For example, if the current
cell level is in the region[2.3, 3.05), the aimed cell-level
increase in the next round of programming is2∆. (The cell-
level region(0, 2.1) is not shown in Fig.1(2) because the
cell level will not enter it.) It is noticeable that this program-
ming algorithm does not depend on the number of program-
ming rounds that remain. Both the storage scheme and the
programming algorithm are derived based on the results to
be presented next and, in fact, optimize the storage capacity.

(1)
Cell level [0,0.35) [0.35,0.75) [0.75,1.5) [1.5,2.25)
Symbol 1 2 3 4

Cell level [2.25,3) [3,3.75) [3.75,4.55) [4.55,5.35)
Symbol 5 6 7 8

Cell level [5.35,6.5) [6.5,7.65) [7.65,8.8) [8.8,10]
Symbol 9 10 11 12

(2)
The symbol to store: 7

Current cell level 0 [2.1,2.3) [2.3,3.05) [3.05, 3.75)
Aimed increase in
the next round 6∆ 3∆ 2∆ ∆

Figure 1:Storage in a flash-memory cell withA = 10, ∆ = 0.5, ε =
0.3, δ = 0.5 andr = 4. (1) Mapping cell-level intervals to information
symbols. (2) Programming algorithm.

3. Capacity of Single Flash Memory Cell

In this section, we show how to compute the storage
capacity of a flash cell. First, we study the properties of the
functionU (θ, x, i).

It is simple to see that whenx ≥ θ, U (θ, x, i) = x.
Whenx < θ, we get

U (θ, x, 1) = x + d θ− x
∆(1−ε)

e · ∆(1 + δ)

because to shift the cell level fromx to some value aboveθ
with just one programming round, the aimed increase in the
cell level should be at leastd θ−x

∆(1−ε) e · ∆. Whenx < θ and

i ≥ 2, we have the following recursion:

U (θ, x, i) =

min
j∈[d θ−x

∆(1−ε) e−1]
max

s∈[x+ j∆(1−ε),x+ j∆(1+δ))
U (θ, s, i− 1).

This recursion holds because to change the cell level fromx
to some value aboveθ, the aimed cell-level increase in the
next round can be set asj∆ with j ∈ [d θ−x

∆(1−ε) e − 1]; after
the next round, the actual cell level (which is denoted bys
in the recursion) can be any value in[x + j∆(1 − ε), x +
j∆(1 + δ)), andi− 1 more rounds can be used to program
the cell.

The above recursive formula, however, cannot be di-
rectly used to computeU (θ, x, i) effectively, because here
s can take infinitely many different values. Therefore, more
properties ofU (θ, x, i) need to be learned. It is not hard to
show thatU (θ, x, i) is neither a monotonic nor a continu-
ous function ofx. However, it is piece-wise monotonic and
continuous inx, as Lemma 1 below shows.

Definition 2 For j ∈ Z, definet j as

t j = θ− j∆(1−ε).

∀ x ∈ R, let x− denote the limit:

lim
ε→0,ε>0

x−ε.

LetU (θ, x−, i) denote the limit

lim
ε→0,ε>0

U (θ, x−ε, i).

∀ x, y ∈ R, we say “x is abovey” if x ≥ y.

Lemma 1 Let j be a non-negative integer. (1)∀ x ∈
[t j+1, t j), U (θ, x, i) is continuous and non-decreasing inx;
(2) ∀ x ∈ [t j+1,θ), U (θ, x, i) ≤ U (θ, t−j+1, i).

Proof: First, consider the casei = 1. ∀ x ∈ [t j+1, t j),
U (θ, x, 1) = x + d θ−x

∆(1−ε) e · ∆(1 + δ) = x + (j +
1)∆(1 + δ), which is continuous and non-decreasing inx.
∀ x ∈ [t j+1,θ), without loss of generality (WLOG), we
can assumex ∈ [tk+1, tk) for some0 ≤ k ≤ j. Then,
U (θ, x, 1) = x +(k + 1)∆(1 +δ) = tk+1 +(k + 1)∆(1−
ε) + (k + 1)∆(ε + δ) + (x− tk+1) = θ + (k + 1)∆(ε +
δ) + (x − tk+1) ≤ θ + (j + 1)∆(ε + δ) + ∆(1 − ε) ≤
θ + (j + 1)∆(ε + δ) + ∆(1 + δ) = t−j+1 + (j + 2)∆(1 +
δ) = U (θ, t−j+1, 1). So both properties are true wheni = 1.

In the following, let us assumei ≥ 2.

The proof is by induction onj. When j = 0 and
x ∈ [t1, t0), U (θ, x, i) = x + ∆(1 + δ), so Property (1) is
true. Whenj = 0 andx ∈ [t1,θ), U (θ, x, i) = x + ∆(1 +
δ) ≤ θ− + ∆(1 + δ) = t−0 + ∆(1 + δ) = U (θ, t−0 , 1) ≤
maxs∈[t−0 ,t−0 +∆(ε+δ)) U (θ, s, i− 1) = U (θ, t−1 , i), so Prop-

erty (2) is also true. This serves as the base case of the
induction. Now consider the inductive step.

We first consider Property (1). To shift the cell level
from x to some value aboveθ, the aimed increase of
the cell level in the next round will bek∆ for some
k ∈ [d θ−x

∆(1−ε) e − 1] = [j]. Define Sk(x) as Sk(x) =
[x + k∆(1 − ε), x + k∆(1 + δ)), and define fk(x) as
fk(x) = maxs∈Sk(x) U (θ, s, i − 1). Clearly,U (θ, x, i) =
mink∈[j] fk(x).

The range[t j+1, t j) can be split into three subregions
[t j+1, z1), [z1, z2), [z2, t j) such that: whenx ∈ [t j+1, z1),
Sk(x) ⊆ [t j+1−k , t j−k); when x ∈ [z1, z2), t j−k ∈
Sk(x), and U (θ, t−j−k, i − 1) > x + k∆(1 + δ); when

x ∈ [z2, t j), t j−k ∈ Sk(x), but U (θ, t−j−k , i − 1) ≤
x + k∆(1 + δ). (The first and the third subregions might
be empty.) Then, whenx ∈ [t j+1, z1), by the induction as-
sumption,fk(x) = maxs∈Sk(x) U (θ, s, i− 1) = U (θ, (x +
k∆(1 + δ))−, i − 1) is continuous and non-decreasing in
x. When x ∈ [z1, z2), by the induction assumption,
fk(x) = maxs∈Sk(x) U (θ, s, i− 1) = U (θ, t−j−k , i− 1) re-

mains constant asx increases. Whenx ∈ [z2, t j), fk(x) =
maxs∈Sk(x) U (θ, s, i− 1) = x + k∆(1 + δ) is continuous
and non-decreasing inx. So it is not hard to see thatfk(x)
is continuous and non-decreasing inx for x ∈ [t j+1, t j).

SinceU (θ, x, i) = mink∈[j] fk(x) is the lower clo-
sure of j continuous and non-decreasing functions ofx,
U (θ, x, i) is continuous and non-decreasing inx. So Prop-
erty (1) is proved.

We now consider Property (2). Letk (here
k ≤ j) denote the integer such thatU (θ, t−j+1, i) =
maxs∈[t−j+1+k∆(1−ε),t−j+1+k∆(1+δ)) U (θ, s, i − 1). We get

U (θ, t−j+1, i) = maxs∈[t−j+1−k ,t−j+1−k+k∆(ε+δ)) U (θ, s, i −
1) ≥ maxs∈[t−j−(k−1) ,t−j−(k−1)+(k−1)∆(ε+δ)) U (θ, s, i − 1) ≥
U (θ, t−j , i). By the induction assumption,U (θ, x, i) is non-

decreasing forx ∈ [t j+1, t j), andU (θ, t−j , i) ≥ U (θ, x, i)
for x ∈ [t j,θ). SoU (θ, t−j+1, i) ≥ U (θ, t−j , i) ≥ U (θ, x, i)
for x ∈ [t j+1,θ). So Property (2) is proved. 2

Lemma 2 Supposex < y < θ, and suppose there exists
an integerj > 0 such that

y ∈ [x + j∆(1−ε), x + j∆(1 + δ)).

Then it holds that

U (θ, x, i) ≥ U (θ, y, i).

Furthermore, ifj ≥ bU (θ,x,i)−x
∆(1+δ) c, then

U (θ, x, i) ≥ U (θ, y, i− 1).

Proof: Let S denote a programming algorithm that
guarantees to shift the cell level fromx into the range
[θ,U (θ, x, i)) by using at mosti rounds of programming.
With the algorithmS, if y is one of the possible values of
the cell level afterk rounds for some integerk, it is easy to
see that the conclusions in this lemma are true. In the fol-
lowing, we assume that the cell level cannot bey after any
number of rounds of programming with the algorithmS.

Let z ∈ [x, y) be the number satisfying the follow-
ing three properties: (1) With the algorithmS, z is one
of the possible values of the cell level aftera rounds, for
somea ∈ {0, 1, · · · , i − 1}; (2) For some integerb ≥ 1,
y ∈ [z + b∆(1 − ε), z + b∆(1 + δ)); (3) Among all the
numbers that satisfy the previous two properties,z is the
greatest. (Note thatz must exist becausex itself satisfies
the first two properties.)

Let c be the integer such that if the cell level isz af-
ter a rounds of programming, the algorithmS will set the
aimed increase of the cell level to bec∆ in the next round.
It is easy to see thatc > b, because of the definition of
z and the assumption that the cell level cannot be changed
from x to y after any number of programming rounds with
the algorithm S. So we getU (θ, x, i) ≥ U (θ, z, i −
a) = maxs∈[z+c∆(1−ε),z+c∆(1+δ)) U (θ, s, i − a − 1) ≥
maxs∈[y+(c−b)∆(1−ε),y+(c−b)∆(1+δ)) U (θ, s, i − a − 1) ≥
U (θ, y, i− a) ≥ U (θ, y, i).

If j ≥ bU (θ,x,i)−x
∆(1+δ) c, thenz > x (which means thata ≥

1). That is because ifz = x, sincec > b = j here, it
is possible for the cell level to be greater than or equal to
U (θ, x, i) after the first round of programming, which is a
clear contradiction to the definition of algorithmS. Then
by havinga ≥ 1 in the above analysis, we getU (θ, x, i) ≥
U (θ, y, i− 1). 2

Let us call a programming algorithmoptimal if, when
it is used to change a cell level fromx to be aboveθ with
i programming rounds, it guarantees that the final cell level
will be less thanU (θ, x, i). The following theorem is useful
for cell programming when the value ofU (θ, x, i) is known.

Theorem 1 To change the cell level fromx to be aboveθ
with i rounds of programming, after each round, if the ac-
tual cell level isy andy < θ (naturally, y ≥ x), an optimal
algorithm for the next round is to set the aimed cell-level
increase to be

bU (θ, x, i)− y
∆(1 + δ)

c · ∆.

Proof: Let η be an integer such that it is possible for
the cell level to change fromx to y after η rounds of pro-
gramming using an optimal programming algorithm. Then

U (θ, y, i − η) ≤ U (θ, x, i). Let b = bU (θ,x,i)−y
∆(1+δ) c ≥

bU (θ,y,i−η)−y
∆(1+δ) c. Let S = [y + b∆(1−ε), y + b∆(1 + δ)).

∀ s ∈ S, if s < θ, by Lemma 2,U (θ, s, i − η − 1) ≤
U (θ, y, i− η) ≤ U (θ, x, i); if s ≥ θ, U (θ, s, i− η− 1) =
s < y + b∆(1 + δ) ≤ U (θ, x, i). Somaxs∈S U (θ, s, i −
η− 1) ≤ U (θ, y, i − η) ≤ U (θ, x, i). So it is optimal to
chooseb∆ as the aimed increase of the cell level in the next
round. 2

Whenx < θ, defineτ as the non-negative integer such
that

x ∈ [tτ+1, tτ).

In the following, we present a polynomial-time algorithm
that computesU (θ, x, i). We first show how to compute
U (θ, t−j , i), for j ∈ {0, 1, · · · , τ}. The algorithm is recur-

sive. Its time complexity isO(iτ2).

Algorithm 1 ComputeU (θ, t−j , i) by using the following

two functions. (Herej ∈ {0, 1, · · · , τ}.) First,

U (θ, t−j , 1) = t j + (j + 1)∆(1 + δ).

Second, ifi ≥ 2, then

U (θ, t−j , i) = min
k∈[j]

max{U (θ, t−j−k, i− 1), t j + k∆(1 +δ)}.

Theorem 2 Algorithm1 correctly computesU (θ, t−j , i).

Proof: Consider the casei ≥ 2. To change the cell
level from t−j to be aboveθ, the aimed cell-level increase
in the first round of programming can be∆, 2∆, · · · , j∆.
(There is no need to make the aimed increase be(j + 1)∆
in an optimal algorithm.) When the aimed increase is
k∆, after the first round, the cell level falls in the range
Sk = [t−j + k∆(1 − ε), t j + k∆(1 + δ)) = [t−j−k , t j +
k∆(1 + δ)). By Lemma 1, we see thatmaxs∈Sk U (θ, s, i−
1) = max{U (θ, t−j−k , i − 1), t j + k∆(1 + δ)}. Since

U (θ, t−j , i) = mink∈[j] maxs∈Sk U (θ, s, i− 1), the lemma
holds. 2

We now show how to computeU (θ, x, i), with x < θ

and x ∈ [tτ+1, tτ). Given the values ofU (θ, t−j , i)’s, the

following algorithm has time complexityO(τ).

Algorithm 2 ComputeU (θ, x, i) in the following way.
(Herex < θ andx ∈ [tτ+1, tτ)).

(1) Let B = x + (τ + 1)∆(1 + δ). If i = 1, then
U (θ, x, i) = B.

(2) Let b denote the smallest integer such thatx +
b∆(1 + δ) > θ. If b = τ + 1, thenU (θ, x, i) = B; other-
wise, go to the next step.

0 1 2 3 4 5 6 7 8 9
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

x

U

Figure 2: The horizontal axis isx, and the vertical axis is
U (θ, x, i). Hereθ = 9, i = 4, ∆ = 2, ε = 0.5, δ = 1.1.

(3) For j ∈ {b, b + 1, · · · , τ}, Let c j be the greatest
integer such that

t−c j
∈ [x + j∆(1−ε), x + j∆(1 + δ)).

Let

C = min
j∈{b,b+1,··· ,τ}

max{U (θ, t−c j
, i− 1), x + j∆(1 + δ)}.

Then,U (θ, x, i) = min{B, C}.

Theorem 3 Algorithm2 correctly computesU (θ, x, i).

Proof: Consider the programming algorithm that
changes the cell level fromx to be aboveθ. Let a∆ de-
note the aimed cell-level increase in the first round of pro-
gramming using an optimal programming algorithm. By

Theorem 1,a can bebU (θ,x,i)−x
∆(1+δ) c, in which case we will

havex + a∆(1 + δ) > θ. (Otherwise, the cell level would
be at most(x + a∆(1 + δ))− < θ after the first round.
Then at least one more round of programming would be
needed to change the cell level to be aboveθ, and it would
be possible for the cell level to be aboveU (θ, x, i) after the
second round, which would make the programming algo-
rithm invalid.) So if at least two rounds are used,a ∈
{b, b + 1, · · · , τ}; if only one round is used,a = τ + 1.
The rest of the proof is similar to that of Theorem 2.2

An example of the functionU (θ, x, i) is shown in Fig. 2.
We can see that it has the properties presented in Lemma 1
and Lemma 2.

Having known how to compute the functionU (θ, x, i),
we can use the method presented in Section2 to find the
maximum valuè such that the cell-level range[0,A] can
be partitioned intò intervals and mapped tòinformation

0
0.2

0.4
0.6

0.8
1 0

0.5
1

1.5
2

0

5

10

15

20

y
x

z

Figure 3: Storage capacity of a single flash cell. Thex-
axis isε, the y-axis isδ, the z-axis is the maximum value
of `. Here the parameters areA = 10, ∆ = 0.5, and the
maximum number of rounds of cell-programming isr = 5.

symbols. This gives the storage capacity of a flash cell. An
example of the storage capacity is illustrated in Fig. 3.

The following theorem considers the storage capacity
when an arbitrarily large number of programming rounds
can be used.

Theorem 4 Whenr is sufficiently large,̀ ≥ d A
∆(1+δ) e+ 1.

Proof: Supposer is sufficiently large. To change the
cell level from 0 to be above a positive numberθ, we
can set∆ as the aimed cell-level increase in every round
of programming. This way, the final cell level is smaller
thanθ + ∆(1 + δ). With this programming method, the
width of each cell-level interval is less than∆(1 + δ). In
addition, the total width ofπ1 and π2 is ∆(1 + δ). So
` ≥ d A

∆(1+δ) e+ 1.

4. Cell Programming Algorithm

In this section, we present an algorithm that opti-
mally programs a cell, given the optimal set of cell-level
intervals π1, π2, · · · , π`. Here π1 = [0, a1), πi =
[ai−1,U (ai−1, 0, r)) for i ∈ [`− 1] \ {1}, π` = [a`−1,A].

Algorithm 3 ∀ i ∈ [`], the following algorithm shifts the
cell level from 0 intoπi using at mostr rounds of program-
ming.

(1) If i = 1, since the initial cell level, zero, is inπ1 =
[0, a1), no programming is necessary.

(2) If i ∈ [` − 1] \ {1}, keep programming with
the following approach until the cell level is inπi =
[ai−1,U (ai−1, 0, r)): given the current cell levelx < ai−1,

set the aimed cell-level increase in the next round of pro-
gramming as

bU (ai−1, 0, r)− x
∆(1 + δ)

c∆.

(3) If i = `, by our previous assumption, one round of
programming that uses sufficiently strong charge injection
can shift the cell level intoπ`.

Based on the previous analysis, it is easy to verify the
correctness of the above programming algorithm.

5. Concluding Remarks

In this paper, we study the storage capacity of a flash
memory cell under a specific cell-programming model. A
method for computing the capacity is presented, and an op-
timal cell-programming algorithm is derived. As the future
work, we are interested in fully characterizing the capacity
of cell ensembles, and in considering errors caused by vari-
ous disturb mechanisms and the retention problem [2].

References

[1] A. Bandyopadhyay, G. Serrano and P. Hasler, “Pro-
gramming Analog Computational Memory Elements
to 0.2% Accuracy Over3.5 Decades Using A Pre-
dictive Method,” inProceedings of the IEEE Inter-
national Symposium on Circuits and Systems, 2005,
pp. 2148–2151.

[2] P. Cappelletti, C. Golla, P. Olivo and E. Zanoni (Ed.),
Flash Memories, Kluwer Academic Publishers, 1st
Edition, 1999.

[3] M. Grossi, M. Lanzoni and B. Ricco, “Program
Schemes for Multilevel Flash Memories,” inPro-
ceedings of the IEEE, vol. 91, no. 4, 2003, pp. 594–
601.

[4] H. N. et al., “A 144-Mb, Eight-level NAND Flash
Memory with Optimized Pulsewidth Programming,”
IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 682–
690, 2000.

[5] A. Jiang, V. Bohossian and J. Bruck, “Floating Codes
for Joint Information Storage in Write Asymmetric
Memories,” inProceedings of the IEEE International
Symposium on Information Theory, 2007, pp. 1166–
1170.

