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Abstract is programmed using a conservative approach: the mem-

ory circuit iteratively injects charge into the cell and then
Flash memories are the most widely used type of non- measures the level [1, 3, 4]. Initially, the cell is at level 0,
volatile electronic memories. ~ Compared to magnetic which is the minimum value of the cell level. In each round,
recording and optical recording, flash memories have thesome charge is injected into the cell, and the new cell level
unique property that their cell levels, which represent data, is measured. The injection is small enough so that the risk
are programmed using an iterative procedure that monotoni-of over-shooting is sufficiently small. The cell level shifts
cally shifts each cell level upward toward its target value. In upward monotonically with each round, until it reaches the
this paper, we study the capacity of flash memories to storetarget value.
data. We explore the relationship among their capacity, pro-  |n this paper, we study the capacity of flash memories
gramming precision and programming time. The study is for storing data. We focus on the capacity of single flash
focused on the capacity of single cells, and an optimal pro-cells. Let.4 denote the maximum value that a cell level

gramming algorithm is presented. can take. The actual cell level can be any number in the
continuous rang@, A]. Divide [0, A] into ¢ intervals:
1. INTRODUCTION [0,a1),[a1,a2), - ,[40_0,80_1), [a0_1, A],

and map them td information symbols{1,2,---¢}. The
intervals are set in a way such that to store the symbol
ie{1,2,---,/¢} inthe cell, we can shift the cell level from

0 to thei-th interval (via a cell-programming method) with
guaranteed success. Thapacityis defined as the maxi-
mum amount of information that can be stored in a cell with
Ithis approach. That is, the capacity equals ¢, where the

Flash memories are the most widely used type of non-
volatile electronic memories (NVMs) due to their physical
endurance and high performance [2]. In a flash memory,
floating-gate cells are organized as blocks, with to 10°
cells per block. The memory stores data in the cells by ap-
propriately setting the cells’ levels, where a cell’s level can
be increased or decreased by injecting charge into the cell o X L , .
removing charge from the cell. In current flash memories, valuel is maX|m|z_ed under the flash memory’s constraints
discrete cell levels are chosen to represent data. Therefore(,)n cell programming. . . .

We study the relationship among the capacity of a cell,

Il withg level n stor its. Most current prod- . . . .
ace  levels can storéog, ¢ bits. Most current prod the programming precision, and the programming time.

ucts use single-level cells, whege= 2. To increase data Different from other conventional storage media (e.g., mag-
density, multi-level cells, wherg > 2, are being actively . . : ' storag 9., mag
explored [2] netic and optical recording), writing in flash memories is
) . . a multi-stage process because it takes multiple rounds and
Flash memories have a prominent feature of cell pro- : . .
the programming strategy is adaptively chosen after every

ramming. Although a cell's level can be efficiently in-

9 9 gnh ac . y round based on the actual cell level. The number of rounds

creased via charge injection, to decrease it, the whole block : -
: . ~"used to program a cell is a strong indicator of the program-

must be erased (i.e., all cell levels be lowered to the min-

. ming time. In this work, we present a solution that de-
imum value) and then reprogrammed. On the other hand, . :

. ES . rives the capacity of flash cells. We also present a cell-
the precision of charge injection is limited, which means rogrammina alaorithm that achieves the capacit
that the actual increase in cell level usually differs from the P gll'he a gr isgor anized as follows. In Ser:tiony.Z a pro-
aimed increase. Due to the prohibitively high cost of block pap 9 i - ap

erasure/reprogramming [5], in the current technology, a cell gramming model for flash cells is introduced. In Section 3,
prog 9l 9y, the capacity of a flash cell is derived. In Section 4, an ef-

This work was supported in part by NSF CAREER Award CCF- ﬁCiem pmgrammi.ng algorithm that _aChieveS the capacity is
0747415, and by NSF grant ECCS-0802107. obtained. In Section 5, the conclusions are presented.




2. Cell Programming Model

r, because the more rounds of programming are used, the
smaller the intervalsr, - - - , 71y can be. There is a trade-

Let [0, A] denote the continuous range of values that a off petween the programming time and the capabity (.

cell level can take. Given a positive intedefet [k] denote
the set{1,2,--- ,k}. Divide [0, A] into ¢ intervals

{mli € 41},

whererr; = [0,a1), 1 = [a;_1,a;) for2 <i<¢-—1,and

7y = lag_1, A].r These intervals are mapped to symbols in
the alphabet/]. Vi € [¢], if a cell stores the information
symboli, its cell level should be in the intervad.

We assume the flash memory circuit to have a program-

ming resolutionA. In a round of programming, the cir-
cuit aims to increase a cell’s level b, for some integer
i. This aimed cell-level increasé), is controlled by the

A programming process can be represented liytegers
21,22, ,zr, Where in the-th round ¢ € [r]), the mem-
ory circuit aims to increase the cell level byA. (Before
programming, the cell level is zero. After programming, the
cell level falls in the intervalr; if the information symbol

to store isj € [¢]. Herez; can be zero because once the cell
level enters the intervat;, the programming ends.) Each
integerz; is set adaptively based on the actual cell level be-
fore thei-th round startg.

Definition 1 Let/(6, x, i) denote the minimum real num-
ber that satisfies the following constraint: there is a pro-
gramming strategy that can guarantee to shift the cell level

discrete adjustment of the programming voltage or current. from x into the range

Due to noise in the charge-injection process, the actual in-
crease of the cell level deviates from the aimed value. The

[0,U(6,x,1))

programming noise can be characterized by a |orobabilityusing at most rounds of programming

density function:

fxo,iA : [Klow(XO/iA)/Kllp(XO/iA)) - R+/

wherex;,,, andk,, denote the minimum value and the max-
imum value of the noise, respectively, when the initial cell
level is xy and the aimed increase of the cell leveliis
Both ko, andk,, are functions ofy andiA. When the
programming noise ig, the actual cell level after program-
ming becomesg + iA + x.

It is not easy to accurately model the programming
noise. The distributiory, ;s varies among cells [2]. In
this paper, we assume the following constraints:

Kiow = IA(1 — €), kup = iA(1 4 8),

for some parameters € (0,1) ands > 0. This model

has the property that the actual increase of the cell level
is always positive, and the higher the aimed cell-level in-

crease is, the larger the noise can be. By settimgd 6

sufficiently large, we can make sure that the actual noise

is contained in the regiofik;y, (xo, iA), Kup(xo,iA))
[iA(1—€),iA(1+ 6)). The model can be refined if more
knowledge on the programming noise is known.

A flash cell is programmed using multiple rounds,

U (6, x,i) is a monotonic function ob: V 6; < 6,
U(01,x,i) <U(6,,x,1). Therefore, to maximize the stor-
age capacity, which is equivalent to maximizighe cell-
level intervals should be set as follows:

amp=A1—¢€); Vie [l—1]\{1}, a; =U(a;—1,0,7).

Since the minimum aimed increase of the cell levehjst
is simple to see that, = [A(1 —€),A(1+49)).

Example 1 Letr = 1. Consider thei-th cell-level inter-
val m; = [ai_l,a,-) = [a,-_l,l/{(ai_1,0,1)), wherei €

[¢ — 1]\ {1}. To shift the cell level from 0 into the range
[a;_1,U(a;_1,0,1)) with just one round of programming,
the aimed increase of the cell levgh should satisfy the
conditions

iA1 =€) > ai_q, jA1+6) < U(aj_1,0,1).

The minimum value fofis [ﬁ]. So

U(ai_1,0,1) TA(1 +6).

_ |' i—1
Al(l—¢)
Defineby, by, -+ , by 5 asby = 1, by = [127], b3 =

[Tr2eli=e ] ba = [[[122 15211221, - Then, the cell-

where the cell level is increased in each round. The numberlevel intervals that maximize the storage capacity are:

of rounds of programming is a strong indicator of the total
time used for programming. Let’s usdo denote the max-

imum number of rounds allowed to be used for program-
ming a cell. Then the storage capacity of a cell is not only a
function of the programming noise, but also the parameter

m =[0,A(1—¢)), m = [A(1l —€),b1A(1 +6)),
[bi_aA(1468),b;i_1A(1+6)) fori e [(—1]\{1,2},
1y = [by_rA(148), Al

2As described before, a cell level cannot be greater tharFor sim-

7T

1The inclusion and exclusion of the two boundary values are chosen plicity, we assume that the flash memory circuit can change the cell level to
for mathematical convenience, and are easy to deal with in practice. The A with just one round of programming by using sufficiently strong charge
same holds for the inclusion and exclusion of boundary values for other injection. In the mathematical model of this paper, it means tasstiffi-

notations in the paper.

ciently large.



Knowing how to comput/(6, x, i) helps compute the  because to shift the cell level fromto some value abowg
storage capacity. That is the focus of the next section. It is with just one programming round, the aimed increase in the
also necessary to know how to program a cell given the cell- cell level should be at Iea$tﬁ} - A. Whenx < 6 and
level intervals. A cell-programming algorithm is a function ; > 2 we have the following recursion:
that, given the current cell level the target cell-level inter-

val 7; and the number of remaining rounds of programming U, x,i=
j, the aimed increase of the cell level in the next round of ] ‘

ell 222511 selxjA(l=e)x+A(1+8))

g: [0, Al x {mli € [{]} x [r] — {0,4,24,---}. This recursion holds because to change the cell level from
to some value abovg, the aimed cell-level increase in the
Example 2 Let A = 10, A = 0.5, ¢ = 0.3, 5§ = 0.5 and next round can be set g4 with j € H%} —1]; after
r = 4. A storage scheme is shown in Fig1) that divides  the next round, the actual cell level (which is denoted by
[0, A] into £ = 12 cell-level intervals. As an illustration, in the recursion) can be any valuefin+ jA(1 —€),x +
when the information symbol to store is 7 (namely, the tar- jA(1+ 6)), andi — 1 more rounds can be used to program
get cell-level interval i$3.75, 4.55)), the cell-programming  the cell.

algorithm is shown in Figl(2). For example, if the current The above recursive formula, however, cannot be di-
cell level is in the regior{2.3,3.05), the aimed cell-level  rectly used to comput®f (6, x, i) effectively, because here
increase in the next round of programmin@i&. (The cell- s can take infinitely many different values. Therefore, more

level region(0,2.1) is not shown in Fig1(2) because the  properties of{(0, x, i) need to be learned. It is not hard to
celllevel will not enter it.) Itis noticeable that this program- show that// (6, x, i) is neither a monotonic nor a continu-
ming algorithm does not depend on the number of program- ous function ofx. However, it is piece-wise monotonic and
ming rounds that remain. Both the storage scheme and thecontinuous inx, as Lemma 1 below shows.

programming algorithm are derived based on the results to

be presented next and, in fact, optimize the storage capacityDefinition 2 For j € Z, definet; as

t=60—jA(1—e).
&) !

Celllevel [ [0,0.35) | [0.35,0.75)] [0.75,1.5) | [1.5,2.25) VxR letx— denote the limit:
Symbol 1 2 3 4 ! ’
Celllevel [ [2.25,3) | [3,3.75) [3.75,4.55) | [4.55,5.35) lim ¥ —e.
Symbol 5 6 7 8 e—0,6>0
Celllevel || [5.35,6.5) | [6.5,7.65) | [7.65,8.8) | [8.8,10]

Symbol || 9 10 11 12 Leti/(6,x~,i) denote the limit

@

lim U(0,x —¢,i).

The symbol to store: 7 e—0,e>0

Current cell level | 0 [2.1,2.3) | [2.3,3.05) | [3.05, 3.75)
Aimed increase in g ” i
X, R, we say % is abovey” if x > v.

the next round 6A | 3A 2A A v y€ y ey =Y
Figure 1:Storage in a flash-memory cell with = 10, A = 0.5, ¢ = Lemmal Let j t‘)e. a non'negat've integer. (Y X G
0.3, = 0.5 andr = 4. (1) Mapping cell-level intervals to information  [fj+1,t;), U(8, x, i) is continuous and non-decreasingin

Is. (2) P i Igorithm. : - :

symbols. (2) Programming algorithm )V x € [tji11,0),U(8,x,i) <U(H, tj-&-l’l)'

Proof: First, consider the case= 1. V x € [tj;1,¢;),
| _ u@x1) = x+ 551 A0 +06) = x+(j+
3. Capacity of Single Flash Memory Cell 1)A(1 4+ &), which is continuous and non-decreasingrin

) i V x € [tj;1,0), without loss of generality (WLOG), we
In this section, we show how to compute the storage .5, assume ¢ [ty 1, te) for some0 < k < j. Then,

capacity of a flash cell. First, we study the properties of the UG, x,1) = x+ (k+1)A1+8) = tog + (k+1)A(1 -

functionf(6, x, 7). , )+ (k+1)Ale +8) + (x — tp1) = 0+ (k+1)A(e +
It is simple to see that whem > 0, U(0,x,i) = x. )4 (x—tis) <0+ (j+1DA(e+8) +A(1—¢) <
Whenx < 0, we get 0+ (j+1)A(e+08)+A(1+8) =t + (j+2)A(1+
—x 5) =U(6,t;,,,1). So both properties are true whes: 1.

0 jH1
U@©,x,1) = x+ (A 1 In the following, let us assumie> 2.

ﬁ1-A(1+5)



The proof is by induction ory. Whenj = 0 and
x € [t1,t9), U(6,x,i) = x+ A(1+ ), so Property (1) is
true. Whenj = 0 andx € [t1,0),U(6,x,i) = x+ A(1+
8) KO +A(+8) =t; +A(1+68) =U(6,t,,1) <
MAXge (1 11 A(e+5)) Uu,s,i—1)=u(b,t;,i),soProp-

erty (2) is also true. This serves as the base case of th

induction. Now consider the inductive step.

We first consider Property (1). To shift the cell level
from x to some value abové, the aimed increase of
the cell level in the next round will b&A for some
k € [[%l —1] = [j]. DefineSi(x) as Sy(x) =
[x + kA(1 — €),x + kA(1 + 6)), and definef,(x) as
fk(x) = maxsesk(x)l/{(e,s,i— 1). CIearIy,U(Q, x,i) =
minge ;) fx(x).

The rangelt;1,t;) can be split into three subregions
[tj+1,21), [Zl,Zz), [Zz, t]> such that: whenx € [t]'+1,21),
Sk(x) - [tj+17kr t]',k); when x € [Zl,Zz), t]',k €
Sk(x), and (9, bl = 1) > x+ kA(1 + 8); when
x € [z2,t)), tjik € Sk(x), but U(8, t]f_k,i -1) <
x + kA(1 4 5). (The first and the third subregions might
be empty.) Then, whem € [t;,1,21), by the induction as-
sumption,fy(x) = maxseg, (v)U(0,s,i —1) =U(0, (x +
kA(1+ 68))~,i — 1) is continuous and non-decreasing in
x. Whenx € [z1,2z;), by the induction assumption,
fr(x) = maxgeg, () U(O,s,i—1) =U(H, t].ik,i —1) re-
mains constant asincreases. When € [z, t;), fi(x) =
maxycg, (v)U (0,5, —1) = x +kA(1 + 8) is continuous
and non-decreasing in So it is not hard to see tht(x)
is continuous and non-decreasinguifor x € [t;, 1, ;).

Sincel (0, x,i) = ming; fy(x) is the lower clo-
sure of j continuous and non-decreasing functionsxof
U(6, x,1) is continuous and non-decreasingrinSo Prop-
erty (1) is proved.

We now consider Property (2). Lek (here
k < ) denote the integer such thézt(e,t].jrl,i)
maxse[t;+l+kA(1fe),tj’+l+kA(l+5))M(G’S'l —1). We get
ufe, t].+1,z)

1) > max

= ma

i, tkAGers) U081 =

>

Xse[tj'_+1—k’
e T=DA(e+5)) U@o,s,i—1)
Uu(e, t]?, i). By the induction assumptiot (6, x, i) is non-
decreasing forx € [tj+1,tj), andi{ (6, t]f,i) > U(B,x,1)
for x € [t},6). SOU(, t;,,i) > U(6,t; i) > U(6,x,1)
for x € [tj;1,0). So Property (2) is proved. O

j_+1
SEltg_1yt;.

Lemma 2 Supposer < y < 6, and suppose there exists
an integerj > 0 such that

y € [x+jA(1—¢€),x+ jA(1+9)).
Then it holds that
U, x,i) >U(6,y,i).

Furthermore, ifj > L%J , then

UB,x,i) >U6,y,i—1).

Proof: Let S denote a programming algorithm that
uarantees to shift the cell level from into the range
0,U(0,x,i)) by using at most rounds of programming.

With the algorithmS, if v is one of the possible values of
the cell level aftek rounds for some integdy; it is easy to
see that the conclusions in this lemma are true. In the fol-
lowing, we assume that the cell level cannotibafter any
number of rounds of programming with the algoritt$m

Let z € [x,y) be the number satisfying the follow-

ing three properties: (1) With the algorith® z is one
of the possible values of the cell level afterounds, for
somea € {0,1,---,i—1}; (2) For some integeb > 1,
y € [z+bA(1—¢€),z+ bA(1+6)); (3) Among all the
numbers that satisfy the previous two propertiess the
greatest. (Note that must exist because itself satisfies
the first two properties.)

Let ¢ be the integer such that if the cell level saf-
ter a rounds of programming, the algorithhwill set the
aimed increase of the cell level to ba in the next round.

It is easy to see that > b, because of the definition of

z and the assumption that the cell level cannot be changed
from x to y after any number of programming rounds with
the algorithmS. So we geti/(6,x,i) > U(O,z,i —

a) = MaAXse[z+4cA(1—€),z+cA(146)) u@osi—a-1) >
MaXc [y 4 (c—b)A(1—e),y+(c—b)A(1+6) U(0,8,1 —a—1) >

UGB, yi—a)>U6,y,i).

If j > L%J, thenz > x (which means that >
1). That is because if = x, sincec > b = j here, it
is possible for the cell level to be greater than or equal to
U(6,x,1) after the first round of programming, which is a
clear contradiction to the definition of algorithth Then
by havinga > 1 in the above analysis, we g&t(6, x,i) >
ueo,yi—1). ]

Let us call a programming algorithwptimal if, when
it is used to change a cell level fromto be aboved with
i programming rounds, it guarantees that the final cell level
will be less thard/ (6, x, i). The following theorem is useful
for cell programming when the value &f(9, x, i) is known.

Theorem 1 To change the cell level from to be aboved
with i rounds of programming, after each round, if the ac-
tual cell level isy andy < 6 (naturally, y > x), an optimal
algorithm for the next round is to set the aimed cell-level
increase to be

U@, x,i)—y

s A(1+9) )

Proof: Let n be an integer such that it is possible for

the cell level to change from to y aftern rounds of pro-
gramming using an optimal programming algorithm. Then



A%

U@©,y,i—n) < U@O,xi). Leth = |“EI=y]

|HEY Y | LetS = [y+bA(1 —€),y +bA(1+ )
Vs e S, ifs < 0, by Lemma2U(6,s,i —n—1)
U, yi—n) <UB,x,i);ifs >0,U(0,s,i—n—1)
s < y+bA(1+46) <U(6,x,i). SomaxsesU(0,s,i—
n—1) <UB,yi—n) < U6, x,i). Soitis optimal to

).
<

choosa A as the aimed increase of the cell level in the next

round. O
Whenx < 6, definet as the non-negative integer such
that

X € [tq-+], trr)

In the following, we present a polynomial-time algorithm
that computed{(6, x,i). We first show how to compute
Ui, tj‘,i), forj € {0,1,---,7}. The algorithm is recur-

sive. Its time complexity i©(i1?).

Algorithm 1 Computel{ (6, tj_,i) by using the following
two functions. (Herg € {0,1,--- ,t}.) First,

Uu@o,t;,1) =tj+ (j+ 1A +9).
Second, if > 2, then

ufe, tj_,i) = minmax{U(0,t;_,,i—1),t;j+kA(1+5)}.

ke[j] ]

Theorem 2 Algorithm1 correctly computed/ (6, ti i).

Proof: Consider the case > 2. To change the cell
level from t].* to be aboved, the aimed cell-level increase
in the first round of programming can g 2A, - - -, jA.
(There is no need to make the aimed increaséjbe 1)A
in an optimal algorithm.) When the aimed increase is
kA, after the first round, the cell level falls in the range
Sk [t/f +kA(1 —€),t; + kA1 +6)) = [t]f_k, ti+
kA(1+6)). By Lemma 1, we see thatax,cs, U (6,5, —

1) max{U (6, bl = 1),tj +kA(1 +6)}. Since
ufe, t].*,i) = mingc(;) maxses, U(6,s,i — 1), the lemma
holds. O

We now show how to comput (6, x, i), with x < 6
andx € [t;11,t7). Given the values of{(0, t].*,i)’s, the

following algorithm has time complexit@ ().

Algorithm 2 Compute{(6, x,i) in the following way.
(Herex < 0 andx € [t;11,tr)).

(1) LetB x+(t+ 1A +6). Ifi
U(b,x,i) = B.

(2) Let b denote the smallest integer such that-
bA(1+6) > 6. 1fb =1+1, thenld(6,x,i) = B; other-
wise, go to the next step.

1, then

Figure 2: The horizontal axis is, and the vertical axis is
U(b,x,i). Here6 =9,i=4,A=2,e =05,6 = 1.1.

(3) Forj € {b,b+1,---,7}, Letc; be the greatest
integer such that
te, € [x +jA(1 —e),x + jA(1 +9)).
Let
C= min  max{U(6,t,,i—1),x+ jA(1+9)}.
je{bb+1, 1} i

Thenl/(6,x,i) = min{B,C}.

Theorem 3 Algorithm2 correctly computes (6, x, i).

Proof: Consider the programming algorithm that
changes the cell level from to be aboved. Let aA de-
note the aimed cell-level increase in the first round of pro-
gramming using an optimal programming algorithm. By
Theorem 1.4 can be[%J, in which case we will
havex + aA(1 + 5) > 6. (Otherwise, the cell level would
be at most(x + aA(1 + 8))~ < 6 after the first round.
Then at least one more round of programming would be
needed to change the cell level to be abByand it would
be possible for the cell level to be abd¢6, x, i) after the
second round, which would make the programming algo-
rithm invalid.) So if at least two rounds are used,e
{b,b+1,---,7}; if only one round is used; = 7 + 1.

The rest of the proof is similar to that of Theorem 23

An example of the functiod¥ (6, x, i) is shown in Fig. 2.
We can see that it has the properties presented in Lemma 1
and Lemma 2.

Having known how to compute the functidf(6, x, i),
we can use the method presented in Section2 to find the
maximum value/ such that the cell-level rangé, A] can
be partitioned intd intervals and mapped tinformation
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Figure 3: Storage capacity of a single flash cell. The
axis ise, the y-axis isé, the z-axis is the maximum value
of £. Here the parameters a¢ = 10, A = 0.5, and the

maximum number of rounds of cell-programming is- 5.

symbols. This gives the storage capacity of a flash cell. An

example of the storage capacity is illustrated in Fig. 3.

The following theorem considers the storage capacity

when an arbitrarily large number of programming rounds
can be used.

Theorem 4 Wherr is sufficiently largef > (ﬁl +1.

Proof: Suppose is sufficiently large. To change the
cell level from O to be above a positive numbgr we
can setA as the aimed cell-level increase in every round
of programming. This way, the final cell level is smaller
than9 + A(1 + é). With this programming method, the
width of each cell-level interval is less than(1 + §). In
addition, the total width ofr; and 7, is A(1 +68). So
02 (5] + 1

4. Cell Programming Algorithm

In this section, we present an algorithm that opti-
mally programs a cell, given the optimal set of cell-level
intervals 7, 7, - - - ,my. Here mp = [0,&11), T o=
[ai—1,U(ai—1,0,7)) fori € [( = 1]\ {1}, m = [ay—1, A].

Algorithm 3 V i € [¢], the following algorithm shifts the
cell level from 0 intorr; using at most rounds of program-
ming.

(1) If i = 1, since the initial cell level, zero, is i =
[0,41), no programming is necessary.

2 1fi € [¢—1]\ {1}, keep programming with
the following approach until the cell level is im; =
[a;_1,U(a;_1,0,7)): given the current cell levet < a;_4,

set the aimed cell-level increase in the next round of pro-
gramming as

U(a;_1,0,7) —x

L A(1+9) J

(3) If i = ¢, by our previous assumption, one round of
programming that uses sufficiently strong charge injection
can shift the cell level inter,.

Based on the previous analysis, it is easy to verify the
correctness of the above programming algorithm.

5. Concluding Remarks

In this paper, we study the storage capacity of a flash
memory cell under a specific cell-programming model. A
method for computing the capacity is presented, and an op-
timal cell-programming algorithm is derived. As the future
work, we are interested in fully characterizing the capacity
of cell ensembles, and in considering errors caused by vari-
ous disturb mechanisms and the retention problem [2].
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