
Patterned Cells for Phase Change Memories
Anxiao (Andrew) Jiang

Computer Sci. and Eng.
Texas A&M University

College Station, TX 77843
ajiang@cse.tamu.edu

Hongchao Zhou
Electrical Engineering

Caltech
Pasadena, CA 91125

hzhou@caltech.edu

Zhiying Wang
Electrical Engineering

Caltech
Pasadena, CA 91125
zhiying@caltech.edu

Jehoshua Bruck
Electrical Engineering

Caltech
Pasadena, CA 91125

bruck@caltech.edu

Abstract—Phase-change memory (PCM) is an emerging non-
volatile memory technology that promises very high performance.
It currently uses discrete cell levels to represent data, controlled
by a single amorphous/crystalline domain in a cell. To improve
data density, more levels per cell are needed. There exist a num-
ber of challenges, including cell programming noise, drifting of
cell levels, and the high power requirement for cell programming.

In this paper, we present a new cell structure called pat-
terned cell, and explore its data representation schemes. Multiple
domains per cell are used, and their connectivity is used to
store data. We analyze its storage capacity, and study its error-
correction capability and the construction of error-control codes.

I. INTRODUCTION

Phase-change memory (PCM) is an important emerging
nonvolatile memory (NVM) technology that promises high
performance. It uses chalcogenide glass as cells, which has two
stable states: amorphous and crystalline [2]. The amorphous
state has very high electrical resistance, and the crystalline
state has low resistance. Intermediate states, called partially
crystalline states, can also exist. High temperatures induced by
electrical currents are used to switch the state of a portion of
the cell, which is called a domain. By quantizing cell resistance
into multiple discrete levels, one or more bits per cell can
be stored. Currently, four-level cells have been developed. To
improve data density, more levels are needed [2].

The current multi-level cell (MLC) approach faces a number
of challenges, including cell-programming noise, cell-level
drifting, and high power consumption [2], [4]. It is difficult
to program cell levels accurately due to cell heterogeneity and
noise. The cell levels can drift away significantly after they are
programmed, making it even harder to control their accuracy.
And the high power requirement for cell programming is
hindering PCM’s application in mobile devices [4].

In this paper, we explore a new cell structure and its data
representation scheme. In the new structure, called patterned
cells, multiple domains per cell are used. An example is
shown in Fig. 1, where two or four domains exist in a cell,
whose states are independently controlled by their respective
bottom electrodes. (The state of a domain is switched by the
current between the bottom and top electrodes. We assume
that the PCM layer is sufficiently thin such that changing
a domain to the crystalline state, which is called the SET
operation and requires a lower temperature/current, will not
affect its neighboring domains.) The base of a cell is in
the amorphous state, while every domain can be switched to
the crystalline state. (To change domains back to amorphous,

called the RESET operation, we can RESET them together to
avoid interference.) We call this model the crystalline-domain
model, because the domains have a different state from the
cell base when they are crystalline. The amorphous-domain
model, where the cell base is crystalline and the domains can
be amorphous, can also be defined. Due to the space limitation,
we omit its details, and focus on the crystalline-domain model.

crystalline
domain

top electrode(a)

bottom electrodes

crystalline

amorphous base

domain

top electrode(b)

bottom electrodes

amorphous base

crystalline crystalline
domain domain

(c) bottom side of cell

bottom electrodes

(d)

amorphous
base

Fig. 1. Patterned cell with the crystalline-domain model. (a) A PCM cell with
two bottom electrodes and one crystalline domain. The two bottom electrodes
are not connected (i.e., there is high resistance between them). (b) The two
bottom electrodes are connected by two overlapping crystalline domains. (c)
The bottom-side view of a cell with n = 4 potential crystalline domains.
(d) The 10 different connectivity patterns for the 2 × 2 rectangular array
of domains shown in (c). The black vertices are crystalline domains (called
“on” vertices); the white vertices are not crystalline (called “off” vertices).
The edges between vertices denote their connectivity.

We let every domain have two basic states: on (crystalline)
or off (amorphous). If two neighboring domains are both
on, they overlap and become electrically connected (i.e., low
resistance). The connectivity of domains can be detected by
measuring the resistance between their bottom electrodes,
which uses low reading voltage and does not change the state
of the domains. We use the connectivity patterns of domains
to represent data. As an example, the connectivity patterns of
the four domains in Fig. 1 (c) are illustrated in Fig. 1 (d).

Patterned cell is a new approach to store data using the
internal structure of domains in PCM cells. The two basic
states of its domains may eliminate the high precision and
power requirements imposed by programming cell levels. The

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0594-6/11/$26.00 ©2011 IEEE 2294

data representation scheme is a new type of code defined by
graph connectivity. In this paper, we explore this new scheme,
analyze its storage capacity, and study its error-correction
capability and the construction of error-control codes.

Due to space limitation, we present the proofs of a number
of theorems and code constructions in [3].

II. STORAGE CAPACITY OF PATTERNED CELL

In this section, we present the graph model for connectivity-
based data representation. Then we analyze the storage capac-
ity of domains that form one or two dimensional arrays.

A. Graph Model for Connectivity-based Data Representation

Let G = (V,E) be a connected undirected graph, whose
vertices V represent the domains in a cell. An edge (u, v)
exists if the two domains are adjacent (which means they
overlap if they are both on). Let S : V → {0, 1} de-
note the states of vertices: ∀ v ∈ V , S(v) = 1 if v is
on, and S(v) = 0 if v is off. Denote the |V | vertices
by v1, v2, · · · , v|V |. We call

(
S(v1), S(v2), · · · , S(v|V |)

)
a

configuration of G. Let Ũ = {0, 1}|V | denote the set of
all configurations. Since in the crystalline-domain model, the
purpose of making a domain crystalline is to connect it to
at least one crystalline neighbor, we focus on configurations
denoted by U that satisfy this property: “For any v ∈ V that
is on, at least one of its neighbors is also on.” That is, U =
{
(
S(v1), S(v2), · · · , S(v|V |)

)
∈ Ũ | ∀1 ≤ i ≤ |V | , if S(vi) =

1, then ∃vj ∈ V such that (vi, vj) ∈ E and S(vj) = 1}. We
call U the set of valid configurations.

Let C : V × V → {0, 1} denote the connectivity between
vertices: “∀ w1 6= w2 ∈ V , C(w1, w2) = 1 if there
exists a sequence of vertices (w1 = u1, u2, · · · , uk = w2)
such that (ui, ui+1) ∈ E and S(ui) = S(ui+1) = 1
for i = 1, 2, · · · , k − 1; otherwise, C(w1, w1) = 0. And
for any w ∈ V , we set C(w,w) = 1 by default.” Two
vertices w1, w2 are connected if C(w1, w2) = 1. The vector
(C(v1, v1), C(v1, v2), · · · , C(v1, v|V |);C(v2, v1), C(v2, v2),
· · · , C(v2, v|V |); · · · · · · ;C(v|V |, v1), C(v|V |, v2), · · · ,
C(v|V |, v|V |)) is called the connectivity pattern of G.
Clearly, not all vectors in {0, 1}|V |×|V | are connectivity
patterns that correspond to valid configurations (or even just
configurations). So to be specific, let f : U → {0, 1}|V |×|V | be
the function that maps a valid configuration to its connectivity
pattern. Let C = {f(~u) | ~u ∈ U}, and we call C the set of
valid connectivity patterns.

Lemma 1. The mapping f : U → C is a bijection.

Proof: Given a connectivity pattern ~c ∈ C, we see that a
vertex v ∈ V is on if and only if it is connected to at least
one neighbor. So the configuration is determined by ~c.

A PCM can read the connectivity pattern. We store data by
mapping elements in C to symbols. The rate of graph G is
log2|C|
|V | = log2|U|

|V | bits per vertex (i.e., domain).

B. Capacity of One-dimensional Array

It is not difficult to compute the rate of G when |V | is small.
In this paper, we focus on large |V | (especially for |V | → ∞),
which corresponds to using numerous domains in a large PCM
layer. Let n = |V |, and define N(n) , |C| = |U|. We define
the capacity of G as cap = limn→∞

log2N(n)
n .

We first consider the case where the domains form
a one-dimensional array. That is, in graph G =
(V,E), we have V = {v1, v2, · · · , vn} and E =
{(v1, v2), (v2, v3), · · · , (vn−1, vn)}. We denote the capacity of
the one-dimensional array by cap1D.

Theorem 2. Let λ∗ = 1
6

(
100 + 12×

√
69
)1/3

+
2

3(100+12×
√
69)

1/3 + 2
3 ≈ 1.7549. We have

cap1D = log2 λ
∗ ≈ 0.8114.

Proof: The valid configuration of a one-dimensional array
is a constrained system, where every run of 1s (i.e., “on”
vertices) needs to have length at least two. The Shannon cover
of the system is shown in Fig. 2. Its adjacency matrix is

A =

 1 1 0
0 0 1
1 0 1

. By solving |A− λI| = −(λ3 − 2λ2 +

λ − 1) = 0, we find that for matrix A, its eigenvalue of the
greatest absolute value is λ∗ ≈ 1.7549. It is known that the
capacity of the constrained system is log2 λ

∗.

0 1 2
1 (on) 1 (on)

0 (off)
0 (off) 1 (on)

Fig. 2. Shannon cover for one-dimensional array.

We further present the number of valid configurations for a
one-dimensional array with n vertices.

Theorem 3. Let α1, α2, α3 be the three solutions to x for the
equation x3−2x2+x−1 = 0, and let µ1, µ2, µ3 be the numbers
that satisfy the linear equation set

µ1α1 + µ2α2 + µ3α3 = 1

µ1α
2
1 + µ2α

2
2 + µ3α

2
3 = 2

µ1α
3
1 + µ2α

3
2 + µ3α

3
3 = 4

(We get α1 = 1
6 · (100 + 12

√
69)

1
3 + 2

3 · (100 + 12
√

69)−
1
3

+ 2
3 ≈ 1.7549, α2 = − 1

12 · (100 + 12
√

69)
1
3 − 1

3 · (100+

12
√

69)−
1
3 + 2

3 + i · (
√
3

12 · (100 + 12
√

69)
1
3 −

√
3
3 · (100+

12
√

69)−
1
3) ≈ 0.1226 + 0.7449i, α3 = − 1

12 · (100+

12
√

69)
1
3− 1

3 ·(100+12
√

69)−
1
3 + 2

3−i·(
√
3

12 ·(100+12
√

69)
1
3−√

3
3 · (100 + 12

√
69)−

1
3) ≈ 0.1226 − 0.7449i, µ1 ≈ 0.7221,

µ2 ≈ 0.1389 + 0.2023i, and µ3 ≈ 0.1389 − 0.2023i.) Then
for a one-dimensional array with n vertices, we have N(n) =
|C| = |U| = µ1α

n
1 + µ2α

n
2 + µ3α

n
3 .

2295

Lower (Tiling) Lower (Bit-Stuffing) Upper Bound
Rectangular 0.959338 0.961196 0.963109
Triangular 0.987829 0.987218 0.990029

TABLE I
UPPER AND LOWER BOUNDS FOR TWO-DIMENSIONAL ARRAY’S CAPACITY.

C. Capacity of Two-dimensional Arrays

We now consider the case where the domains form a
two-dimensional array. Specifically, we study two types: the
rectangular array and the triangular array, illustrated in
Fig. 3. We denote the capacity of the two-dimensional array
by cap. Some existing techniques based on convex/concave
programming, including tiling, bit-stuffing, etc., can be applied
here to obtain the upper and lower bounds of the capacity. We
summarize the bounds in Table I. It is interesting that the
capacity is really high (close to 1) for both arrays. In the rest
of this section, we will discuss the bounds in detail.

(a) Rectangular array (b) Triangular array

Fig. 3. Two types of two-dimensional arrays.

1) Lower Bound based on Tiling: If we consider a distri-
bution θ on the valid configuration set U , then the rate of G
is R(θ) = H(θ)

n . So another expression for capacity is cap =
maxθ limn→∞R(θ). For any distribution θ, limn→∞R(θ) is
a lower bound for cap. Different ways of constructing θ lead
us to different methods.

In [5], Tiling was proposed as a variable-length encod-
ing technique for two-dimensional (2-D) constraints, such as
runlength-limited (RLL) constraints and no isolated bits (n.i.b.)
constraints. The idea of tiling is that we can divide all the 2-D
plane using shifted copies of two certain shapes, referred as
‘W’ and ‘B’ tiles. Here, we say that a set of vertices A is a shift
or shifted copy of another set B if and only if their vertices
are one-to-one mapped and the position movement (vector)
between each vertex in A and its corresponding vertex in B
is fixed. For these two types of tiles – ‘W’ tiles and ‘B’ tiles,
– they have the following properties:

1) The ‘W’ tiles are freely configurable. That means given
any configuration for all the ‘W’ tiles, we can always
find a configuration for all the ‘B’ tiles such that they
satisfy the 2-D constraints.

2) Given any configuration for all the ‘W’ tiles, the con-
figurations for the ‘B’ tiles are independent with each
other.

According to these properties, we can first set ‘W’ tiles
independently based on a predetermined distribution π, and
then configure the ‘B’ tiles uniformly and independently

(given the ‘W’ tiles). Finally, the maximal information rate
maxπ R(π) is a lower bound of the array’s capacity.

Note that the constraint for valid configurations is that each
“on” vertex has at least one “on” neighbor. For rectangu-
lar/triangular arrays, we can use tiling schemes in Fig. 4.

W

W

W B

W

W

W W

W

B

Fig. 4. Tiling schemes for the rectangular (left) and triangular (right) arrays.

According to Theorem 3.1 in [5], we have

cap ≥ max
π

R(π) = max
π

H(π) +
∑
φ Pπ(φ)|S(φ)|

|W |+ |B|
.

Here, |W | (or |B|) is the size of each ‘W’ (‘B’) tile, e.g.,
|W | = 12 in the left-side tiling of Fig. 4 and |B| = 2 in the
right-side tiling of Fig. 4; H(π) is the entropy corresponding
to distribution π; φ is the configuration of the ‘W’ blocks
around a ‘B’ block (four blocks in Fig. 4), whose distribution
is a function of π, denoted as Pπ(φ); |S(φ)| is the number of
available distinct configurations for a ‘B’ blocks given the ‘W’
blocks around it. Based on this formula, we are able to get
the lower bounds in the first column of Table I using convex
programming with linear constraints.

2) Lower Bound based on Bit-Stuffing: Another way to
obtain the lower bounds for the capacities of 2-D constraint
codes is based on bit-stuffing [6]. In bit-stuffing, let ∂ denote
the vertices near the left and top boundaries, called boundary
vertices. Assume we know the state configuration of ∂; then
we can program the remaining vertices one by one such that
the ith vertex depends on a set of programmed vertices near
it, denoted by Di. In this scheme, for different i, j, we have
that the set Di

⋃
i is a shift of the set Dj

⋃
j, and for all i,

the conditional distribution P (xi|x(Di)) is fixed, denoted by
γ, where x(Di) is the configuration of Di.

Let θ denote the probability distribution of the configuration
on all the vertices V , and let δ denote the probability distri-
bution of the configuration on the boundary islands ∂. Then
we see that θ is uniquely determined by δ and the conditional
distribution γ. It is not hard to prove that for any conditional
distribution γ, when the 2-D array is infinitely large, there
exists a distribution δ such that θ is stationary. That means for
any subset A ⊂ V and its arbitrary shift σ(A) ⊂ V , A and
σ(A) have the same configuration distribution, namely,

Pθ(x(A) = a) = Pθ(x(σ(A)) = a)

for any state configuration a. Note that this equation is true

2296

only when the block is infinity large; otherwise, θ is quasi-
stationary [6].

Given this stationary distribution θ, we would like to calcu-
late the relative entropy Ri of the ith vertex given the states
of the vertices programmed before it. (Here the ith vertex is
not a boundary vertex). Assume the state distribution on Di

is φ; then according to the definition of bit-stuffing

Ri =
∑

y∈{0,1},z∈{0,1}|Di|

φ(z)H(γ(y|z))

where |Di| is the same for different i, so we can also write it
as |D|. It is not easy to get the exact value of Ri because φ is
unknown (it depends on γ) and there are too many constraints
to guarantee that θ is stationary. By relaxing the constraints,
we get a set of distributions on Di, denoted as {φ′}, such that
θ is stationary near the ith vertex (limited in a fixed area T
near the ith vertex). Therefore,

Ri ≥ min
φ′

∑
y∈{0,1},z∈{0,1}|D|

φ′(z)H(γ(y|z))

such that (1) the configuration distribution on T is stationary,
and (2) given some z ∈ {0, 1}|D|, we have γ(0|z) = 0 to
guarantee that each “on” vertex has at least one “on” neighbor.

Since the inequality above holds for all the vertices except
the boundary vertices, a lower bound of the capacity can be
written as

max
γ

min
φ′

∑
z

φ′(z)H(γ(y|z))

under the constraints. (For more discussions, please see [6].)

i

i

Fig. 5. The bit-stuffing schemes for the rectangular and triangular arrays.

Fig. 5 shows the bit-stuffing schemes that we use to
calculate the lower bounds of the 2-D arrays’ capacities. In
this figure, the vertex i is marked as a gray square; Di is
indicated by the black vertices that the vertex i depends on;
the stationary constraint is applied to the region T that includes
all the vertices plotted. Based on these schemes, we get the
lower bounds for the capacities, which are given in the second
column in Table I.

3) Upper Bound based on Convex Programming: In [7],
convex programming was used as a method for calculating
an upper bound on the capacity of 2-D constraints. The idea
is based on the observations that there exists an optimal
distribution θ∗ such that θ∗ is stationary and symmetric when

the array is sufficiently large. The stationary property implies
that for any set of vertices A, – let σ(A) be an arbitrary
shift of A, – A and σ(A) have the same state (configuration)
distribution. The symmetric property depends on the type of
the array. For a rectangular array, if two sets of vertices A and
B are reflection symmetric about a horizontal/vertical line or
a 45-degree line, then they have the same state (configuration)
distribution. Note that the reflection symmetry about a 45-
degree line is also called transposition invariance in [7].
For a triangular array, there are more symmetries: if two
sets of vertices A and B are reflection symmetric about a
horizontal/vertical line or a 30/60-degree line, then they have
the same state (configuration) distribution.

i i

Fig. 6. The schemes for calculating the upper bounds of the capacities.

Now let us consider the distribution over a small region
T for both arrays, as shown in Fig. 6. For example, in
the rectangular array, assume the distribution on T (the 12
vertices) is φ; then given the first ten vertices, the relative
entropy of the next vertex is a function of φ, denoted by R(φ).
Let’s index all the vertices by 1, 2, 3, ..., n from left to right and
then from top to bottom and let Ri = H(xi|x1, x2, ..., xi−1).
It is easy to see that if a vertex i is not on the boundary, then

Ri ≤ H(xi|{x1, x2, ..., xi−1}
⋂
T) = R(φ).

That implies that R(φ) is an upper bound for

cap = lim
n→∞

max
θ

∑n
i=1Ri
n

So our work is to maximize R(φ) such that φ is stationary
and symmetric on T . Thus we get the upper bounds for the
capacity of the rectangular array in Table I. The same method
also applies to the triangular array.

III. ERROR CORRECTION AND DETECTION

In this section, we study error correction/detection for
patterned cells. We focus on one-dimensional arrays and two-
dimensional rectangular arrays. When programming domains,
a potentially important type of error is to make a domain too
large such that it changes the connectivity pattern unintention-
ally. Two kinds of such errors are shown in Fig. 7, where in (a)
two diagonal “on” domains overlap, and in (b) an “on” domain
touches its neighboring “off” domain’s bottom electrode. It
can be proved that the former kind of errors can always be
corrected, because the two concerned domains’ states can be
correctly determined by checking if they are connected to one

2297

of their four neighbors. So in this paper, we focus on the latter
kind of error, which is important and less trivial. We call the
latter error an overreach error, which happens only between
an “on” vertex and a neighboring “off” vertex, and the error
makes them become connected. We assume that between every
pair of neighboring “on” and “off” vertices, the overreach
error happens independently with probability pe. Given pe,
we define the capacity as the maximum number of bits that
can be stored per vertex such that the data can be decoded
correctly with high probability (which approaches one as the
array’s size approaches infinity).

(a)
bottom
electrode

crystalline
domain

(b)

Fig. 7. Error models. (a) Two diagonal domains overlap. (b) Overreach error.

A. One-dimensional Array

Let G = (V,E) be a one-dimensional array of n vertices:
v1, v2, · · · , vn. When n → ∞ and given the overreach error
probability pe, let cap1(pe) denote its capacity.

Theorem 4. For one-dimensional array, cap1(pe) ≥

max{0.5, max
x∈[0,0.4]

x(1−H(pe)) +
2− x

4
H

(
4x

2− x

)
}.

Proof: We present the sketch of the proof here. For details
of the proof, please see [3]. To show cap1(pe) ≥ 0.5, partition
the n cells in the array into pairs, where every pair is either
both on or both off and stores one bit; the code can correct
all overreach errors. To show cap1(pe) ≥ maxx∈[0,0.4] x(1 −
H(pe)) + 2−x

4 H
(

4x
2−x

)
, consider the following code.

Let m ∈ Z+ be even. Given a binary vector ~d =
(d1, d2, · · · , dm), define ∆(~d) as ∆(~d) = (d1, d2 + d1
mod 2, d3 + d2 mod 2, · · · , dm + dm−1 mod 2). It can be
shown that when m → ∞, there exists a binary code D of
rate 1 − H(pe) that can correct binary symmetric errors of
error probability pe, such that for every codeword ~d ∈ D, the
Hamming weight of ∆(~d) equals m/2.

Let n ≥ 5
2m+2, and let n−m

2 be even. Let C ⊂ {0, 1}n be a
code for the one-dimensional array of n vertices, where every
codeword ~s = (s1, s2, · · · , sn) ∈ C is a valid configuration
that satisfies these conditions:

1) The vector ~s has m+ 1 1-runs and 0-runs, where every
1-run or 0-run has at least two vertices.

2) Let L1, L2, · · · , Lm+1 denote the run-lengths of the
m + 1 1-runs and 0-runs in ~s. Define the signature of
~s as sig(~s) = (L1 mod 2,

∑2
i=1 Li mod 2,

∑3
i=1 Li

mod 2, · · · ,
∑m
i=1 Li mod 2). Then sig(~s) ∈ D.

It can be shown that the code C can tolerate overreach errors
of error probability pe, by transforming the overreach errors in

a codeword ~s ∈ C to binary symmetric errors in its signature
sig(~s) ∈ D. Furthermore, every signature in D corresponds to
2
(n

2−
m
4 −1
m

)
codewords in C, which gives us the rate of code

C. By letting x = m/n, we get the conclusion.
It is noticeable that the overreach error is a type of asym-

metric error for graph connectivity. We have constructed an
error-detecting code that can detect all overreach errors. Its
underlying idea is closely related to the well-known Berger
code [1] for asymmetric errors. Due to space limitation, we
leave the detailed code construction in [3]. The code leads to
the following theorem.

Theorem 5. Let m ≥ 2 be an integer. Let r be the smallest
positive integer such that µ1α

r
1 + µ2α

r
2 + µ3α

r
3 ≥ m. (The

constants α1, α2, α3, µ1, µ2, µ3 are specified in Theorem 3.)
Then, there is an error-detecting code of length m+ r and rate

log2 (µ1α
m
1 + µ2α

m
2 + µ3α

m
3)

m+ r

bits per vertex that can detect all overreach errors. When m →
∞, we have r = logα1

m ≈ log1.7549m, and the rate of the
code is cap1D = log2 α1 ≈ 0.8114, which reaches the capacity
of one-dimensional arrays.

B. Two-dimensional Array

We now focus on the capacity of two-dimensional rectangu-
lar array when i.i.d. overreach errors happen with probability
pe between neighboring on and off vertices. Let G = (V,E) be
an m×m two-dimensional rectangular array, where m→∞.
Let cap2(pe) denote its capacity. It can be seen that as pe → 0,
the lower bound in the next theorem approaches 4/5.

Theorem 6. For any q ∈ [0, 1/2], let η(q, pe) = (1− q3)(pe +
(1 − pe)(1 − (1 − (1 − q)pe)

3)). Then for two-dimensional
rectangular array,

cap2(pe) ≥
4

5
max

q∈[0,0.5]
H(1− q + qη(q, pe))− qH(η(q, pe)).

ACKNOWLEDGMENT

This work was supported in part by the NSF CAREER
Award CCF-0747415, the NSF grant ECCS-0802107, and by
an NSF-NRI award.

REFERENCES

[1] J. M. Berger, “A note on an error detection code for asymmetric channels,”
Information and Control, vol. 4, pp. 68–73, March 1961.

[2] G. W. Burr et al., “Phase change memory technology,” Journal of Vacuum
Science and Technology, vol. 28, no. 2, pp. 223–262, March 2010.

[3] A. Jiang, H. Zhou, Z. Wang and J. Bruck, “Patterned cells for phase
change memories,” Caltech Technical Report, 2011. Online: http :
//www.paradise.caltech.edu/etr.html.

[4] D. Lammers, “Resistive RAM gains ground,” in IEEE Spectrum, pp. 14,
September 2010.

[5] A. Sharov and R. M. Roth, “Two-Dimensional constrained coding based
on tiling”, IEEE Trans. Inform. Th., vol. 56, no. 4, pp. 1800–1807, 2010.

[6] I. Tal and R. M. Roth, “Bounds on the rate of 2-D bit-stuffing encoders”,
IEEE Trans. on Information Theory, vol. 56, no. 6, pp 2561-2567, 2010.

[7] I. Tal and R. M. Roth, “Convex programming upper bounds on the
capacity of 2-D constraints”, IEEE Transactions on Information Theory,
vol. 57, no. 1, pp 381–391, 2011.

2298

