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Abstract—Codes that correct asymmetric errors have impor-
tant applications in storage systems, including optical disks
and Read Only Memories. The construction of asymmetric
error correcting codes is a topic that was studied extensively,
however, the existing approach for code construction assumes
that every codeword could sustain t asymmetric errors. Our main
observation is that in contrast to symmetric errors, where the
error probability of a codeword is context independent (since the
error probability for 1s and 0s is identical), asymmetric errors
are context dependent. For example, the all-1 codeword has a
higher error probability than the all-0 codeword (since the only
errors are 1 → 0). We call the existing codes uniform codes while
we focus on the notion of nonuniform codes, namely, codes whose
codewords can tolerate different numbers of asymmetric errors
depending on their Hamming weights. The goal of nonuniform
codes is to guarantee the reliability of every codeword, which
is important in data storage to retrieve whatever one wrote
in. We prove an almost explicit upper bound on the size of
nonuniform asymmetric error correcting codes and present two
general constructions. We also study the rate of nonuniform codes
compared to uniform codes and show that there is a potential
performance gain.

I. INTRODUCTION

Asymmetric error-correcting codes have important applica-
tions in storage and communication systems, such as optical
fibers, optical disks, VLSI circuits and Read Only Memories.
In such systems, the error probability from 1 to 0 is significant-
ly higher than the error probability from 0 to 1, which is mod-
eled by binary asymmetric channel (the Z−channel) where
the transmitted sequences only suffer one type of errors, say
1 → 0. Asymmetric error-correcting codes have been widely
studied: In [1], Kløve summarized and presented several such
codes. In addition, a large amount of effort is contributed to
the design of systematic codes [2], [3], constructing single or
multiple error-correcting codes [4]–[6], increasing the lower
bounds [7]–[9] and applying LDPC codes in the context of
asymmetric channels [10].

However, the existing approach for code construction is
similar to the approach taken in the construction of symmetric
error correcting codes, namely, it assumes that every code-
word could sustain t asymmetric errors. As a result, different
codewords might have different reliability. To see this, let’s
consider errors to be i.i.d., where every bit that is a 1 can
change to a 0 by an asymmetric error with crossover proba-

bility p > 0. For a codeword x = (x1, x2, . . . , xn) ∈ {0, 1}n,
let w(x) = |{i : 1 ≤ i ≤ n, xi = 1}| denote the Hamming
weight of x. Then the probability for x to have at most t
asymmetric errors is Pt(x) = P (t, w(x), p), where

P (t,m, p) ,
t∑

i=0

(
m

i

)
pi(1− p)m−i.

Since x can correct t errors, Pt(x) is the probability of
correctly decoding x (assuming codewords with more than
t errors are uncorrectable). It can be readily observed that
the reliability of codewords decreases when their Hamming
weights increase.

Different from telecommunication applications, in data s-
torage we care about the worst-case performance, namely,
we need guarantee that every codeword can be correctly
decoded with very high probability. In this case, it is not
desired to let all the codewords tolerate the same number
of asymmetric errors, since the codeword with the highest
Hamming weight will become a ‘bottleneck’ and limit the code
rate. This motivated us to propose the concept of nonuniform
codes, whose codewords can tolerate different numbers of
asymmetric errors based on their Hamming weights. The
objective is to guarantee the reliability of every codeword.
That is, we consider the worst-case instead of the average-case
reliability of the codewords. Given this constraint, we would
like to maximize the size of the code. Specifically, let qe < 1
to be maximal tolerated error probability for each codeword
and let t(x) denote the number of asymmetric errors that x
can correct. Then given a code C, for every codeword x ∈ C,
we have P (t(x), w(x), p) ≥ 1 − qe, so that every erroneous
codeword can be corrected with probability at least 1− qe.

The rest of the paper is organized as follows. In Sec-
tion II, we provide some definitions and properties related
to nonuniform codes. In Section III, we give an almost
explicit upper bound for the size of nonuniform codes. Two
general constructions, based on multiple layers or bit flips,
are proposed in Section IV and Section V. Finally, Section VI
studies the asymptotic rates of nonuniform codes and uniform
codes (both upper bounds and lower bounds). An extended
version of this paper with detailed proofs and explanations is
given in [16].
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II. DEFINITIONS AND PROPERTIES

A code C is called a nonuniform (n, p, qe) code if for each
codeword x ∈ C, it can correct t(w(x)) asymmetric errors,
where

t(w) = min{s ∈ N |P (s, w, p) ≥ 1− qe}. (1)

That implies each codeword in C can be recovered with
probability at least 1−qe. The maximum size of a nonuniform
(n, p, qe) code is denoted by Bβ(n, p, qe).

As comparison, most existing error-correcting codes are uni-
form codes. For a code C of codeword length n, the Hamming
weight of its codewords is at most n. (And in many existing
asymmetric error-correcting codes, the maximum codeword
weight indeed equals n [1].) So we define C to be an uniform
(n, p, qe) code if every codeword can correct t asymmetric
errors, where

t = t(n) = min{s ∈ N |P (s, n, p) ≥ 1− qe}.

The maximum size of an uniform (n, p, qe) code is denoted
by Bα(n, p, qe).

Lemma 1. For any 0 < p, qe < 1 and integer w in [0, n], we
have 0 ≤ t(w + 1) − t(w) ≤ 1 for a nonuniform (n, p, qe)
code.

Given two binary vectors x = (x1, . . . , xn) and y =
(y1, . . . , yn), we say x ≤ y if and only if xi ≤ yi for all
1 ≤ i ≤ n. Let Ss(x) be the set of vectors obtained by
changing at most s 1’s in x into 0’s, i.e.,

Ss(x) = {v ∈ {0, 1}n|v ≤ x and N(x,v) ≤ s}.

where
N(x,y) , |{i : xi = 1, yi = 0}|.

Let Ss′,s(x) be the set of vectors obtained by changing at
most s′ 0’s in x into 1’s or at most s 1’s in x into 0’s, i.e.,

Ss′,s(x) = {v ∈ {0, 1}n|v ≤ x and N(x,v) ≤ s}∪
{v ∈ {0, 1}n|x ≤ v and N(v,x) ≤ s′}

Note that Ss(x) = S0,s(x).
The following properties of nonuniform codes can be easily

proved, as the generalizations of those for uniform codes,
including Lemmas 2.2, 2.3, 3.2, 3.3 in [1].

Lemma 2. Code C is a nonuniform (n, p, qe) code if and
only if St(w(x))(x)

∩
St(w(y))(y) = ø for all x,y ∈ C with

x ̸= y.

Lemma 3. There always exists a nonuniform (n, p, qe) code
of the maximum size that contains the all-zero codeword.

Given a nonuniform code C, let Cr denote the number of
codewords with Hamming weight r in C, i.e.

Cr = |{x ∈ C|w(x) = r}|.

Lemma 4. Let C be a nonuniform (n, p, qe) code and t(w)
is defined in (1). For integer r in [0, n], let s be an integer

such that 0 ≤ s ≤ t(r − s) and let k = max{z|0 ≤ z ≤
n, z − (t(z)− s) ≤ r}, then we have

s∑
j=1

(
n− r + j

j

)
Cr−j +

t(k)−s∑
j=0

(
r + j

j

)
Cr+j ≤

(
n

r

)
.

Note that in Lemma 4, if we let s = 0, then we can get

t(k)∑
j=0

(
r + j

j

)
Cr+j ≤

(
n

r

)
(2)

where k = max{z|0 ≤ z ≤ n, z − t(z) ≤ r}. This inequality
will be used to get an almost explicit upper bound for the size
of nonuniform codes.

III. AN ALMOST EXPLICIT UPPER BOUND

We now derive an almost explicit upper bound for the size of
nonuniform codes, followed the idea of Kløve [11] for uniform
codes. First, we define

h(r) = max{w|0 ≤ w ≤ n,w − t(w) = r},

h(r) = min{w|0 ≤ w ≤ n,w − t(w) = r}.

And let Mβ(n, p, qe) = max
∑n

r=0 zr, where the maximum is
taken over the following constraints:

1) zr are non-negative real numbers;
2) z0 = 1;
3)

∑t(h(r))
j=0

(
r+j
j

)
zr+j ≤

(
n
r

)
for r ≥ 0.

Then Mβ(n, p, qe) is an upper bound for Bβ(n, p, qe). Here,
condition 2) is given by Lemma 3, and condition 3) is given
by Equ. (2) from Lemma 4. Our goal in this section is to find
an almost explicit way to express Mβ(n, p, qe).

Lemma 5. Assume
∑n

r=0 zr is maximized over z0, z1, ..., zn
in the problem above. Let

Zr =

min{n−r,t(h(r))}∑
j=0

zr+j

(
r + j

j

)
.

Then Zr =
(
n
r

)
for r ≤ n− t(n).

Proof: Suppose that Zr <
(
n
r

)
for some r ≤ n − t(n).

Let g = h(r) and k = min{w|zw > 0, w > g}.
Let m = max{w|k− t(k) > w}. Then it can be proved that

for all r < w ≤ m, Zw <
(
n
w

)
.

Now, we construct a new group of real numbers
z∗0 , z

∗
1 , ..., z

∗
n such that

1) z∗g = zg +∆
2) z∗k = zk − δ
3) z∗r = zr for r ̸= h, r ̸= k

with

∆ = min({
(
n
w

)
− Zw(
g
w

) |r ≤ w ≤ m}
∪

{
(
k
w

)(
g
w

)zk|m < w ≤ g}),

δ =
1

min{ (
k
w)
(g
w)

|m < w ≤ g}
∆.
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For such ∆, δ, it is not hard to prove that Z∗
r =

(
n
r

)
for

0 ≤ r ≤ n. On the other hand,
n∑

r=0

z∗r =
n∑

r=0

zr +∆− δ >
n∑

r=0

zr,

which contradicts our assumption that
∑n

r=0 zr is maximized
over the constrains. So the lemma is true.

Similarly, using the same idea as above, we can get the
following lemma.

Lemma 6. Assume
∑n

r=0 zr is maximized over z0, z1, ..., zn
in the problem above. Let

Yr =

min{n−r,t(h(r))}∑
j=0

zr+j

(
r + j

j

)
.

Then Yr =
(
n
r

)
for r ≤ n− t(n).

Now let y0, y1, ..., yn be a group of optimal solutions
to z0, z1, ..., zn that maximize

∑n
r=0 zr. Then y0, y1, ..., yn

satisfy the condition in Lemma 6. We see that y0 = 1. Then
based on Lemma 6, we can get y1, ..., yn uniquely by iteration.
Hence, we have the following theorem for the upper bound
Mβ(n, p, qe).

Theorem 7. Let y0, y1, ..., yn be defined by
1) y0 = 1;
2) yr = 0, ∀1 ≤ r ≤ max{s|1 ≤ s ≤ n, s ≤ t(s)};
3) yr = 1

( r
t(r))

[
(

n
r−t(r)

)
−

∑t(r)
j=1 yr−j

(
r−j

t(r)−j

)
],

∀max{s|1 ≤ s ≤ n, s ≤ t(s)} < r ≤ n.
Then Bβ(n, p, qe) ≤ Mβ(n, p, qe) =

∑n
r=0 yr.

This theorem provides an almost explicit expression for the
upper bound Mβ(n, p, qe), which is much easier to calculate
than the equivalent expression defined at the beginning of this
section.

IV. CONSTRUCTIONS BASED ON MULTIPLE LAYERS

In [1], Kløve summarized some constructions of uniform
codes for correcting asymmetric errors. The code of Kim
and Freiman was the first code constructed for correcting
multiple asymmetric errors. Varshamov [12] and Constrain and
Rao [13] presented some constructions based group theory.
Later, Delsarte and Piret [14] proposed a construction based
on ‘expurgating/puncturing’ with some improvements given
by Weber et. al. [15]. In this section, we propose a general
construction of nonuniform codes based on multiple layers.

From the definition of nonuniform codes, we know that t(w)
can be easily and uniquely determined by p, qe. So a question
arises: if n, t(w) (for 0 ≤ w ≤ n) are given, how to construct a
nonuniform code efficiently? Intuitively, we can divide all the
codewords of a nonuniform code into at most t(n) + 1 layers
such that all the codewords in the ith layer (with 0 ≤ i ≤ t(n))
can tolerate at least i asymmetric errors. In other words, the
code is the combination of up to t(n) + 1 uniform codes,
each of which corrects a different number of asymmetric
errors. However, we cannot design such a code by constructing

codewords independently for different layers, because a simple
combination of several independent codes may violate the
error correction requirements of the nonuniform codes, due
to the interference between two neighbor layers. Our idea is
simple: let’s first construct a code which can tolerate t(n)
asymmetric errors. Then we add some codewords to the lowest
t(n) layers such that the codewords in the top layer keep
unchanged and they still can tolerate t(n) asymmetric errors,
and the codewords in the other layers can tolerate up to t(n)−1
asymmetric errors. Iteratively, we can continue to add many
codeword into the lowest t(n)−1 layers ... Based on this idea,
given n, t(w), we construct layered codes as follows.

Theorem 8 (Layered Codes). Let k = t(n) and let
C0, C1, ..., Ck be k + 1 binary codes of codeword length n,
where C0 ⊃ C1 ⊃ ... ⊃ Ck and for 0 ≤ t ≤ k, the code Ct

can correct t asymmetric errors. Let

C = {x ∈ {0, 1}n|x ∈ Ct′(w(x))},

where

t′(w(x)) = t(max{w′|w′ − t(w′) ≤ w(x)}).

Then for all x ∈ C, x can tolerate t(w(x)) asymmetric errors.

Proof: We prove that for all x,y ∈ C with x ̸= y,
St(w(x))(x)

∩
St(w(y))(y) = ø. W.l.o.g., we assume w(x) ≥

w(y).
If w(x)− t(w(x)) > w(y), the conclusion is true.
If w(x) − t(w(x)) ≤ w(y) and w(x) ≥ w(y), we have

St(w(x))(x)
∩
St(w(y))(y) ⊆ St′(w(y))(x)

∩
St′(w(y))(y).

However, we know that x ∈ Ct′(w(x)) ⊆ Ct′(w(y)) and
y ∈ Ct′(w(y)), therefore St′(w(y))(x)

∩
St′(w(y))(y) = ø.

Furthermore, we have St(w(x))(x)
∩

St(w(y))(y) = ø.
We see that the constructions of layered codes are based

on the provided group of codes C0, C1, ..., Ck such that
C0 ⊃ C1 ⊃ ... ⊃ Ck and for 0 ≤ t ≤ k, the code Ct can
correct t asymmetric errors. Examples of such codes include
Varshamov codes [12], BCH codes, etc. One constructions of
BCH codes can be described as follows: Let (α0, α1, ..., αn−1)
be n distinct nonzero elements of G2m with n = 2m − 1. For
0 ≤ t ≤ k, let

Ct := {x ∈ {0, 1}n|
n∑

i=1

xiα
(2l−1)
i = 0 for 1 ≤ l ≤ t}.

In the above example, assume x is a codeword in Ct and
y = x + e is a received word with error e, then there is
an efficient algorithm to decode y into a codeword, which
is denoted by Dt(y). If y has at most t asymmetric errors,
then Dt(y) = x. In the following theorem, we show that the
layered codes proposed above also have an efficient decoding
algorithm if Dt(·) (for 0 ≤ t ≤ k) are provided and efficient.

Theorem 9 (Decoding of Layered Codes). Let C be a layered
code, let x ∈ C be a codeword, and let y = x + e be a
received word such that |e| = N(x,y) ≤ t(w(x)). (Here e
is the asymmetric-error vector.) Then there exists at least one
integer t such that
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1) t′(w(y)) ≤ t ≤ t′(w(y) + t′(w(y)));
2) Dt(y) ∈ C;
3) y ≤ Dt(y) and N(Dt(y),y) ≤ t(w(Dt(y))).

For such t, we have Dt(y) = x.

Proof: If we let t = t′(w(x)), then we can get that t
satisfies the conditions and Dt(y) = x. So such t exists.

Now we only need to prove that once there exists t satis-
fying the conditions in the theorem, we have Dt(y) = x. We
prove this by contradiction. Assume there exists t satisfying
the conditions but z = Dt(y) ̸= x. Then N(z,y) ≤ t(w(z))
and N(x,y) ≤ t(w(x)), which contradicts the property of the
layered codes.

According to the above theorem, to decode a noisy word y,
we can check all the integers between t′(w(y)) and t′(w(y)+
t′(w(y))) to find the value of t. Once we find the integer t
satisfying the conditions in the theorem, we can decode y into
Dt(y) directly. (Note that t′(w(y) + t′(w(y))) − t′(w(y))
is normally much smaller than w(y). It is approximately

p2

(1−p)2w(y) when w(y) is large.) We see that this decoding
process is efficient if Dt(.) is efficient for 0 ≤ t ≤ k.

V. CONSTRUCTIONS BASED ON BIT FLIPS

Many non-linear codes designed to correct asymmetric
errors do not yet have efficient encoding algorithms. Namely,
it is not easy to find an efficient encoding function f :
{0, 1}k → C with k w ⌊log |C|⌋. On the other hand, in [12],
Varshamov showed that linear codes have nearly the same
ability to correct asymmetric errors and symmetric errors (for
the uniform code case). In this subsection, we focus on the
approach of designing nonuniform codes for asymmetric errors
with efficient encoding schemes, by utilizing the well studied
linear codes for symmetric errors.

We can use a linear code to correct t(n) asymmetric errors
directly, but this method is inefficient not only because the
decoding sphere for symmetric errors is greater than the sphere
for asymmetric errors (and therefore an overkill), but also
because for low-weight codewords, the number of asymmetric
errors they need to correct can be much smaller than t(n).

Our idea is to build a “flipping code” that uses only
low-weight codewords (specifically, codewords of Hamming
weight no more than ∼ n

2 ), because they need to correct fewer
asymmetric errors and therefore can increase the code’s rate. In
the rest of this section, we present two different constructions.

A. First Construction
First, construct a linear code C (like BCH codes) of length

n with generator matrix G that corrects t(⌊n
2 ⌋) symmetric

errors. Assume the dimension of the code is k. For any binary
message u ∈ {0, 1}k, we can map it to a codeword x in C such
that x = uG. Next, let x denote a word obtained by flipping
all the bits in x such that if xi = 0 then xi = 1 and if xi = 1
then xi = 0; and let y denote the final codeword corresponding
to u. We check whether w(x) > ⌊n

2 ⌋ and construct y in the
following way:

y =

{
x00...0 if w(x) > ⌊n

2 ⌋
x11...1 otherwise

Here, the auxiliary bits (0’s or 1’s) are added to distinguish that
whether x has been flipped or not, and they form a repetition
code to tolerate errors.

The corresponding decoding process is straightforward:
Assume we received a word y′. If there is at least one 1 in the
auxiliary bits, then we “flip” the word by changing all 0’s to
1’s and all 1’s to 0’s; otherwise, we keep the word unchanged.
Then we apply the decoding scheme of the code C to the first
n bits of the word. Finally, the message u can be successfully
decoded if y′ has at most t(⌊n

2 ⌋) errors in the first n bits.

B. Second Construction

In the previous construction, several auxiliary bits are need-
ed to protect one bit of information, which is not very efficient.
In this section, we try to move this bit into the message part of
the codewords in C. This motivates us to give the following
construction.

Let C be a linear code with length n that corrects t′ sym-
metric errors (we will specify t′ later). Assume the dimension
of the code is k. Now, for any binary message u ∈ {0, 1}k−1

of length k − 1, we get u′ = 0u by adding one bit 0 in front
of u. Then we can map u′ to a codeword x in C such that

x = (0u)G = 0uv

where G is the generator matrix of C in systematic form and
the length of v is n− k. Let α be a codeword in C such that
the first bit α1 = 1 and its weight is the maximal one among
all the codeword in C, i.e.,

α = arg max
x∈C,x1=1

w(x)

Generally, w(α) is very close to n. In order to reduce the
weights of the codewords, we use the following operations:
Calculate the relative weight

w(x|α) = |{1 ≤ i ≤ n|xi = 1, αi = 1}|

Then we get the final codeword

y =

{
x+ α if w(x|α) > w(α)

2
x otherwise

where + is the binary sum, so x + α is to flip the bits in x
corresponding the ones in α. So far, we see that the maximal
weight for y is ⌊n− w(α)

2 ⌋. That means we need to select t′

such that

t′ = t(⌊n− w(α)

2
⌋).

In the above encoding process, for different binary mes-
sages, they have different codewords. And for any codeword
y, we have y ∈ C. That is because either y = x or y = x+α,
where both x and α are codewords in C and C is a linear code.
The decoding process is very simple: Given the received word
y′ = y + e, we can always get y by applying the decoding
scheme if |e| ≤ t′. If y1 = 1, that means x has been flipped
based on α, so we have x = y + α; otherwise, x = y. Then
the initial message u = x2x3...xk.
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Lower Bound Upper Bound

ηα(n, p, qe)n→∞ [1−H(2p)]I0≤p≤ 1
4

(1 + p)[1−H( p
1+p

)]

ηβ(n, p, qe)n→∞ max0≤θ≤1−p H(θ)− θH(p)− (1− θ)H( pθ
1−θ

) max0≤θ≤1 H((1− p)θ)− θH(p)

TABLE I

C. Comments

When n is sufficiently large, the codes based on flips above
become nearly as efficient as a linear codes correcting t(⌊n

2 ⌋)
symmetric errors. (We define the codes’ efficiency in Section
VI.) It is much more efficient than designing a linear code
correcting t(n) symmetric errors. Note that when n is large
and p is small, these codes can have very good performance
on efficiency. That is because when n is sufficiently large,
the efficiency of an optimal nonuniform code is dominated
by the codewords with the same Hamming weight wd (≤ n

2 ),
and wd approaches n

2 as p gets close to 0. We can intuitively
understand it based on two facts when n is sufficiently large:
(1) There are at most n2n(H(

wd
n )+δ) codewords in this optimal

nonuniform code. (2) When p becomes small, we can get a
nonuniform code with at least 2n(1−δ) codewords. So when n
is sufficiently large and p is small, we have wd → n

2 . Hence,
the optimal nonuniform code has almost the same asymptotic
efficiency with an optimal weight-bounded code (Hamming
weight is at most n/2), which corrects t(n/2) errors.

Beside simplicity and efficiency, another advantage of these
codes is that they do not require the Z-channel to be perfect,
i.e., it is allowed to have 0 → 1 errors with very small
probability (as long as this probability is smaller than the
probability of 1 → 0 errors). All these properties make
these codes very useful in practice. However, when p is not
small, how to design efficient nonuniform codes with simple
encoding/decoding schemes is still an open problem.

VI. BOUNDS ON THE RATE

Given (n, p, qe), we can define the efficiency of uniform
codes as ηα(n, p, qe) , log2 Bα(n,p,qe)

n and define the effi-
ciency of nonuniform codes as ηβ(n, p, qe) , log2 Bβ(n,p,qe)

n .
In this section, given 0 < p, qe < 1, we study the asymp-
totic behavior of ηα(n, p, qe) and ηβ(n, p, qe) as n → ∞.
Table I summarizes the upper bounds and lower bounds of
ηα(n, p, qe)n→∞ and ηβ(n, p, qe)n→∞ obtained in our full
paper [16]. We plot them in Fig. 1. The gap between the
bounds for the two codes indicates the potential improvement
in efficiency by using the nonuniform codes (compared to
using uniform codes) when the codeword length is large.
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