
Error-Correcting Schemes with Dynamic Thresholds
in Nonvolatile Memories

Hongchao Zhou
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125
Email: hzhou@caltech.edu

Anxiao (Andrew) Jiang
Computer Science and Engineering Department

Texas A&M University
College Station, TX 77843

Email: ajiang@cse.tamu.edu

Jehoshua Bruck
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125
Email: bruck@caltech.edu

Abstract—Predetermined fixed thresholds are commonly used
in nonvolatile memories for reading binary sequences, but they
usually result in significant asymmetric errors after a long
duration, due to voltage or resistance drift. This motivates us
to construct error-correcting schemes with dynamic reading
thresholds, so that the asymmetric component of errors are
minimized. In this paper, we discuss how to select dynamic
reading thresholds without knowing cell level distributions, and
present several error-correcting schemes. Analysis based on
Gaussian noise models reveals that bit error probabilities can
be significantly reduced by using dynamic thresholds instead of
fixed thresholds, hence leading to a higher information rate.

I. INTRODUCTION

Nonvolatile memories, like EPROM, EEPROM, Flash mem-
ory or Phase-change memory (PCM), are memories that can
keep the data content even without power supply. This property
enables them to be used in a wide range of applications,
including cell-phones, consumers, automotive and computers.
Many research studies have been carried out on nonvolatile
memories because of their unique features, attractive applica-
tions and huge marketing demands.

An important challenge for most nonvolatile memories is
data reliability. The stored data can be lost due to many
mechanisms, including cell heterogeneity, programming noise,
write disturbance, read disturbance, etc [1], [2]. From a long-
term view, the change in data has an asymmetric property. For
example, the stored data in flash memories is represented by
the voltage levels of transistors, which drift in one direction be-
cause of charge leakage. In PCM, another class of nonvolatile
memories, the stored data is determined by the electrical
resistance of the cells, which also drifts due to thermally
activated crystallization of the amorphous material. All these
mechanisms make the errors in nonvolatile memories het-
erogeneous, asymmetric, time-dependent and unpredictable.
That brings substantial difficulties to researchers attempting
to develop simple and efficient error-correcting schemes.

To date, existing coding schemes for nonvolatile memories
commonly use fixed thresholds to read data. For instance, in
flash memories, a threshold voltage level vth is predetermined
such that if the voltage level of a given cell is higher than vth
it reads ‘1’, and otherwise it reads ’0’. To increase the data
reliability, error-correcting codes including Hamming code,
BCH code, Reed-Solomon code and LDPC code are applied

0
1

0
1v

1v
2

Voltage distribution at time 0

Voltage distribution at time T

v
1

v

v

Fig. 1. An illustration of the voltage distributions for bit ’1’ and bit ’0’
in flash memories. The top figure is for newly written data, and the bottom
figure is for old data that has been stored for a long time T .

in nonvolatile memories to combat errors. Because of the
asymmetric feature of nonvolatile memories, given a fixed
threshold, the probability of 1 → 0 errors are usually much
higher than 0→ 1 errors after a long duration. Consequently,
the concept of asymmetric error-correcting codes was pro-
posed and investigated in the literature [3]–[5], in which only
1 → 0 errors are allowed. However, in practice, the errors
in nonvolatile memories are neither purely asymmetric errors
nor purely symmetric errors, which limits the applications of
asymmetric error-correcting codes in nonvolatile memories.

To overcome the limitations of fixed thresholds in reading
data in nonvolatile memories, dynamic thresholds are intro-
duced in this paper. To better understand this, we use flash
memories for illustration, see Fig. 1. In the figure, assume the
left curve indicates the voltage distribution for bit ‘0’ (a bit ‘0’
is written during programming) and the right curve indicates
the voltage distribution for bit ‘1’. At time 0 (the moment
after programming), it is best to set the threshold voltage as
vth = v1, for separating bit ‘1’ and ‘0’. But after a period of
time, the voltage distribution will change. In this case, v1 is no
longer the best choice, since it will introduce too many 1→ 0
errors. Instead, we can set the threshold voltage as vth = v2
(see the second plot in the figure), to minimize the error
probability. This also applies to other nonvolatile memories,
such as PCMs. In view of these considerations, the scope of

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0594-6/11/$26.00 ©2011 IEEE 2109

this paper lies in designing efficient error-correcting schemes
with dynamic reading thresholds in nonvolatile memories.

For convenience, we consider different types of nonvolatile
memories in the same framework where the data is repre-
sented by cell levels, such as voltages in flash memories and
resistance in PCMs. Let n denote the number of cells in a
block, and v1, v2, ..., vn ∈ Rn be the levels of these n cells.
Let t indicate the time since the data has been written. The
cell levels may be disturbed or affected by many mechanisms,
therefore they are time-dependent.

One important problem is to determine the threshold value
for a given block with n cells at time t. If the level distributions
for bit ‘1’ and ‘0’ at any time t are accurately provided, the
problem can be easily solved by minimizing the expected error
probability. Unfortunately, this task is infeasible in practice
because of the lack of time records, the heterogeneity of block-
s, and the unpredictability of exceptions. Another possible
method is to apply unsupervised clustering to all the cell levels
so that they are classified into two groups corresponding to
bit ‘1’ and bit ‘0’. But in practice, the border between bit ‘1’
and ‘0’ may become more and more fuzzy, and mistakes of
clustering may cause significant reading errors. To determine
the threshold dynamically, our idea is to adjust the threshold
such that there are always k cells with higher levels than this
threshold in a block. Based on this idea, two error-correcting
schemes are proposed for nonvolatile memories. The first
scheme is based on Berger codes. In this scheme, k is different
for different blocks, hence, it is stored as metadata. When we
read data from a block, we first read the value of k based on
a fixed threshold, and then read the codeword from the block
with an adjusted threshold such that there are k ones in the
block. The second scheme is based on balanced codes, where
k = n/2, i.e., the number of ones equals to the number of
zeros in each block. Hence, it does not have to store k for
adjusting the reading threshold.

The rest of the paper is organized as follows. In Section
II, we analyze the performance of dynamic thresholds, and
compare it with some other thresholds such as fixed thresholds.
Two error-correcting schemes with dynamic thresholds, based
on Berger codes and balanced codes respectively, are proposed
and discussed in Section III and IV. Section V studies how to
calculate dynamic thresholds fast, followed by the conclusion.

II. PERFORMANCE ANALYSIS OF DYNAMIC THRESHOLDS

In a block of length n, let x = (x1, x2, ..., xn) ∈ {0, 1}n be
the word written in this block and let v1, v2, ..., vn be the cell
levels for reading. The number of 1’s written in the block is
k =

∑
i xi. Given any threshold level vth, we read a word

y(vth) = (y1, y2, ..., yn) such that yi = 1 if and only if
vi ≥ vth. As a result, the number of errors based on vth
is Ne(vth) = |y(vth) − x|, where |y − x| is the Hamming
distance between two binary sequences x and y.

A dynamic threshold, denoted as vd, is selected such that
there are exactly k cells in the block will be read as ones, i.e.,
|y(vd)| = k = |x|. In order to recover x from y(vd) reliably, it
requires error-correcting codes, which will be discussed later.

In this section, we mainly focus on the performance analysis
of dynamic thresholds.

A. Sub-Optimality of Dynamic Thresholds

Let’s first compare dynamic thresholds with optimal thresh-
olds. We say that one threshold vth = v∗ is optimal if and only
if Ne(vth) is minimized at v∗, i.e., v∗ = arg minvth Ne(vth).
However, v∗ is imaginary, since we cannot determine it
without knowing the initial word x. The following theorem
shows that dynamic thresholds have performance comparable
to optimal thresholds. Even in the worst case, the number
of errors introduced based on vd is at most double of that
introduced by v∗.

Theorem 1. For any cell levels v1, v2, ..., vn, we have

Ne(vd) ≤ 2Ne(v
∗)

Proof: Given the threshold vd, the number of 0→ 1 errors
equals the number of 1→ 0, denoted by N+

e (vd) = N−e (vd).
Hence,

Ne(vd) = 2N+
e (vd) = 2N−e (vd)

If v∗ ≥ vd, the number of 1→ 0 errors N−e (v∗) ≥ N−e (vd).
Therefore,

Ne(vd) ≤ 2N−e (v∗) ≤ 2Ne(v
∗)

Similarly, if v∗ < vd, by considering 0→ 1 errors, we get the
same conclusion.

If we consider the worst case for a fixed threshold, de-
noted as vf , it may introduce as many as n errors while
v∗ or vd introduces zero errors. For an instance, we assume
x = 111..11 and we set vf = maxni=1 vi + ε with ε > 0. In
this case, the number of errors is n. One solution for v∗ is
v∗ = minni=1 vi − ε with ε > 0. In this case, the number of
errors based on v∗ or vd is 0. We see that for the worst case
that we completely don’t know the distributions of cell levels,
dynamic thresholds have sub-optimal performance, which is
much better than that of fixed thresholds.

B. A Statistical View

To better understand the different types of thresholds as well
as their performances, we study them from the expectation
(statistical) perspective. Assume that we write n bits (including
k ones) into a block at time 0, let gt(v) denote the p.d.f of
the cell level for a bit 0 at time t, and let ht(v) denote the
p.d.f of the cell level for a bit 1 at time t. Then as n becomes
sufficiently large, based on a dynamic threshold vd, we have

N+
e (vd)→ E(N+

e (vd)), N−e (vd)→ E(N−e (vd))

where N+
e indicates the number of 0 → 1 errors and N−e

indicates the number of 1 → 0 errors. According to the
definition of dynamic thresholds, we have N+

e (vd) = N−e (vd).
This implies that E(N+

e (vd)) = E(N−e (vd)) approximately
when n is large, i.e.,

(n− k)

∫ ∞
v=vd

gt(v)dv = k

∫ vd

v=−∞
ht(v)dv

2110

Fig. 2. An illustration of vd and v∗.

As an illustration in Fig. 2, we see that the error regions on
the left of vd and on the right of vd have almost the same
area.

Differently, an optimal threshold v∗ is chosen such that
N+
e (v∗) + N−e (v∗) is minimized. Approximately, when n is

large, we have

v∗ = arg min
vth

(n− k)

∫ ∞
v=vth

gt(v)dv + k

∫ vth

v=−∞
ht(v)dv

So when gt(v) and ht(v) are continuous functions, we have

v∗ = ±∞ or (n− k)gt(v
∗) = kht(v

∗)

That means v∗ is approximately one of the intersection points
of the two curves in Fig. 2 or one of the infinity points.

In the following examples, we assume that gt(v) and ht(v)
are Gaussian distributed. For simplification, we assume that
k = n/2, which is consistent with our schemes (will be
presented later) in this paper. In this case, given a threshold
vth, the bit error rate of a block is

Pe(vth) =
1

2

∫ ∞
vth

gt(v)dv +
1

2

∫ vth

−∞
ht(v)dv

Example 1. Let gt(v) = N (0, σ) and ht(v) = N (1 − t, σ).
To compare different thresholds, we assume the fixed threshold
vf = 1

2 , which satisfies g0(vf) = h0(vf).

In the above example, the cell levels corresponding to bit
‘1’ drift but their variance does not change. We have

v∗ = vd =
1− t

2
, vf =

1

2

At time t, the bit error rate based on a threshold vth is

Pe(vth) =
1

2
Φ(−vth

σ
) +

1

2
Φ(−1− t− vth

σ
)

where Φ(x) = 1√
2π

∫ x
−∞ e−t

2/2dt.
For different thresholds, Pe(vth) is plotted in Fig. 3, which

shows the good performance of dynamic thresholds when cell
levels drift.

Example 2. Let gt(v) = N (0, σ) and ht(v) = N (1, σ + t).
To compare different thresholds, we assume the fixed threshold
vf = 1

2 , which satisfies g0(vf) = h0(vf).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

B
it

E
rr

or
 R

at
e

fixed σ=0.05

fixed σ=0.15

dynamic, optimal
σ=0.05

dynamic, optimal
σ=0.15

Fig. 3. Bit error rates as functions of time t, under the first model with
gt(v) = N (0, σ) and ht(v) = N (1− t, σ).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

t

B
it

E
rr

or
 R

at
e

fixed σ=0.15

fixed σ=0.05

dynamic σ=0.15

dynamic σ=0.05

optimal σ=0.05

optimal σ=0.15

Fig. 4. Bit error rates as functions of time t, under the second model with
gt(v) = N (0, σ) and ht(v) = N (1, σ + t).

In this example, the variance of the cell levels corresponding
to bit ‘1’ increases as t increases. We have

e−
v∗2

2σ2 =
σ

σ + t
e
− (1−v∗)2

2(σ+t)2 , vd =
1

2 + t/σ
, vf =

1

2

At time t, the bit error rate based on a threshold vth is

Pe(vth) =
1

2
Φ(−vth

σ
) +

1

2
Φ(−1− vth

σ + t
)

which is plotted in Fig. 4 for different thresholds. It shows that
dynamic thresholds introduce less errors than fixed thresholds
when bit ‘1’ and ‘0’ have different reliability (reflected by
their variances).

In practice, the cell level distributions at a time t are
much more complex than the Gaussian distributions, and the
errors introduced are due to many mechanisms. However,
the analysis based two simple models above are still useful,
because they reflect the trend of the cell level changes, which is
helpful for analyzing the time-dependent errors in nonvolatile
memories.

2111

III. SCHEME BASED ON BERGER CODES

In 1961, Berger designed a class of codes to detect all
unidirectional errors in telecommunications [6], called Berger
codes, where only 1 → 0 errors or only 0 → 1 errors are
considered. Let u be the information word of n bits and let v
the be the total number of ones in u. Then a codeword of u
can be expressed as uv, where v is of length r = dlog2(n+1)e
in binary representation. In this paper, we use the same format
of Berger codes that v indicates the number of ones in u, but
we use v as metadata for determining the dynamic thresholds,
not for detecting errors. When we read a codeword x = uv,
without considering errors, we can first read v based on a
predetermined fixed threshold. Then we read the information
word u based on an adjusted threshold corresponding to v.
For practical use, u and v need to be protected against errors
by using error-correcting codes.

In the scheme, two different thresholds are applied to
read v and u separately, which results in different reliability.
Correspondingly, we introduce two types of blocks, namely
information blocks (for storing u) and metadata blocks (for
storing v). They correspond to two error-correcting codes,
denoted by C1 and C2, such that C2 can correct more errors
than C1 because metadata blocks have a higher bit error rate
due to fixed reading thresholds. Assume all the blocks have
the same length n. Let k1 and k2 denote the dimensions of
C1 and C2. Then k2 ≤ k1 < n. For a given information
word u ∈ {0, 1}k with k = k1, we can encode it in the
following way: we first write the codeword x = C1(u) into
an information block B1, and then we write v = w(x) into a
metadata block B2, where w(x) is the number of ones in x.
Usually, the length of v, i.e. dlog2(n + 1)e, is much smaller
than k2, which means that each metadata block can serve as
many as b k2

dlog2(n+1)ec information words.
In [5], the authors proposed flipping codes for correcting

asymmetric errors. Their idea comes from the fact that the
codes with higher Hamming weights are more prone to have
errors in asymmetric channels, hence less reliable. It can be
proved that, with dynamic thresholds, we are also able to
reduce the bit error rates by flipping all the bits in a codeword
if its weight is higher than n/2. Fortunately, this can be
achieved in our scheme without introducing any additional
bits. The only change is that given a codeword x ∈ C1,
if w(x) > n/2, we write the complement of x into an
information block, denoted as x, which is obtained by flipping
all the bits in x. For decoding, we first check whether v > n

2 .
If v > n

2 , by flipping all the bits again, the decoder gets a
word x + e with e as the error vector, which leads us to the
original information word u. If v ≤ n

2 , the decoding process
keeps unchanged.

The following example is constructed for the purpose of
illustrating the procedure of encoding and decoding. Let C1

be the (7, 4) Hamming codes. When the information word is
u = 0110, we have a codeword x = 0110110. Since v =
w(x) = 4 > n/2, we write x = 1001001 into an information
block instead of x. For decoding, assume we can retrieve v = 4

correctly and the word read from the information block is y =
1001101, then applying the decoding algorithm of Hamming
codes to the complement of y will bring us the information
word u.

In the above example, the scheme is not efficient because
the block length n is too small. In practice, n is usually much
larger. Let’s consider the following case: let n = 255 and let
C1 and C2 be primitive BCH codes correcting 8 and 18 errors
separately. In this case, we have k1 = 191, k2 = 131 (see
Table 2.4 in [7]) and the length of v is dlog2(k1 +1)e = 8. So
each parameter block can serve for b 1318 c = 16 information
blocks, and the efficiency of the scheme is 191

255+255/16 =
0.7050. But if only one fixed threshold is used, we have to use
only C2 for correcting errors. In this case, the efficiency will
be 131

255 = 0.5137, which is much smaller than 0.7050 obtained
above.

IV. SCHEME BASED ON BALANCED CODES

In the previous section, a scheme based on Berger codes is
presented, where two different thresholds are used for reading
data - a predetermined threshold for metadata blocks and a
dynamic threshold for information blocks. More errors are
introduced when reading bits based on the predetermined
threshold than the adjusted dynamic one. In this section,
we present another error-correcting scheme in which only
dynamic thresholds are used. The idea is that we fix the
number of ones in each block to be a constant. Therefore it is
not necessary to store it.

We first briefly introduce balanced codes. Balanced codes,
whose codewords have an equal number of ones and zeros,
are widely used in storage and communication channels.
Knuth proposed several beautiful algorithms for constructing
balanced codes [8]. The basic idea is simple. Given an infor-
mation word of k-bits, the encoder inverts the first i bits such
that the modified word has an equal number of 1’s and 0’s.
Knuth showed that such i always exists, and it is represented
by a balanced word of length p. Then a codeword consists
an p-bit prefix word and an k-bit modified information word.
By inverting the first i bits again, the decoder can easily get
the original information word. Knuth’s algorithms were later
improved or modified by many researchers [9] [10]. Balanced
codes with error-correcting capability were also studied [11],
although most of the works focus on designing balanced codes
correcting at most t ≤ 4 errors and it turns out that designing
simple systematic balanced codes correcting arbitrary numbers
of errors is not easy.

Considering our requirements, it is not necessary for the
whole codeword to be balanced. In the scheme, we use partial
balanced codes, in which only a segment of each codeword
is balanced. Given a information word u of k bits, it can
be efficiently represented by a balanced word x of length
m > k. To make this balanced word have error-correcting
capacity, extra parity-check bits are added by applying well-
known error-correcting codes, like BCH codes. For example,
we assume that each block has 255 cells and a BCH code
correcting 8 errors is applied here. In this case, we have

2112

the length of the information part m = 191. According to
the constructions of balanced codes in [9], the length of the
information word can be k = 191 − 7 = 184. Thus the
efficiency of the scheme is 184

255 = 0.7216. We see it is a
little more efficient than the scheme in the last section, by
comparing this value with the efficiency 0.7050 obtained in
the previous section. Note that in both of the cases, we used
the same BCH code for the information blocks.

The reading/decoding process is also efficient. First, the
threshold level vd is obtained such that among the first m cells,
there are m/2 cells with higher levels than vd. Then, the whole
block can be read as a binary word y of length n based on the
threshold vd, which can be further decoded as a balanced word
x if the number of errors is well-bounded. Furthermore, we
obtain the initial information word u following the decoding
process of balanced codes. Comparing with the scheme based
on Berger codes, this scheme does not have to encode or
decode the metadata, hence it is a little faster for encoding
and decoding.

In the scheme, the weight of each codeword is not exactly
n
2 (if n is even). Instead, it can be any value in [m2 , n −

m
2],

without constraints on the check bits of the codewords - whose
weight can be any value between 0 and n−m. The bit error
rate in storage systems is usually small. Therefore, the length
of the check bits in each block is relatively small compared
to the codeword length n, and the weight of each codeword
in our scheme is close to n/2.

V. CALCULATION OF DYNAMIC THRESHOLDS

Given a block of n cells, assume their current levels are
v1, v2, ..., vn. Our problem is to determine a value vd such
that if the threshold level vth = vd, exactly k cells will be
read as ones (i.e., with levels higher than vd).

A trivial method is to sort all the n cell levels in decreasing
order such that vi1 ≥ vi2 ≥ ... ≥ vin . Then vd =

vik+vik+1

2 is
our desired threshold. The limitation of this method is that it
needs O(n log n) computational time, which may slow down
the reading speed when n is large.

A half-interval search algorithm can be used as a method
with less computational complexity. Assume it is known that
vd is ∈ [l1, l2] with l1 < l2. Then we can divide all the possible
cell levels into three regions: (l2,∞], (l1, l2] and [−∞, l1]. All
the cells in the first region will be read as ones and all the
cells in the third region will be read as zeros. Now let k1 be
the number of cells in the first region. We continue to divide
the second region into two regions (l3, l2] and (l1, l3], where
l3 = l1+l2

2 is the middle point. We need to determine that
whether vd ∈ (l3, l2] or vd ∈ (l1, l3]. Let k2 be the number
of cells in the region (l3, l2]. Then there are three cases to
consider:

1) If k2 = k − k1, then vd = l3 is the desired threshold
value. In this case, all the cells with levels in (l3, l2] are
read as ones and those cells with levels in (l1, l3] are
read as zeros. The task of reading the block ends here.

2) If k2 > k− k1, it means vd is located in (l1, l3]. So the
cells corresponding to (l3, l2] are read as ones. In this

case, the interval-size is reduced by a factor of two by
considering (l1, l3] instead of (l1, l2].

3) If k2 < k− k1, it means vd is located in (l3, l2]. So the
cells corresponding to (l1, l3] are read as zeros. In this
case, the interval-size is reduced by a factor of two by
considering (l3, l2] instead of (l1, l2].

In practice, the cell levels v1, v2, ..., vn are read as binaries
of length l with limited precisions. Repeating the above pro-
cess, the interval size decreases exponentially, and finally we
will obtain a value vd satisfying the requirements of dynamic
thresholds, or the interval size becomes smaller than the
reading precision. In the worst case, the half-interval algorithm
can be finished in O(ln) time. In most cases, especially when
there are not too many cells with levels very close to vd, this
algorithm can be finished in O(n) time, which is faster than
the method based on sorting.

VI. CONCLUSION

Compared to traditional fixed thresholds, dynamic thresh-
olds have great advantages in reducing bit error probabilities
especially when cell level shift is not ignorable in nonvolatile
memories. In this paper, we demonstrated the performance
gain of dynamic thresholds and presented two error-correcting
schemes based on Berger codes and balanced codes. It can be
noticed that all the methods in this paper can be generalized
to multi-level memories. For example, if we apply the scheme
based on Berger codes to a 4-level memory, then the metadata
of each word consists of three integers, corresponding to the
numbers of 1’s, 2’s and 3’s.

ACKNOWLEDGMENT

This work was supported in part by the NSF CAREER
Award CCF-0747415, the NSF grant ECCS-0802107, and by
an NSF-NRI award.

REFERENCES

[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. “Introduction to
flash memory”, Proceedings of the IEEE, vol. 91, pp. 489-502, 2003.

[2] A. Pirovano, A. Redaelli, et al, “Reliability study of phase-change
nonvolatile memories”, IEEE Transactions on Device and Materials
Reliability, vol. 4, pp. 422-427, 2004.

[3] T. Kløve, “Error correcting codes for the asymmetric channel”, Technical
Report, Dept. of Informatics, University of Bergen, 1981. (Updated in
1995.)

[4] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck. “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories”, IEEE Transactions on Information Theory, vol. 56, no. 4, pp.
1582-1595, 2010.

[5] H. Zhou, A. Jiang, and J. Bruck. “Non-uniform Codes for Asymmetric
Errors”, IEEE International Symposium on Information Theory, 2011.

[6] J. M. Berger, “A note on an error detection code for asymmetric
channels”, Information and Control, vol. 4, pp. 68-73, March 1961.

[7] E. Fujiwara, “Code design for dependable systems: theory and practical
applications”, John Wiley & Sons, Inc., 2006.

[8] D. E. Knuth, “Efficient balanced codes”, IEEE Transactions on Informa-
tion Theory, vol. 32, no. 1, pp. 51-53, 1986.

[9] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new efficient
balanced codes,” IEEE Transactions on Information Theory, vol. 42, no.
3, pp. 790-802, May 1996.

[10] K. S. Immink and J. Weber, “Very efficient balanced codes”, IEEE
Journal on Selected Areas in Communications, vol. 28, pp. 188-192, 2010.

[11] S. Al-Bassam, B. Bose, “Design of efficient error-correcting balanced
codes”, IEEE Transactions on Computers, vol. 42, pp. 1261-1266, 1993.

2113

