
Compressed Encoding for
Rank Modulation

Eyal En Gad
Electrical Engineering

California Institute of Technology
Pasadena, CA 91125, U.S.A.

eengad@caltech.edu

Anxiao (Andrew) Jiang
Computer Science and Engineering

Texas A&M University
College Station, TX 77843, U.S.A.

ajiang@cse.tamu.edu

Jehoshua Bruck
Electrical Engineering

California Institute of Technology
Pasadena, CA 91125, U.S.A.

bruck@caltech.edu

Abstract—Rank modulation has been recently proposed as
a scheme for storing information in flash memories. While
rank modulation has advantages in improving write speed and
endurance, the current encoding approach is based on the “push
to the top” operation that is not efficient in the general case. We
propose a new encoding procedure where a cell level is raised to
be higher than the minimal necessary subset -instead of all - of
the other cell levels. This new procedure leads to a significantly
more compressed (lower charge levels) encoding. We derive an
upper bound for a family of codes that utilize the proposed
encoding procedure, and consider code constructions that achieve
that bound for several special cases.

I. INTRODUCTION

With the recent application to flash memories, the rank-
modulation scheme has gained renewed interest as evident in
the recent series of papers [1]–[3], [5]–[7]. Basically, instead
of a conventional multi-level cell in which a symbol in the
input alphabet is represented by the charge level of one cell,
in rank modulation, the stored information is represented by
the permutation induced by the relative charge levels of several
cells. The scheme, first described in [2] in the context of flash
memory, works in conjunction with a simple cell-programming
operation called “push-to-the-top”, which raises the charge
level of a single cell above the rest of the cells. It was
suggested in [2] that this scheme speeds up cell programming
by eliminating the over-programming problem. In addition, it
also reduces corruption due to retention.

The cost of changing the state in the scheme – namely, the
cost of the rewriting step – is measured by the number of
“push-to-top” operations that are used, because it represents
by how much the maximum cell level among the n cells
has increased [2]. It is important to minimize this cell-level
increment because the cells have a physical limit that upper
bounds the cell levels. The less the cell levels are increased,
the more rewrites can be performed before a block erasure
operation becomes necessary, and the longer the lifetime of
the memory will be.

We show an example in Fig. 1 (a), where the state of n = 4
cells needs to change from u = [2, 1, 3, 4] to v = [2, 1, 4, 3].
(Here the cells are indexed by 1, 2, · · · , n. And their state is
denoted by the permutation [u1, u2, · · · , un]∈ Sn, where cell

This work was supported in part by the NSF CAREER Award CCF-
0747415, the NSF grant ECCS-0802107, and by an NSF-NRI award.

u1 has the highest charge level and un has the lowest charge
level. For i = 1, · · · , n, cell ui has rank i.) Three “push-to-
top” operations are needed, where cell 4, cell 1 and cell 2 are
pushed sequentially. They are represented by the three edges
in the figure. The cost of this rewriting is 3.

We can see from the above example, however, that the
“push-to-top” operation is a conservative approach. To change
the state from u = [2, 1, 3, 4] to v = [2, 1, 4, 3], when we
push cell 4, the level of cell 4 in fact only needs to be greater
than cell 3. There is no need to make it greater than the
levels of all the other n − 1 = 3 cells (i.e., cells 1, 2 and
3). Similarly, when cell 1 is pushed, its level only needs to
be greater than cell 3 and cell 4, instead of cells 2, 3 and
4. So a more moderate programming approach as shown in
Fig. 1 (b) can be taken, and the increment of the cell levels
(in particular, the increment of the maximum cell level) can be
substantially reduced. So the cost of rewriting can be reduced,
which is important for the overall rewriting performance and
the longevity of the memories.

In this work, we consider a programming approach that
minimizes the increase of cell levels. To change the cell state
from u = [u1, u2, · · · , un]∈ Sn to v = [v1, v2, · · · , vn]∈ Sn,
we program cells based on their order in v, so that every cell’s
level increases as little as possible:
• For i = n− 1, n− 2, · · · , 1 do:
{ Increase the level of cell vi, to make it greater than

the level of the cell vi+1 }.
Note that in the above programming process, when cell vi is
programmed, cell vi+1 already has the highest level among
the cells vi+1, vi+2, · · · , vn. We call the programming opera-
tion here the “minimal-push-up” operation. (In comparison,
if we program cell vi to make its level greater than the
maximum level among the cells v1, · · · , vi−1, vi+1, · · · , vn,
then it becomes the original “push-to-top” operation.) The
“minimal-push-up” approach is robust, too, as it has no risk
of overshooting. And it minimizes increment of the maximum
level of the n cells (i.e., the rewrite cost).

In section II of the paper we study a discrete model of
the rewrite process that allows us to define the rewrite cost
of the “minimal-push-up” operation. We show that the cost
equals the maximal rank increase among the elements of the
initial permutation. In section III we turn to the problem of
designing rewrite codes under a worst-case cost constraint. We

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0594-6/11/$26.00 ©2011 IEEE 849

1

2

3

4

1

2

3

4

3

2

1

1

2

3

4

1

2

3

4

3

2

1

(a) (b)

Figure 1. Change the state from [2, 1, 3, 4] to [2, 1, 4, 3] by increasing cell levels. (a) Using the “push-to-top” operations. The labels beside the three edges
show the order of the three “push-to-top” operations. (b) Using the more moderate “minimal-push-up” operations.

limit ourselves to codes that assign a symbol to each one of
the states, and show that such codes for a worst-case cost of 1
cannot achieve a storage capacity greater than 1− 1

n log2(
8
3)

bits per cell. We consider code constructions that achieve that
bound for n 6 5, where the capacity is 54% higher than that
of previous rank modulation codes. Finally, we show a way
to generalize the construction for higher cost constraints.

II. REWRITE MODEL AND THE TRANSITION GRAPH

To design coding schemes, we need a good robust discrete
model for the rewriting. We present here a discrete model for
measuring the rewriting cost, which is suitable for both the
“push-to-top” approach and the “minimal-push-up” approach.
To rigorously define the cost of a rewriting step (i.e., a
state transition), we will use the concept of virtual levels.
Let u = [u1, u2, · · · , un]∈ Sn denote the current cell state,
and let v = [v1, v2, · · · , vn]∈ Sn denote the new state that
the cells need to change into via increasing cell levels. Let
d(u → v) denote the number of push-up operations that are
applied to the cells in order to change the state from u into
v. For i = 1, 2, · · · , d(u → v), let pi ∈ [n] , {1, 2, · · · , n}
denote the integer and let Bi ⊆ [n] \ {pi} denote the subset,
such that the i-th push-up operation is to increase the pi-
th cell’s level to make it greater than the levels of all the
cells in Bi. (For example, for the rewriting in Fig. 1 (a), we
have d(u → v) = 3, p1 = 4, B1 = {1, 2, 3}, p2 = 1,
B2 = {2, 3, 4}, p3 = 2, B3 = {1, 3, 4}. And for the rewriting
in Fig. 1 (b), we have d(u → v) = 3, p1 = 4, B1 = {3},
p2 = 1, B2 = {3, 4}, p3 = 2, B3 = {1, 3, 4}.) Clearly, such
push-up operations have no risk of overshooting.

For the current state u, we assign the virtual levels n, n−
1, · · · , 2, 1 to the cells u1, u2, . . . , un−1, un, respectively. The
greater a cell’s level is, the greater its virtual level is. It
should be noted that when the virtual level increases by
one, the increase in the actual cell level is not a constant
because it depends on the actual programming process, which
is noisy. However, it is reasonable to expect that when we
program a cell a to make its level higher than a cell b, the
difference between the two cell levels will concentrate around
an expected value. (For example, a one-shot programming

using hot-electron injection can achieve quite stable program-
ming performance at high writing speed.) Based on this, we
formulate a simple yet robust discrete model for rewriting,
which will be an important tool for designing coding schemes.

Consider the ith push-up operation (for i = 1, . . . , d(u →
v)), where we increase the level of cell pi to make it greater
than the levels of the cells in Bi. For any j∈ [n], let `j denote
cell j’s virtual level before this push-up operation. Then after
the push-up operation, we let the virtual level of cell pi be

1 + max
j∈ Bi

`j;

namely, it is greater than the maximum virtual level of the
cells in Bi by one. This increase represents the increment of
the level of cell pi. After the d(u → v) push-up operations
that change the state from u to v, for i = 1, . . . , n, let `′i
denote the virtual level of cell i. We define the cost of the
rewriting process as the increase in the maximum virtual level
of the n cells, which is

max
i∈ [n]

`′i − n = `′v1
− n.

Example 1. For the rewriting process shown in Fig. 1 (a),
the virtual levels of cells 1, 2, 3, 4 change as (3, 4, 2, 1) →
(3, 4, 2, 5)→ (6, 4, 2, 5)→ (6, 7, 2, 5). Its cost is 3.

For the rewriting process shown in Fig. 1 (b), the virtual
levels of cells 1, 2, 3, 4 change as (3, 4, 2, 1)→ (3, 4, 2, 3)→
(4, 4, 2, 3)→ (4, 5, 2, 3). Its cost is 1.

We would like to comment further on the robustness of
the above discrete model. The model captures the typical
behavior of cell programming. Yet when the minimal-push-up
operations are used, the number of cells to push in practice is
not always a constant when the old and new states u, v are
given. An example is shown in Fig. 2, where the state needs
to change from u = [1, 2, 3, 4] to v = [2, 1, 4, 3]. The typical
programming process is shown in Fig. 2 (a), where two cells –
cell 4 and then cell 2 – are pushed up sequentially. (Note that
based on the discrete model, the rewriting cost is 1. This is
consistent with the increase of the maximum cell level here.)
But as shown in Fig. 2 (b), in the rare case where cell 4’s
level is significantly over-raised to the extent that it exceeds

850

4

3

2

1

3

4

1

2

1

2
(a)

4

3

2

1

3

4

1

2

1

2

3

(b)

1

2

3

(b)

Figure 2. Change the state from [1, 2, 3, 4] to [2, 1, 4, 3]. The labels beside the
edges represent the order of the minimal-push-up operations. (a) The typical
programming process, where two cells are pushed up. (b) In the rare case,
if the level of cell 4 exceeds the level of cell 1, then three minimal-push-up
operations are needed.

the level of cell 1, cell 1 will also be programmed, leading to
three minimal-push-up operations in total. However, we would
like to show that above discrete model is still a robust model
for the following reasons. First, in this paper we focus on the
typical (i.e., most probable) behavior of cell programming,
where the rewriting cost matches the actual increase of the
maximum cell level well. In the rare case where cell levels are
increased by too much, additional load balancing techniques
over multiple cell groups can be used to handle it. Second, the
rare case – that a cell’s level is overly increased – can happen
not only with the minimal-push-up operation but also with the
push-to-top operation; and its effect on the increment of the
maximal cell level is similar for the two approaches. So the
discrete model still provides a fair and robust way to evaluate
the rewriting cost of different state transitions.

In the rest of the paper, we present codes based on
state transitions using the minimal-push-up operations. Given
two states u = [u(1), u(2), · · · , u(n)]∈ Sn and v =
[v(1), v(2), · · · , v(n)]∈ Sn, let C(u→ v) denote the cost of
changing the state from u to v. (Note that u(·), v(·) are both
functions. Let u−1, v−1 be their inverse functions.) The value
of C(u → v) can be computed as follows. Corresponding to
the old state u, assign virtual levels n, n− 1, · · · , 1 to the cells
u(1), u(2), · · · , u(n), respectively. For i = 1, 2, · · · , n, let `i
denote the virtual level of cell i corresponding to the new
state v. Then based on the programming process described
previously, we can compute `1, · · · , `n as follows:

1) For i = 1, 2, · · · , n do:
{ `u(i) ← n + 1− i. }

2) For i = n− 1, n− 2, · · · , 1 do:
{ `v(i) ← max{`v(i+1) + 1, `v(i)}. }

Then we have

C(u→ v) = `v(1) − n.

It is simple to see that 0 6 C(u→ v) 6 n− 1. An example
of the rewriting cost is shown in Fig. 3.

2,1,3

1,2,3

1,3,2

3,1,2 2,3,1

3,2,1

Figure 3. State diagram for the states of three cells, where every edge
represents a state transition of cost 1. The dashed edges are transitions
obtained by “minimal-push-up” operations but not “push-to-top” operations.

In the following theorem we present an equivalent definition
of the cost. According to the theorem, the cost is equal to the
maximal increase in rank among the cells.

Theorem 1.

C(u→ v) = max
i∈ [n]

(v−1(i)− u−1(i)).

Proof: Assume by induction on k that

`v(k) = n + 1− k + max
i∈ [k,...,n]

(i− u−1(v(i))).

In the base case, k = n, and `v(n) = n + 1 − n +
maxi∈ [n,...,n](i− u−1(v(i))) = 1 + n− u−1(v(n)). We can
see that this is in fact the result of the programming process.
Now we assume that the expression is true for k. For k− 1,
by the programming process,

`v(k−1) = max{`v(k) + 1, n + 1− u−1(v(k− 1))}

= max{n + 1− k + max
i∈ [k,...,n]

(i− u−1(v(i))) + 1,

n + 1− u−1(v(k− 1))}
by the induction assumption
= n + 1− (k− 1)+
max{ max

i∈ [k,...,n]
(i− u−1(v(i))), k− 1− u−1(v(k− 1))}

= n + 1− (k− 1) + max
i∈ [k−1,...,n]

(i− u−1(v(i)))

and the induction is proven.
Now we assign `v(1) in the definition of the cost:

C(u→ v) = `v(1)− n

= n + 1− 1 + max
i∈ [1,...,n]

(i− u−1(v(i)))− n

= max
i∈ [n]

(v−1(i)− u−1(i))

851

Codes for rewriting data based on the “push-to-top” op-
eration were studied in [2]. Since the “minimal-push-up”
approach has lower rewriting cost than the “push-to-top”
operation, we can construct rewrite codes with higher rates.

In order to discuss rewriting, we first need to define a decod-
ing scheme. It is often the case that the alphabet size used by
the user to input data and read stored information differs from
the alphabet size used as internal representation. In our case,
data is stored internally in one of n! different permutations. Let
us assume the user alphabet is Q = {1, 2, . . . , q}. A decoding
scheme is a function D : Sn → Q mapping internal states to
symbols from the user alphabet. Suppose the current internal
state is u∈ Sn and the user inputs a new symbol α∈Q. A
rewriting operation given α is now defined as moving from
state u∈ Sn to state v∈ Sn such that D(v) = α. The cost of
the rewriting operation is C(u→ v).

Next, we define a few terms. Define the transition graph
Gn = (Vn, An) as a directed graph with Vn = Sn, i.e., with
n! vertices representing the permutations in Sn. There is a
directed edge u → v if and only if C(u → v) = 1. Note
that Gn is a regular digraph. Given a vertex u∈Vn and an
integer r∈ {0, 1, · · · , n − 1}, we define the ball Bn,r(u) as
Bn,r(u) = {v∈Vn|C(u→ v) 6 r}.

Theorem 2.
|Bn,r(u)| = r!(r + 1)n−r

Proof: We use induction on n. When n = 2 the
statement is trivial. (So is it when n = r + 1, where
|Br+1,r(u)| = (r + 1)!.) Now we assume that the state-
ment is true for n 6 n0, and consider n = n0 + 1
and n > r + 1. Let u = [u(1), u(2), · · · , u(n)]∈ Sn,
and without loss of generality (w.l.o.g.) let u(1) = n.
Let v = [v(1), v(2), · · · , v(n)]∈ Bn,r(u). Let û =
[u(2), u(3), · · · , u(n)]∈ Sn−1, and let v̂∈ Sn−1 be obtained
from v by removing the element u(1) = n. By Theorem 1, the
first element in u, namely u(1) = n, can take one of the first
r + 1 positions in v. Given that position, there is a one-to-one
mapping between pushing-up the remaining n − 1 elements
from u to v∈ Sn and pushing-up those n− 1 elements from
û to v̂∈ Sn−1, and we have C(û → v̂) = C(u → v) 6 r.
So we get |Bn,r(u)| = (r + 1)|Bn−1,r(û)| = · · · = (r +
1)n−r−1 · (r + 1)! = r!(r + 1)n−r.

Note that given u, |{v∈ Sn||v−1(i)− u−1(i)| 6 r for 1 6
i 6 n}| is the size of the ball under infinity norm. When
r = 1, that size is known to be a Fibonacci number [4].

In addition, we note that |Bn,1(u)| = 2n−1. Therefore,
the out-degree of each vertex in Gn is 2n−1 − 1. In com-
parison, when we allow only the “push-to-the-top” operation,
|Bn,1(u)| = n. Hence we get an exponential increase in the
degree, which might lead to an exponential increase in the rate
of rewrite codes. In the next section we study rewrite codes
under a worst-case cost constraint.

III. WORST-CASE DECODING SCHEME FOR REWRITE

In this section, we study codes where the cost of the rewrite
operation is limited by r.

A. The case of n 6 4
We start with the case of r = 1. The first non-trivial case

for r = 1 is n = 3. However, for this case the additional
“minimal-push-up” transitions do not allow for a better rewrite
code. An optimal construction for a graph with only the “push-
to-top” transitions was described in [2]. That construction
assigns a symbol to each state according to the first element
in the permutation, for a total of 3 symbols. It is easy to
see that this construction is also optimal for a graph with the
“minimal-push-up” transitions.

For greater values of n, in order to simplify the construction,
we limit ourselves to codes that assign a symbol to each of the
n! states. We call such codes full assignment codes. Note that
better codes for which not all the states are assigned to symbols
might exist. When all of the states are assigned to symbols,
each state must have an edge in An to at least one state labelled
by each other symbol. We define a set of vertices D in Gn as
a dominating set if any vertex not in D is the initial vertex of
an edge that ends in a vertex in D. Every denominating set
is assigned to one symbol. Our goal is to partition the set of
n! vertices into the maximum number of dominating sets. We
start by presenting a construction for n = 4.

Construction 1. Divide the 24 states of S4 into 6 sets of 4 states
each, where each set is a coset of 〈(1, 2, 3, 4)〉, the cyclic group
generated by (1, 2, 3, 4)1. Map each set to a different symbol.

Theorem 3. Each set in Construction 1 is a dominating set.

Proof: Let Id be the identity permutation, g = (1, 2, 3, 4)
and G = 〈g〉. For each h∈ S4, hG is a coset of G.
For each v = [v(1), · · · , v(n)]∈hG and each u =
[u(1), · · · , u(n)]∈ S4 such that u(1) = v(1), u has an edge
to either v or v ∗ g. For example, in the coset IdG = G, for
v = Id and u∈ Sn such that u(1) = v(1) = 1, if u(2) is 2 or
3, u has an edge to Id = [1, 2, 3, 4], and if u(2) = 4, u has an
edge to Id ∗ g = [4, 1, 2, 3]. Since G is a cyclic group of order
4, for every u∈ S4 there exists v∈ hG such that u(1) = v(1),
and therefore hG is a dominating set.

For k∈ [n] and B ⊆ Sn, we define

Pre fk(B) = {t|s = tu for |u| = k and s∈ B}

where t, u are segments of the permutation s. For ex-
ample, Pre f3({[1, 2, 3, 4, 5], [1, 2, 3, 5, 4], [1, 3, 2, 4, 5]}) =
{[1, 2], [1, 3]}.

We provide a lower bound to a dominating set’s size.

Theorem 4. If D is a dominating set of Gn, then

|D| >
n!

3
4 · 2n−1

.

Proof: Each p3 ∈ Pre f3(Sn) is a prefix of 3 different
prefixes in Pre f2(Sn). For example, for n = 5, [1, 2] is a
prefix of {[1, 2, 3], [1, 2, 4], [1, 2, 5]}. Each v∈D dominates
2n−2 prefixes in Pre f2(Sn). For example, for n = 4, every

1Here (1, 2, 3, 4) is the permutation in the cycle notation, and
〈(1, 2, 3, 4)〉 = {[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]}.

852

permutation that start with [1, 2], [1, 3], [2, 1] or [2, 3] has an
edge to [1, 2, 3, 4]. This set of prefixes can be partitioned
into sets of two members, each sharing the same prefix in
Pre f3(Sn). We look at one such set B2 = {p2,1, p2,2},
and denote by p3 the only member of Pre f3(B2). Since D
is a dominating set, all of the members of Pre f2(Sn) are
dominated. Therefore, the third prefix p2,3 /∈ B2 such that
{p3} = Pre f3({B2, p2,3}) is dominated by some u∈D,
u 6= v. Moreover, u dominates also one of the prefixes in
B2. Therefore, at least half of the prefixes in Pre f2(Sn) that
v dominates are also dominated by at least one other member
of D. We denote by Xv the set of prefixes in Pre f2(Sn)
that are dominated by v and not by any u 6= v such that
u∈D, and denote by Yv the prefixes in Pre f2(Sn) that are
also dominated by at least one such u 6= v. We further
define X = ∑v∈D |Xv| and Y = ∑v∈D |Yv|. We have
shown that |Xv| 6 2n−3; so X 6 2n−3|D|. In addition, we
also know that |Xv| + |Yv| = 2n−2, so X + Y = 2n−2|D|.
By the definition of Yv, we know that |

⋃

v∈D Yv| 6 Y
2 ,

because every element in the above union of sets appears
in at least two of the sets. So we get n!

2 = |Pre f2(Sn)| =
|
⋃

v∈D Xv|+ |
⋃

v∈D Yv| 6 X + Y
2 = X + 2n−3|D| − X

2 =
X
2 + 2n−3|D| 6

(

2n−4 + 2n−3) |D| = 3 · 2n−4|D|. Therefore
|D| > n!

3·2n−3 .
Using the above bound, we can show by a simple calculation

that the rate of any full assignment code C is R(C) 6 1−
1
n log2

8
3 bits per cell. For the case of n = 4, we see that |D| >

4. Therefore Construction 1 is an optimal full assignment code.

B. The case of n = 5
In the case of n = 5, a dominating set consists of at least
5!

3·25−3 = 10 members. We present an optimal full assignment
code construction with dominating sets of 10 members.

Construction 2. Divide the 120 states of S5 into 12 sets of 10
states each, where each set is composed of five right cosets of
〈(4, 5)〉, and two permutations with the same parity2 are in the
same set if and only if they belong to the same left coset of
〈(1, 2, 4, 3, 5)〉. Map each set to a different symbol.

Let g1 = (4, 5) and g2 = (1, 2, 4, 3, 5). An example of a
dominating set where each row is a right coset of 〈g1〉 and
each column is a left coset of 〈g2〉 is:

{[1, 2, 3, 4, 5], [1, 2, 3, 5, 4]
[2, 4, 5, 3, 1], [2, 4, 5, 1, 3]
[4, 3, 1, 5, 2], [4, 3, 1, 2, 5]
[3, 5, 2, 1, 4], [3, 5, 2, 4, 1]
[5, 1, 4, 2, 3], [5, 1, 4, 3, 2]}

Theorem 5. Each set D in Construction 2 is a dominating set.

Proof: Each right coset of 〈g1〉 dominates 4 prefixes
in Pre f3(S5). For example, the coset 〈g1〉 = {Id =
[1, 2, 3, 4, 5], g1 = [1, 2, 3, 5, 4]} dominates the prefixes

2The parity (oddness or evenness) of a permutation u can be defined as
the parity of the number of inversions for u.

{[1, 2], [1, 3], [2, 1], [2, 3]}. We treat each coset representative
as a representative of the domination over the 4 prefixes in
Pre f3(S5) that are dominated by the coset. According to the
construction, a set of representatives in D that share the same
parity is a left coset of 〈g2〉. Let one of the cosets of 〈g2〉 in D
be called C. For each v∈C, the subset {v, v ∗ g2} represents a
domination over the prefix v(2). For example, for v = Id, the
subset {Id = [1, 2, 3, 4, 5], Id ∗ g2 = [2, 4, 5, 3, 1]} represent a
domination over the prefix [2]. Since |〈g2〉| = 5, C represents
a complete domination over Pre f4(S5), and therefore D is a
dominating set.

The rate of the code is

R =
1
5

log2 12 = 0.717 bits per cell

Recall that optimal codes with “push-to-top” operations use
only n symbols for n cells. Therefore, we achieve the rate
improvement of (1

5 log2 12)/(1
5 log2 5)− 1 = 54.4%.

C. The case of r > 2
When the cost constraint is greater than 1, we can generalize

the constructions studied above. We present a construction for
the case r = n− 4. The construction begins by dividing the
n! states Sn into n!

120 sets, where two states are in the same set
if and only if their first n− 5 elements are the same. The sets
are all dominating sets, because we can get to any set by at
most n− 5 “push-to-top” operations. We further divide each
of these sets to 12 sets of 10 members, in the same way as
in Construction 2, according to the the last 5 elements of the
permutations. By the properties of construction 2, each of the
smaller sets is still a dominating set. The rate of the code is
R = 1

n log2
n!
10 bits per cell.

IV. CONCLUSION

We have presented a programming method that minimizes
rewriting cost for rank modulation, and studied rewrite codes
for a worst-case constraint on the cost. The presented codes are
optimal full-assignment codes. It remains our future research
to extend the code constructions to general code length, non-
full assignment codes and average-case cost constraint.

REFERENCES

[1] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “On a construction
for constant-weight gray codes for local rank modulation,” in Proceedings
of the 2010 IEEE 26-th Convention of Electrical and Electronic Engineers
in Israel (IEEEI2010), Eilat, Israel, Nov. 2010, p. 996.

[2] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[3] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. on Inform. Theory,
vol. 56, no. 5, pp. 2112–2120, May 2010.

[4] T. Kløve, “Spheres of permutations under the infinity norm – permutations
with limited displacement,” University of Bergen, Bergen, Norway, Tech.
Rep. 376, Nov. 2008.

[5] M. Schwartz, “Constant-weight Gray codes for local rank modulation,” in
Proc. 2010 IEEE Int. Symp. Information Theory, Jun. 2010, pp. 869–873.

[6] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. on Inform. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[7] Z. Wang, A. Jiang, and J. Bruck, “On the capacity of bounded rank mod-
ulation for flash memories,” in Proc. 2009 IEEE Int. Symp. Information
Theory, Jun. 2009, pp. 1234–1238.

853

