
LDPC Codes for Rank Modulation in
Flash Memories

Fan Zhang
Electrical and Computer Eng. Dept.

Texas A&M University

College Station, TX 77843

fanzhang@tamu.edu

Henry D. Pfister
Electrical and Computer Eng. Dept.

Texas A&M University

College Station, TX 77843

hpfister@tamu.edu

Anxiao (Andrew) Jiang
Computer Science and Eng. Dept.

Texas A&M University

College Station, TX 77843

ajiang@cse.tamu.edu

Abstract—An LDPC code is proposed for flash memories based
on rank modulation. In contrast to previous approaches, this
enables the use of long ECCs with fixed-length modulation codes.
For ECC design, the rank modulation scheme is treated as part
of an equivalent channel. A probabilistic model of the equivalent
channel is derived and a simple high-SNR approximation is given.
LDPC codes over integer rings and finite fields are designed for
the approximate channel and a low-complexity symbol-flipping
verification-based (SFVB) message-passing decoding algorithm is
proposed to take advantage of the channel structure. Density
evolution (DE) is used to calculate decoding thresholds and
simulations are used to compare the low-complexity decoder with
sum-product decoding.

I. INTRODUCTION

Flash memories have become the most widely used non-

volatile memories (NVMs) due to their high performance.

They use the charge stored in floating-gate cells to represent

data. Charge (e.g., electrons) can be injected into a cell by

the hot-electron injection mechanism or the Fowler-Nordheim

tunneling mechanism, and be removed from the cell by the

tunneling mechanism. The amount of charge in a cell is called

its level, and we can quantize it into one of q values to store

log2 q bits. When q = 2, it is called a single-level cell (SLC);

and when q > 2, it is called a multi-level cell (MLC). To

increase data density, MLC flash memories with more levels

(e.g., q = 4, 8, . . .) are being actively developed.

Flash memories have a distinct property called block era-
sure. The flash memory cells are organized as blocks, where

every block consists of about 105 ∼ 106 cells. Although the

cell levels can be increased individually, to decrease any cell’s

level, the whole block must be erased and then reprogrammed.

Block erasures significantly reduce the longevity, speed and

power efficiency of flash memories. They also make cell

programming (i.e., charge injection) difficult, especially for

MLCs where the gap between adjacent cell levels is small,

because the charge injection is a noisy process and any over-

injection will lead to the expensive block erasure operation. To

remove the risk of over injection and make cell programming

more robust and efficient, the rank modulation scheme was

This material is based upon work supported by the National Science
Foundation. The work of F. Zhang and H. Pfister was supported by Grant No.
07407470. The work of A. Jiang was supported by grant No. 0747415 and
grant No. 0802107. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Fig. 1. Block diagram for ECC with modulation codes for flash memory.

proposed in [1], whereby the relative order of cell levels,

instead of their absolute values, is used to represent data.

Research has already been done on error-correcting codes

(ECCs), rewriting codes and capacity analysis for rank mod-

ulation. Based on the Kendall tau distance, error-correcting

codes for a single rank modulation block were explored in

[1], [5]. In [5], a family of single-error-correcting codes was

constructed, whose number of codewords is provably at least

half of optimal. In [1], the asymptotic rates of optimal ECCs

were derived, and the existence of good t-error-correcting

codes was proved. Rewriting codes that enable data to be

rewritten without block erasures and capacity analysis were

also presented [4], [8].

In this paper, we study LDPC codes for rank modulation.

Compared to codes designed for a single rank modulation

block, where the cell levels are ordered into a permutation

[1], [5], our LDPC code approach partitions the cells into

many small groups and uses rank modulation separately for

each group. In this work, we treat the rank modulation code

as part of the channel, as shown in Fig. 1. We consider the

physical channel together with the rank modulation encoder

and decoder as the equivalent channel for the ECC. We

analyze the equivalent channel, and study the design of good

LDPC codes for the channel. A family of symbol-flipping

verification-based (SFVB) decoding algorithms is proposed

and analyzed.

The structure of the paper is as follows. In Section II,

we study the equivalent channel model of rank modulation.

Section III presents the LDPC codes design and the perfor-

mance analysis for rank modulation. Section IV presents the

simulation results. Section V discusses some conclusions.

II. EQUIVALENT CHANNEL OF RANK MODULATION

A. Rank Modulation

Consider a group of n cells, whose levels are c1, c2, . . . , cn.

Here ci ∈ R for i = 1, . . . , n, and represents the amount

of charge stored in the i-th cell. Let Sn be the set of

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

859978-1-4244-7891-0/10/$26.00 ©2010 IEEE ISIT 2010

m = n! permutations of length n. Specifically, we have

Sn = {s1, s2, · · · , sm} where, for i = 1, . . . , m,

si � (si(1), si(2), · · · , si(n))

is a permutation of (1, 2, · · · , n). The rank modulation

scheme [4] defines a mapping R
R : {(c1, . . . , cn) ∈ R

n} → Sn

as follows. If R(c1, c2, . . . , cn) = (i1, i2, . . . , in), then for

any j1 �= j2 ∈ {1, . . . , n}, ij1 > ij2 if and only if cj1 ≥ cj2 .

Namely, the function R ranks the n cells based on the relative

order of their cell levels. The rank modulation scheme uses the

permutation induced by the cell levels, namely R(c1, . . . , cn),
to represent data.

Let Zm = {1, 2, . . . , m} be the ring of integers modulo m.

Let Π be a bijection:

Π : Sn → Zm.

As a modulation code, the rank modulation scheme has an

encoder and a decoder, as shown in Fig. 1. Given a variable

x ∈ Zm as input to the encoder, the flash memory programs

the n cells such that their cell levels (c1, . . . , cn) satisfy

Π(R(c1, . . . , cn)) = x.

For the decoder, it takes the cell levels (c1, . . . , cn) as input,

and outputs the variable Π(R(c1, . . . , cn)) ∈ Zm.

B. LDPC Codes over Integer Rings for Rank Modulation

One way to design LDPC codes for rank modulation is

to match the alphabet size of the LDPC codes and rank

modulation. We can define the LDPC code over the integer

ring Zm. As Fig. 1 shows. the outputs of the LDPC code

encoder are mapped to permutations in Sn by Π. Then the

permutation is represented by cell levels by rank modulation.

The rank modulation demodulator calculates the permutations

implied by the cell levels. The permutations are mapped to

elements in Zm for the LDPC code decoder.

An element x′ ∈ Zm has a multiplicative inverse, and is

called invertible, if and only if x′ and m are co-prime (i.e.,

gcd(x′, m) = 1). Let N be the block length of the code,

and let M be the number of parity check equations. Every

symbol of the code is realized by a group of n cells using

rank modulation, so the code corresponds to nN cells in total.

Let Ω ⊆ Zm be the subset of invertible elements which is also

known as the multiplicative group of Zm.

An LDPC code over Zm is defined by its parity-check

matrix H , which is an M by N sparse matrix whose non-

zero entries are chosen independently and uniformly from Ω.

A valid codeword X ∈ Z
N
m should satisfy all the parity check

equations, i.e., HX = 0. The number of invertible elements

|Ω| is given by ϕ(m), where ϕ(·) is Euler’s totient function. It

is known that large integer rings must have a reasonably large

number of invertible elements because ϕ(m) can be bounded

by ϕ(m) ≥ m1−ε for arbitrary ε > 0 and large enough m.

We can obtain the generator matrix G by using Gaussian

elimination to place H in the row reduced form. For some

parity-check matrices, the Gaussian elimination may get stuck

before one finds the row-reduced echelon form of H (e.g.,

there is no invertible element available for exchange). How-

ever, this seems to occur with very small probability when

H is sparse and m is large. The probability of finding a G
from H is easily seen as equivalent to the probability of H
being full rank. The results in [3] show that a uniform random

matrix over Zm is full rank with high probability as m → ∞.

Restricting our attention to sparse matrices whose non-zero

entries are invertible changes the setting of the problem, and

we do not have analytical results in this case. But numerical

experiments show that one can almost always find a generator

matrix G by trying Gaussian elimination on several randomly

chosen H’s.

C. LDPC Codes over Finite Fields for Rank Modulation

Another way to design LDPC codes for rank modulation

is to design the codes over a finite field GF (q) which is

embedded into Zm such that q ≤ m [7], [9]. In detail, let

L be a subset of Zn! with q elements. To associate L with

GF (q), one can design an arbitrary one-to-one correspondence

between L and GF (q) which is denoted as θ : L → GF (q).
The parity-check matrix H is an M by N matrix whose

non-zero elements are randomly chosen from GF (q) and the

codes are defined over GF (q).
The input and output alphabet sets of the encoder are both

GF (q) and the coded symbols are mapped to the permutations

in L symbol by symbol by θ. Each permutation is then

modulated by rank modulation and passes through the physical

channel. The rank modulation demodulator calculates the

permutation implied by the cell levels read back from the

channel and the permutation is mapped back to GF (q) as

the input of the LDPC code decoder. Note that sometimes

the output of the rank modulation demodulator is not in L
due to the channel error. In this case, the outputs of the

rank modulation demodulator need to be pre-processed before

LDPC code decoding. We will discuss this detail more in next

section.

Comparing to the codes over integer rings described in

previous subsection, here we only use q symbols out of all

m possible symbols implied by rank modulation during the

encoding and this causes a rate loss by a factor of ζn � log q
log n! .

For example, ζ5 = 0.869, ζ6 = 0.948, ζ7 = 0.976 and

ζ8 = 0.980. But, this field-embedding modification also leads

to codes with lower false verification probability and better

performance in the error floor regime [7], [9].

D. Equivalent Channel

In this subsection, we consider the equivalent channel for

rank modulation. By treating the modulation encoder and

decoder as part of the channel, the input and output alphabet

sets of the equivalent channel are both Zm. Let the input

variable be x, and the output variable be y, where x, y ∈ Zm.

We first derive the transition probability of the equivalent

channel W (y|x). Due to the difficulty of having a closed-form

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

860

of W (y|x), we derive an approximation of this channel when

the noise is i.i.d. additive Gaussian with small variance.

Let us first consider the general case. Consider a group of n
cells, and let the physical noise in the cell levels have the joint

probability density function (pdf) f(w1, w2, · · · , wn), where

wi is the noise in the i-th cell’s level. The rank-modulation

encoder maps the input integer x to si = Π−1(x), and

programs the cell levels as c = {c1, c2, · · · , cn} such that

R(c) = si. Then the cell levels are distorted by the additive

noise w = (w1, w2, · · · , wn), where wi is the noise in the i-th
cell level. The rank-modulation decoder reads the noisy cell

levels c′ = {c1 + w1, c2 + w2, · · · , cn + wn}, computes the

permutation sj = R(c′), and outputs the integer y = Π(sj).
(Note that the mapping Π(·) can be chosen arbitrarily.) With-

out loss of generality, we assume that Π−1(1) = (1, 2, · · · , n),
the identity permutation. Since Π is a bijection, we also abuse

notation and write W (sj |si) = W (y|x) for a channel whose

inputs and outputs are permutations.

Let π be a permutation on {1, 2, . . . , n}. Since permutations

naturally operate on each other via composition, we have π ◦
si = (π(si(1)), . . . , π(si(n))). For any fixed bijection Π, the

equivalent channel is symmetric if and only if for all si and

sj , W (Π(sj)|Π(si)) = W (Π(π ◦ sj |Π(π ◦ si)) holds for all

π. When the noise is i.i.d., it is easily seen that the equivalent

channel is symmetric. Therefore, without loss of generality, we

assume the input variable is 1, and analyze W (y|1). For any

input integer x, the channel transition probability is W (y|x) =
W (y′|1) where y′ = Π(π ◦ Π−1(y)), and π is the unique

permutation satisfying π ◦ Π−1(x) = Π−1(1).
Let s1 = Π−1(1) = (1, 2, · · · , n), c = (1, 2, . . . , n),

and c′ = c + w. Then, the hard decision receiver for rank

modulation computes y = R(c′) = R((c1+w1, . . . , cn+wn))
and the channel transition probability W (sj |s1) is given by

W (sj |s1)=
∫
Aj

f(w1, w2, · · · , wn)dw1dw2 · · · dwn

where Aj = R−1(sj) is the decision region for sj . The

integration domain Aj can be simplified to the intersection

of n − 1 half spaces given by

Aj �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w

∣∣∣∣∣∣∣∣∣

wsj(1) + csj(1) < wsj(2) + csj(2)

wsj(2) + csj(2) < wsj(3) + csj(3)

...

wsj(n−1) + csj(n−1) < wsj(n) + csj(n)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

This decision region remains valid for the general case

where the cell levels are not equally separated and the noise

has an arbitrary joint distribution on the n cells. Since the

integral cannot be further simplified without making more

assumptions, we compute it numerically using Monte Carlo

integration.

In the following, we assume that the noise is i.i.d. Gaussian

with zero mean and small variance σ2. We also assume that

all the adjacent cell levels are separated equally by a constant

Δ. (Note that for rank modulation, the memory only needs

to use comparison circuits to program and read cells, and the

real cell levels are unknown to the decoder. Results obtained

by assuming evenly-spaced cell levels can be extended later

for more robust code design.)

To study the approximate channel transition probability

W̃ (y|x), we first define two concepts.

Definition 1: An adjacent transposition in a rank-

modulation symbol is a transposition of adjacent cell levels

(among the n cells). For example, an adjacent transposition

in a permutation induced by the n cell levels, causes the two

integers i and i+1 (for some i ∈ {1, 2, . . . , n− 1}) to switch

their positions.

Definition 2: For i = 0, 1, . . . , n(n−1)
2 , for any permutation

s ∈ Sn, we define Ni(s), called the i-th neighborhood of s,

as follows: the minimum number of adjacent transpositions

to change any permutation in Ni(s) to s (and vice versa) is

i. Namely, Ni(s) is the set of permutations at Kendall tau

distance i from s. We note that |N1(s)| = n − 1.

Given the input symbol s ∈ Sn to the channel, the output

symbol will be s with probability 1−p. Let p1 be the approx-

imate probability that the output symbol is s′ ∈ N1(s). For

small noise, it can be shown that p ≈ |N1(s)|p1 = (n− 1)p1,

that is, the dominant errors are the errors causing one adjacent

transposition. The following lemma makes this notion precise,

Due to the limited space, its proof is omitted.

Lemma 1: For additive i.i.d. Gaussian noise with small vari-

ance σ2, the channel model can be approximated as follows.

(We call it the approximate channel model.) Let x, y ∈ Sn be

the input and output permutations to the channel, respectively.

Then the channel transition probability for the approximate

channel is

W̃ (y|x) =

⎧⎨
⎩

1 − (n − 1)p1 + o(p1) if x = y
p1 + o(p1) if y ∈ N1(x)

O(p2
1) otherwise

(1)

where p1 = σ√
πΔ

exp
(
− Δ2

4σ2

)
.

III. LDPC CODES DESIGN FOR RANK MODULATION

A. Iterative verification-based decoder

We are interested in message-passing decoders for this

problem because they have complexity that is linear in N .

In particular, we design a symbol-flipping algorithm based on

verification. The idea is to jointly use the a priori information

about the channel and the assumption that two error messages

match with low enough probability as n is large enough. We

note that this general idea can be applied to the decoders of

both codes over integer rings and finite fields and the density

evolution analysis is exactly the same for both codes. This

results in decoding algorithms that are similar to both symbol-

flipping algorithms, which can be seen as a generalization of

the Gallager-A and Gallager-B hard decision decoding algo-

rithms [2], and verification-based decoding algorithm [6]. We

also refer these algorithms as the symbol-flipping verification-

based (SFVB) algorithms. The event that two incorrect sym-

bols match is called false verification (FV). The analysis of

VB decoding algorithms typically considers DE with no FV

and the probability of FV separately.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

861

Note that the verification-based decoding algorithms can be

further classified into node-based (NB) and message-based

(MB) algorithms [9]. Therefore, the SFVB decoding algo-

rithms also have two categories, namely, node-based SFVB

(NBSFVB) decoding algorithms and message-based SFVB

(MBSFVB) decoding algorithms. The messages from the

variable nodes to the check nodes (resp. from the check nodes

to the variable nodes) are multiplied by the (resp. inverse of

the) random entries in the parity-check matrix. For simplicity,

we will not describe this explicitly in the following.
1) NBSFVB decoding algorithm: In each iteration, we

first calculate the check sums of the check nodes. Then we

perform the symbol-flipping operation on the variable nodes

simultaneously by the following rules.

• If all the check nodes connected to a variable node are

satisfied (i.e., the check sum equals 0), then the variable

node remains at its current value x.

• Otherwise, the variable node tries to change its value to

one of the N1(y) neighbors of its received value y.

– If it finds a value x′ ∈ N1(y) which satisfies all the

checks, then the variable node flips its value to x′:
x → x′.

– If it cannot find a value which satisfies all the checks,

it keeps its value unchanged.

We note that this algorithm cannot be analyzed by density evo-

lution since the two-way messages on the same edge are not

independent. This algorithm is a node-based message-passing

decoding [9] and one can analyze it using the differential

equation approach described in [7] [9]. Also note that this

algorithm can be further improved by relaxing the flipping

condition. The idea is similar to Gallager-B hard decision

decoding algorithm [2] for the BSC and we skip the details.
2) MBSFVB decoding algorithm : By using the a priori

channel information and the fact that the size of the channel

output alphabet set is large, we propose the MBSFVB decod-

ing algorithm. The decoding rules are described as follows.

• Check Node Operation: Let the variable-to-check mes-

sages be m0, m1, · · · , mr−1. For a check node of degree

r, the check-to-variable message on the j-th edge is

m′
j = mj −

∑r−1
k=0 mk.

• Variable Node Operation: For a variable node of degree

l, let the channel output value be y and check-to-variable

messages be m′
0, m′

1, · · · , m′
l−1. The variable-to-check

message on the j-th edge is

mj =

⎧⎨
⎩

m, if C1

y′ if not(C1) and C2

y otherwise

where condition C1 represents the event that at

least 2 messages from the message set {y} ∪
{m′

0, m
′
1, · · · , m′

l−1}\{m′
j} match and equal m. Con-

dition C2 represents the event that there exists a value

y′ ∈ N1(y) such that y′ matches at least 1 message in

{m′
0, m

′
1, · · · , m′

l−1}\{m′
j}.

Based on [9], we derive the DE analysis of MBSFVB under

the assumption that the output message is correct whenever

condition C1 or C2 holds (i.e., there is no false verification

(FV)). Let pi be the probability that a variable-to-check

message is incorrect at iteration i. Let qi be the probability

that a check-to-variable message is incorrect at iteration i. Note

that p0 = p is the channel error probability. The DE equations

for the MBSFVB algorithm are qi = 1 − (1 − pi)r−1 and

pi+1 = pql−1
i .

Taking the irregularity into account, the DE equations can

be written as qi = 1 − ρ(1 − pi) and pi+1 = pλ(qi), where

λ(x) and ρ(x) are the variable node and check node degree

distributions in the edge perspective.

Remark 1: The DE recursion of the MBSFVB algorithms

is identical to the DE recursion of the BEC. The decoding

threshold of the (3,6) ensemble with the MBSFVB algorithm

is p∗MBSFV B = 0.428. The decoding threshold of the (3,50)

ensemble with the MBSFVB algorithm is p∗MBSFV B = 0.047.

As mentioned in previous section, when the codes are

defined over GF (q) which is embedded into Zm, sometimes

the output permutation y of the rank modulation demodulator

is not in L, hence y cannot be mapped back to GF (q).
In this case, we know that the correct permutation falls in

N1(y) with high probability. We assign an arbitrary element

in Z(y) � {z|z ∈ GF (q), θ−1(z) ∈ N1(y), θ−1(z) ∈ L} to

this coded symbol and we assign the rest elements in Z(y)
as its decoding neighborhood. Then we can still apply the

SFVB decoding algorithms described above. We note that this

results in slightly better error correcting performance than that

predicted by the DE analysis because there is less ambiguity

in those symbols on the boundary of L given the channel

observation.

Since the error correcting capability is better if the trans-

mitted symbol is on the boundary of L, the analysis of the

average performance cannot be simplified to the analysis of

the all-1 codeword (where each permutation is the identity

permutation). We only use the DE result as an upper bound

of the decoding threshold.

In our DE analysis, we assume that there is no FV. During

our simulations of codes over Zm, we discovered that the

probability of FV is not negligible for moderate n (e.g.,

n ≤ 8). The problem is not that the alphabet size is too small

(e.g., 8! = 40320 is large enough based on previous work).

Instead, it appears that the issue of FV is more complicated

for codes over integer rings. The reason is that multiplication

with random edge weights maps some incorrect symbols (e.g.,

(n−1)! ∈ Zm) to sets whose size are significantly smaller than

m or even φ(m). Therefore, the probability that two incorrect

symbols match is too large to be ignored. Unfortunately, we

do not have a good analysis of the FV probability. Still, the

simulation results show that, for n ≥ 8, the probability of FV

is low enough that the algorithm may be useful.

IV. SIMULATION RESULTS

We evaluate the capacity of the real channel and the

approximate channel. The result is shown in Fig. 2. From the

result we can see that the approximate channel and the real

channel have approximately the same capacity when p < 0.05.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

862

Fig. 2. Capacity of the real channel model and the approximate channel.

We simulate the MBSFVB decoder, or the verification-based

(VB) decoder, with the (3, 50) regular ensemble with rate

0.94 and threshold p∗V B = 0.047. The reason we choose the

(3, 50) ensemble is that the approximate channel and the real

channel model have approximately the same capacity around

the decoding threshold. The channel used is the real channel

model. Note that the threshold p∗V B = 0.047 implies the

threshold σ∗V B = 0.315 in the real channel model. The codes

are generated without 4 cycles. Each coded symbol is stored

by 5 to 8 cells with rank modulation. We simulate both codes

over integer rings and codes over finite fields with different

alphabets. We also simulate the VB decoder without FV by

artificially avoiding FV’s. To see how the numerical simulation

matches the DE analysis, we choose the block length to be 105

and the maximum number of decoding iterations to be 100.

Each point is the average of up to 108 trials. And the results

are shown in Fig. 3. It can be seen that the simulation matches

the DE analysis very well.

To be complete, we also compare the VB decoder with the

full belief propagation (BP) decoder, where each message is a

probability mass function (pmf) over Zm. For the check node,

the check-to-variable message is calculated by the convolution

of all other variable-to-check pmf’s. For the variable node, the

variable-to-check message is calculated by normalizing the

product of the channel pmf and all other check-to-variable

pmf’s. The complexity of this method in the probability

domain is O(Nm2) per iteration without optimization. The log

domain FFT-based decoder has complexity O(Nm log(m))
per iteration [10], [11].

We compare the VB decoder with the full BP decoder in

Fig. 3. We simulate codes from the (3,50) ensemble by the

VB decoder and the full BP decoder. We simulate codes over

integer rings Zm and finite fields which are embedded in Zm.

We choose the block length to be 1000 and n = 5 to 8 and

without FV for the VB decoder and n = 5 for the full BP

decoder due to due to its large complexity. The real channel

model is used and the x-axis is the standard deviation σ of

the i.i.d. Gaussian noise. From the results, we can see the

VB decoder without FV’s has similar performance with the

full decoder. The performance loss of the codes over Zm with

n = 5 and n = 8 is due to the probability of FV’s. This loss

Fig. 3. Simulation results comparing the VB decoder with the full BP decoder
using the real channel model.

can be compensated by using the codes over GF (q) which

is embedded into the rings. This improves the performance

significantly with a slight rate loss.

V. CONCLUSION

In this paper, we consider LDPC codes as error correcting

codes (ECC’s) for rank modulation in flash memories. We

treat rank modulation as part of the equivalent channel for

the ECC, and analyze the probabilistic model of this channel

and a high-SNR approximation. We design LDPC codes over

integer rings and finite fields together with a family of symbol-

flipping verification-based (SFVB) decoding algorithms to

achieve good performance with low-complexity. Simulation

results are used to verify the analysis and compare with more

complicated decoders.

REFERENCES

[1] A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” Available as Arxiv preprint cs.IT/0908.4094, 2009.

[2] R. G. Gallager, Low-density parity-check codes, the M.I.T. press, Cam-
bridge, MA, USA, 1963.

[3] R. P. Brent and B. D. McKay, “Determinants and ranks of random
matrices over Zm,” in Discrete Mathematics, vol. 66, pp. 35-49, 1987.

[4] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation for
flash memories,” in IEEE Trans. Information Theory, vol. 55, no. 6, pp.
2659-2673, 2009.

[5] A. Jiang, M. Schwartz and J. Bruck, “Error-correcting codes for rank
modulation,” in Proc. IEEE ISIT, 2008, pp. 1736-1740.

[6] M. Luby and M. Mitzenmacher, “Verification-based decoding for packet-
based low-density parity-check codes,” in IEEE Trans. Information The-
ory, vol. 51, no. 1, pp. 120-127, 2005.

[7] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi and D. A. Spielman,
“Efficient erasure correcting codes,” in IEEE Trans. Information Theory,
vol. 47, no. 2, pp. 569-584, Feb. 2001.

[8] Z. Wang, A. Jiang and J. Bruck, “On the capacity of bounded rank
modulation for flash memories,” in Proc. IEEE ISIT, 2009, pp. 1234-
1238.

[9] F. Zhang and H. D. Pfister, “List-message passing achieves capacity on
the q-ary symmetric channel for large q,” submitted to IEEE Trans.
Information Theory. Available as Arxiv preprint cs.IT/0806.3243, 2008.

[10] H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC
codes for magnetic recording,” in IEEE Trans. Magnetics, vol. 39, no. 3,
pp. 1081-1087, Mar. 2003.

[11] M. Davey and D. J. C. MacKay, “Low density parity check codes over
GF(q),” in IEEE Commun. Lett., vol. 2, no. 6, pp. 165-167, Jun. 1998.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

863

