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Abstract— Interleaving codewords is an important
method not only for combatting burst-errors, but also
for flexible data-retrieving. This paper defines the
Multi-Cluster Interleaving (MCI) problem, an inter-
leaving problem for parallel data-retrieving. The MCI
problems on linear arrays and rings are studied. The
following problem is completely solved: how to inter-
leave integers on a linear array or ring such that any
m (m ≥ 2) non-overlapping segments of length 2 in the
array or ring have at least 3 distinct integers. We then
present a scheme using a ‘hierarchical-chain structure’
to solve the following more general problem for linear
arrays: how to interleave integers on a linear array
such that any m (m ≥ 2) non-overlapping segments
of length L (L ≥ 2) in the array have at leastL + 1
distinct integers. It is shown that the scheme using the
‘hierarchical-chain structure’ solves the second inter-
leaving problem for arrays that are asymptotically as
long as the longest array on which an MCI exists, and
clearly, for shorter arrays as well.

I. I NTRODUCTION

Interleaving codewords is an important method for both
data-retrieving and error-correction. Its application in
error-correction is well-known. The most familiar exam-
ple is the interleaving of codewords on a linear array, which
has the form ‘−1−2−3−· · ·−n−1−2−3−· · ·−n−’, for
combatting one-dimensional burst-errors of length up ton.
Other interesting examples include [1] [2] [3] [6] [7] [14],
which are mainly for correcting burst-errors of different
shapes on two- or three-dimensional arrays.

The applications of codeword interleaving in data-
retrieving, although maybe less well-known, are just as
broad. Data streaming and broadcast schemes using
forward-error-correcting codes have received extensive in-
terest in both academia and industry, where interleaved
components of a codeword are transmitted in sequence and
every client can listen to this data stream for a while un-
til a sufficiently large subset of the codeword components
are received for recovering the information in the code-
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word [4] [10]. Interleaving is also studied in the scenario
of file storage, where a file is encoded into a codeword and
components of the codeword are interleavingly placed on a
network, such that every node in the network can retrieve
enough distinct codeword components from its proximity
for recovering the file [8] [11]. In all those cases, the code-
word components are interleaved on some graph structure.
For example, in the data streaming and broadcast case, the
codeword components can be seen as interleaved on a lin-
ear array, because they are sequentially transmitted along
the time axis. (If the sequence of data are transmitted re-
peatedly — e.g., using a broadcast disk — then they can be
seen as interleaved on a ring.) For file storage schemes as
those in [8] and [11], the codeword components are inter-
leaved (placed) on more general graphs, with the graphs’
vertices representing network-nodes and edges represent-
ing network-links. What’s more, most of the time, retriev-
ing data corresponds to retrieving the interleaved codeword
components on a connected subgraph — for example, in
data streaming/broadcast a client usually listens to the data
in one time period, which form a segment of the array (or
ring); and in file storage [8] [11] the proximity of each node
is a subgraph. We call every such connected subgraph a
cluster.

By using interleaving, the above schemes all enable
‘flexible’ data-retrieving, in the sense that the original in-
formation contained in the interleaved data can be recov-
ered by accessinganysufficiently large cluster. The data-
retrieving performance can be further improved if multiple
clusters can be accessed in parallel. Accessing data placed
in different parts of a graph in parallel has the benefits of
balancing load and reducing access time, and has already
been studied [5] [13]. In fact, even the RAID system [12]
can be seen as an example of it. Then it’s natural to ask the
following question: what is the appropriate form of inter-
leaving for parallel data-retrieving?

If it is required that for anym (m ≥ 2) non-overlapping
clusters, the interleaved codeword components on them are
all distinct, then each codeword component can be placed
only once on the graph, even ifm is as small as 2. Such
an interleaving scheme, although minimizes the sizes of
clusters that a client needs to access to retrieve enough dis-
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Fig. 1. An example of multi-cluster interleaving (MCI)

tinct codeword components, is not scalable because it re-
quires the number of components in the codeword to equal
the size of the graph, which would imply very high encod-
ing/decoding complexity or even non-existence of the code
if the graph is huge. So a tradeoff is needed between the
scheme’s scalability and the amount of overlapping among
codeword components on different clusters.

In this paper we only study interleaving on linear arrays
and rings. We define the following general interleaving
problem for parallel data-retrieving:

Definition 1: Let G = (V, E) be a linear array (or ring)
of n vertices. LetN , K, m andL be positive integers such
that N ≥ K > L andm ≥ 2. A cluster is defined to
be a connected subgraph of the array (or ring) containing
L vertices. Assign one number in the set{1, 2, · · · , N} to
each vertex. Such an assignment is called aMulti-Cluster
Interleaving(MCI) if and only if any m clusters that are
non-overlapping are assigned no less thanK distinct num-
bers. 2

Note that theN numbers in{1, 2, · · · , N} assigned
to the array (or ring) represent theN components in a
codeword decoding which needsK distinct components.
Clearly if we letm = 1 in the above definition (and then
let K = L), then it becomes the traditional interleaving.
And if an interleaving on a linear array (or ring) is an MCI
for some given value ofm, then it is an MCI for larger
values ofm as well.

The following is an example of MCI.

Example 1:A ring G = (V, E) of n = 21 vertices is
shown in Fig. 1. The parameters areN = 9, K = 5,
m = 2 andL = 3. An interleaving is shown in the figure,
where the number on every vertex is the number assigned
to it. It can be verified that any 2 clusters that don’t over-
lap have at least 5 distinct numbers. For example, the two
clusters in circle in Fig. 1 have numbers ‘9, 1, 2’ and ‘7, 1,
6’ respectively, so they together have no less than 5 distinct
numbers. So the interleaving is a multi-cluster interleaving
on the ringG.

If we remove an edge in the ring, thenG will become
a linear array. Clearly if all other parameters remain the
same, the interleaving shown in Fig. 1 will be a multi-
cluster interleaving on the array. 2

The general MCI problem can be divided into smaller
problems according to the values of the parameters. Our

main results in this paper are:

• The family of problems with constraints thatL = 2
andK = 3 are solved completely for both arrays and
rings. In this case, structural properties of MCI are
revealed, and algorithms are presented which output
MCI on arrays or rings as long as the MCI exists.

• The family of problems with the constraint thatK =
L + 1 are studied for arrays. A scheme using a
‘hierarchical-chain’ structure is presented for con-
structing MCI on arrays. It is shown that the scheme
solves the MCI problem for arrays that are asymptot-
ically as long as the longest array on which an MCI
exists, and clearly, for shorter arrays as well.

Due to the space limitation, we skip or present only
sketches of the proofs for the results in this paper. For de-
tailed proofs, please refer to [9].

The multi-cluster interleaving on arrays and rings seems
to have natural applications in data-streaming and broad-
casting. Imagine that the interleaved codeword compo-
nents are transmitted in several channels, and the data in
each channel have a different time-offset. Then a client
can simultaneously listen to multiple channels in order to
get data faster, which is equivalent to retrieving data from
multiple clusters. Another possible application is data stor-
age on disks, where we assume multiple instruments can
read different parts of a disk in parallel to accelerate I/O
speed.

II. MCI WITH CONSTRAINTS L = 2

AND K = 3

In this section we study the MCI on linear arrays and
rings with constraints thatL = 2 andK = 3.

A. Linear Arrays
The following notations will be used throughout this pa-

per. We denote then vertices in the linear arrayG =
(V,E) by v1, v2, · · ·, vn. For 2 ≤ i ≤ n − 1, the two
vertices adjacent tovi arevi−1 andvi+1. A connected sub-
graph ofG induced by verticesvi, vi+1, · · · , vj (j ≥ i)
is denoted by(vi, vi+1, · · · , vj). If G has an interleaving
on it, thenc(vi) denotes the number assigned to vertex
vi. The numbers assigned to a connected subgraph ofG,
(vi, vi+1, · · · , vj), are denoted by[c(vi)− c(vi+1)− · · · −
c(vj)].

For any fixed parametersN , K, m andL, there is a cor-
responding numbernmax of finite value such that an MCI
exists on an arrayG only if G’s lengthn is no greater than
nmax. That’s because in an MCI, for any set ofL distinct
numbers, there can be at mostm−1 non-overlapping clus-
ters each of which is assigned thoseL numbers (including

a subset of thoseL numbers) only. There are totally
(

N

L

)

such sets containingL distinct numbers; and each cluster is
assigned at mostL distinct numbers. Sonmax can’t be infi-
nite. Below we study the relationship between the structure
of the MCI and the length of the array.



Lemma 1:Let the values ofN , K, m andL be fixed,
whereN ≥ 4, K = 3, m ≥ 2 andL = 2. Let nmax

denote the maximum value ofn such that an MCI exists
on an array ofn vertices. Then in any MCI on an array
G = (V, E) of nmax vertices, no two adjacent vertices are
assigned the same number.

Proof: Please refer to [9]. 2

Lemma 2:Let the values ofN , K, m andL be fixed,
whereN ≥ 4, K = 3, m ≥ 2 andL = 2. Let nmax

denote the maximum value ofn such that an MCI exists on
an array ofn vertices. Thennmax ≤ (N −1)[(m−1)N −
1] + 2.

Sketch of Proof: Let G = (V,E) be a linear array of
nmax vertices. And say there is an MCI onG. Then we
color the vertices inG with three colors — ‘red’, ‘yellow’
and ‘green’ — through the following three steps: Step 1,
for 2 ≤ i ≤ nmax− 1, if c(vi−1) = c(vi+1), then we color
vi with the ‘red’ color; Step 2, for2 ≤ i ≤ nmax, we color
vi with the ‘yellow’ color if vi is not colored ‘red’ and there
existsj such that these four conditions are satisfied: (1)
1 ≤ j < i, (2)vj is not colored ‘red’, (3)c(vj) = c(vi), (4)
the vertices betweenvj andvi — that is,vj+1, vj+2, · · ·,
vi−1 — are all colored ‘red’; Step 3, for1 ≤ i ≤ nmax, if
vi is neither colored ‘red’ nor colored ‘yellow’, then color
vi with the ‘green’ color.

If we arbitrarily pick two different numbers — say ‘i’
and ‘j’ — from the set{1, 2, · · · , N}, then we get a pair

[i, j]. There are totally
(

N

2

)
such un-ordered pairs. We

divide those
(

N

2

)
pairs into four groups ‘A’, ‘ B’, ‘ C ’

and ‘D’ in the following way:
(1) A pair [i, j] is placed in groupA if and only if the fol-

lowing two conditions are satisfied: (i) at least one ‘green’
vertex is assigned number ‘i’ and at least one ‘green’ ver-
tex is assigned number ‘j’, (ii) for any two ‘green’ vertices
that are assigned numbers ‘i’ and ‘j’ respectively, there is
at least one ‘green’ vertex between them.

(2) A pair [i, j] is placed in groupB if and only if the fol-
lowing two conditions are satisfied: (i) at least one ‘green’
vertex is assigned number ‘i’ and at least one ‘green’ vertex
is assigned number ‘j’, (ii) there exist two ‘green’ vertices
that are assigned numbers ‘i’ and ‘j’ respectively such that
there is no ‘green’ vertex between them.

(3) A pair [i, j] is placed in groupC if and only if one
of the following two conditions is satisfied: (i) at least one
‘green’ vertex is assigned number ‘i’ and no ‘green’ ver-
tex is assigned number ‘j’, (ii) at least one ‘green’ vertex
is assigned number ‘j’ and no ‘green’ vertex is assigned
number ‘i’.

(4) A pair [i, j] is placed in groupD if and only if no
‘green’ vertex is assigned number ‘i’ or ‘ j’.

A detailed analysis shows that there are at most2m− 2
edges inG whose two endpoints form a pair in group A
or C, and there are at most2m − 3 (respectively, 0) edges
in G whose two endpoints form a pair in group B (respec-
tively, D). By Lemma 1, any two adjacent vertices inG

are assigned different numbers. Let the number ofdistinct

numbers assigned to ‘green’ vertices be denoted by ‘x’. It

can be seen that exactly
(

x

2

)
pairs [i, j] are in groupA

and groupB, among which at leastx−1 pairs are in group
B; and exactlyx(N − x) pairs are in groupC and exactly(

N − x

2

)
pairs are in groupD. Therefore the number of

edges inG is at most[
(

x

2

)
− (x− 1)] · (2m− 2) + (x−

1) · (2m− 3) + x(N − x) · (2m− 2) +
(

N − x

2

)
· 0 =

(1 −m)x2 + (2mN − 2N −m)x + 1, whose maximum
value (at integer solutions) is achieved whenx = N −1 —
and that maximum value is(N−1)[(m−1)N−1]+1. So
nmax, the number of vertices inG, is at most(N−1)[(m−
1)N − 1] + 2.

2

Lemma 3:Let the values ofN , K, m andL be fixed,
whereN = 3, K = 3, m ≥ 2 andL = 2. Let nmax

denote the maximum value ofn such that an MCI exists on
an array ofn vertices. Thennmax ≤ (N −1)[(m−1)N −
1] + 2.

Proof: Please refer to [9]. 2

Below we present the algorithm for computing an MCI
on a linear array.

Algorithm 1: MCI on linear array with constraintsL =
2 andK = 3

Input: A linear arrayG = (V, E) of n vertices. Param-
etersN , K, m andL, whereN ≥ 3, K = 3, m ≥ 2 and
L = 2.

Output: An MCI on G.
Algorithm:
1. If n > (N − 1)[(m − 1)N − 1] + 2, there doesn’t

exist an MCI, so exit the algorithm.
2. If n ≤ N , selectn numbers in{1, 2, · · · , N} and

assign each number to one vertex, and exit the algorithm.
3. If N < n ≤ (N − 1)[(m − 1)N − 1] + 2 andn −

{(N − 1)[(m− 1)N − 1] + 2} is even, then select a set of
integers{xi,j |i = 1, 2, · · · , N −1; j = 2, 3, · · · , N ; i < j}
that satisfy the following four requirements: (1) for1 ≤
i ≤ N − 1, xi,N is even and0 ≤ xi,N ≤ 2m − 2; (2) for
1 ≤ i ≤ N − 2 andj = i + 1, xi,j is odd and1 ≤ xi,j ≤
2m − 3; (3) for 1 ≤ i ≤ N − 3 andi + 2 ≤ j ≤ N − 1,
xi,j is even and0 ≤ xi,j ≤ 2m − 2; (4) if we defineS as
S = {xi,j |i = 1, 2, · · · , N − 1; j = 2, 3, · · · , N ; i < j},
then

∑
x∈S x = n− 1.

LetH = (VH , EH) be such a multi-graph: the vertex
setVH = {u1, u2, · · · , uN}; and for any1 ≤ i < j ≤ N ,
there arexi,j undirected edges betweenui anduj .

Find a walk inH, uk1 → uk2 → · · · → ukn , that
satisfies the following conditions: (1) the walk starts with
u1 and ends withuN−1 — namely,uk1 = u1 andukn =
uN−1 — and passes every edge inH exactly once; (2) for
any 1 ≤ i < j ≤ N , the walk passes all thexi,j edges
betweenui anduj consecutively.

For i = 1, 2, · · · , n, assign the number ‘ki’ to the
vertexvi in G, and we get an interleaving onG. Exit the
algorithm.
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Fig. 2. (a) The graphH = (VH , EH) (b) MCI on the arrayG =
(V, E)

4. If N < n ≤ (N − 1)[(m − 1)N − 1] + 2 andn −
{(N − 1)[(m− 1)N − 1] + 2} is odd, then select a set of
integers{xi,j |i = 1, 2, · · · , N −1; j = 2, 3, · · · , N ; i < j}
that satisfy the following three requirements: (1) for1 ≤
i ≤ N − 1 andj = i + 1, xi,j is odd and1 ≤ xi,j ≤
2m − 3; (2) for 1 ≤ i ≤ N − 2 and i + 2 ≤ j ≤ N ,
xi,j is even and0 ≤ xi,j ≤ 2m − 2; (3) if we defineS as
S = {xi,j |i = 1, 2, · · · , N − 1; j = 2, 3, · · · , N ; i < j},
then

∑
x∈S x = n− 1.

LetH = (VH , EH) be such a multi-graph: the vertex
setVH = {u1, u2, · · · , uN}; and for any1 ≤ i < j ≤ N ,
there arexi,j undirected edges betweenui anduj .

Find a walk inH, uk1 → uk2 → · · · → ukn , that
satisfies the following conditions: (1) the walk starts with
u1 and ends withuN — namely,uk1 = u1 andukn = uN

— and passes every edge inH exactly once; (2) for any
1 ≤ i < j ≤ N , the walk passes all thexi,j edges between
ui anduj consecutively.

For i = 1, 2, · · · , n, assign the number ‘ki’ to the
vertexvi in G, and we get an interleaving onG. Exit the
algorithm.

2

Algorithm 1 has complexityO(n). The following is an
example of the algorithm.

Example 2:AssumeG = (V,E) is a linear array ofn =
9 vertices, and the parameters areN = 4, K = 3, m = 2
andL = 2. ThereforeN < n ≤ (N−1)[(m−1)N−1]+2
andn− {(N − 1)[(m− 1)N − 1] + 2} = −2 is even. So
Algorithm 1’s step 3 is used to compute the interleaving.
We can very easily choose the following values forxi,j :
x1,2 = x2,3 = 1, x1,3 = x1,4 = x2,4 = 2. Then the
graphH = (VH , EH) is as shown in Fig. 2(a). We can
easily find the following walk that passes every edge once:
u1 → u3 → u1 → u4 → u1 → u2 → u4 → u2 → u3.
Corresponding to that walk, we get the MCI as shown in
Fig. 2(b).

Generally speaking, whenN < n ≤ (N − 1)[(m −
1)N − 1] + 2 andn − {(N − 1)[(m − 1)N − 1] + 2}
is even, for1 ≤ i ≤ N − 3, the walk in graphH that
Algorithm 1 needs to find passes all the edges betweenui

andui+1 before passing any edge betweenui+1 andui+2.
The walk contains many ‘ears’ (small cycles) of the form

‘ i → j → i’. If we delete all the ‘ears’ from the walk, the
remaining walk is simply ‘u1 → u2 → · · · → uN−1’. It’s
clear that such a walk inH can be easily found based on
the above observation. The case whereN < n ≤ (N −
1)[(m−1)N−1]+2 andn−{(N−1)[(m−1)N−1]+2}
is odd can be analyzed in similar ways.2

Theorem 1:Algorithm 1 is correct.
Proof: Please refer to [9]. 2

Theorem 2:Let the values ofN , K, m andL be fixed,
whereN ≥ 3, K = 3, m ≥ 2 andL = 2. Then there
exists an MCI on a linear array ofn vertices if and only if
n ≤ (N − 1)[(m− 1)N − 1] + 2.

Sketch of Proof: By using Lemma 2, Lemma 3, and The-
orem 1. 2

B. Rings
Lemma 4:Let the values ofN , K, m andL be fixed,

whereN ≥ 4, K = 3, m ≥ 2 andL = 2. Let nmax

denote the maximum value ofn such that an MCI exists on
a ring ofn vertices. Then in any MCI on a ringG = (V,E)
of nmax vertices, no two adjacent vertices are assigned the
same number.

Lemma 5:Let the values ofN , K, m andL be fixed,
whereN ≥ 4, K = 3, m ≥ 2 andL = 2. Let nmax

denote the maximum value ofn such that an MCI exists on
a ring ofn vertices. Thennmax ≤ (N−1)[(m−1)N−1].

Lemma 6:Let the values ofN , K, m andL be fixed,
whereN = 3, K = 3, m ≥ 2 andL = 2. Let nmax

denote the maximum value ofn such that an MCI exists on
a ring ofn vertices. Thennmax ≤ (N−1)[(m−1)N−1].

Below we present the algorithm for computing an MCI
on a ring.

Algorithm 2: MCI on ring with constraintsL = 2 and
K = 3

Input: A ring G = (V, E) of n vertices. ParametersN ,
K, m andL, whereN ≥ 3, K = 3, m ≥ 2 andL = 2.

Output: An MCI on G.
Algorithm: Please refer to [9]. 2

Algorithm 2 has complexityO(n).

Theorem 3:Algorithm 2 is correct.
Theorem 4:Let the values ofN , K, m andL be fixed,

whereN ≥ 3, K = 3, m ≥ 2 andL = 2. Then there
exists an MCI on a ring ofn vertices if and only ifn ≤
(N − 1)[(m− 1)N − 1].

For detailed proofs of Lemma 4 to 6 and Theorem 3 to
4, please refer to [9].

III. MCI WITH CONSTRAINT

K = L + 1

In this section we study the MCI problem on linear ar-
rays with the constraint thatK = L + 1. It covers the MCI
problem with constraints thatL = 2 andK = 3, which is
studied in the previous section, as a special case.



We define three operations on arrays — ‘remove a ver-
tex’, ‘insert a vertex’ and ‘combine two arrays’. LetG

be an array ofn vertices: v1, v2, · · ·, vn. By ‘removing
the vertexvi’ from G (1 ≤ i ≤ n), we get a new array
‘v1 − v2 − · · · − vi−1 − vi+1 − · · · − vn’. By ‘inserting a
vertexv̂’ in front of the vertexvi in G (1 ≤ i ≤ n), we get
a new array ‘v1 − v2 − · · · − vi−1 − v̂ − vi − · · · − vn’.
(Similarly we can define ‘inserting a vertex̂v behind the
vertexvi in G’ and ‘inserting a vertex̂v between the ver-
ticesvi andvi+1 in G’.) Let H be an array ofn′ vertices:
u1, u2, · · ·, un′ . Assume for1 ≤ i ≤ n, vi is assigned
the numberc(vi); and assume for1 ≤ i ≤ n′, ui is as-
signed the numberc(ui). Also let l be a positive integer
between 1 andmin(n, n′), and assume for1 ≤ i ≤ l,
c(vi) = c(un′−l+i). Then by saying ‘combiningH with G

such that the lastl vertices ofH overlap the firstl vertices
of G’, we mean to construct an array ofn′ + n− l vertices
whose assigned numbers are[c(u1)−c(u2)−· · ·−c(un′)−
c(vl+1)− c(vl+2)− · · · − c(vn)].

Now we present an algorithm which computes an MCI
on a linear array. Different from Algorithm 1 and Algo-
rithm 2, in this algorithm the length of the array is un-
known. Instead, the algorithm tries to find the longest array
that has an MCI, and compute an MCI on it. Thus the out-
put of this algorithm not only provides an MCI solution,
but also gives a lower bound on the maximum length of the
array on which an MCI exists.

Algorithm 3: MCI on linear array with the constraint
K = L + 1

Input: ParametersN , K, m andL, whereN ≥ K =
L + 1 ≥ 3 andm ≥ 2.

Output: An MCI on a linear arrayG = (V, E) of n

vertices, with the value ofn as large as possible.
Algorithm:
1. If L = 2, then letG = (V, E) be an array ofn =

(N − 1)[(m − 1)N − 1] + 2 vertices, and use Algorithm
1 to find an MCI onG. OutputG and the MCI on it, and
return. (So step 2 to step 4 will be executed only ifL ≥ 3.)

2. Find a linear arrayBL+1 as long as possible that satis-
fies the following two conditions: (1) each vertex ofBL+1

is assigned a number in{1, 2, · · · , L}, namely, there is an
interleaving of the numbers in{1, 2, · · · , L} on BL+1; (2)
anym non-overlapping connected subgraphs inBL+1 each
of which containsL−1 vertices are assigned at leastL dis-
tinct numbers. To find the arrayBL+1, (recursively) call
Algorithm 3 by replacing the inputs of the algorithm —N ,
K, m andL — respectively withL, L, m andL− 1.

Scan the vertices inBL+1 backward (from the last
vertex to the first vertex), and insert a new vertex after
everyL − 1 vertices inBL+1. (In other words, if the ver-
tices inBL+1 arev1, v2, · · ·, vn̂, then by inserting vertices
into BL+1, we get a new array of̂n + b n̂

L−1c vertices;
and if we look at the new array in the reverse order —
from the last vertex to the first vertex — then the array is
of the form ‘vn̂ − vn̂−1 − · · · − vn̂+1−(L−1)−(new
vertex)−vn̂−(L−1) − vn̂−(L−1)−1 − · · · −

vn̂+1−2(L−1)−(new vertex)−vn̂−2(L−1)− vn̂−2(L−1)−1−
· · · − vn̂+1−3(L−1)−(new vertex)− · · · · · ·’. In this new
array, every connected subgraph ofL vertices contains
exactly one newly inserted vertex.) Assign the number
‘L + 1’ to every newly inserted vertex in the new array,
and denote this new array by ‘AL+1’.

3. for i = L + 2 to N do
{ Find a linear arrayBi as long as possible that satis-

fies the following three conditions: (1) each vertex ofBi is
assigned a number in{1, 2, · · · , i− 1}, namely, there is an
interleaving of the numbers in{1, 2, · · · , i− 1} onBi; (2)
anym non-overlapping connected subgraphs inBi each of
which containsL − 1 vertices are assigned at leastL dis-
tinct numbers; (3) forj = 1 to L − 1, thej-th last vertex
of Bi is assigned the same number as the(L− j)-th vertex
of Ai−1. To find the arrayBi, (recursively) call Algorithm
3 by replacing the inputs of the algorithm —N , K, m and
L — respectively withi− 1, L, m andL− 1.

Scan the vertices inBi backward (from the last ver-
tex to the first vertex), and insert a new vertex after every
L− 1 vertices inBi. Assign the number ‘i’ to every newly
inserted vertex in the new array, and denote this new array
by ‘Ai’.

}
4. CombineAN with AN−1, combineAN−1 with

AN−2, · · ·, and combineAL+2 with AL+1 such that the
lastL − 1 vertices ofAN overlap the firstL − 1 vertices
of AN−1, the lastL− 1 vertices ofAN−1 overlap the first
L − 1 vertices ofAN−2, · · ·, and the lastL − 1 vertices
of AL+2 overlap the firstL − 1 vertices ofAL+1. (In
other words, if we denote the number of vertices inAi

by li, for L + 1 ≤ i ≤ N , then the new array we get
has

∑N
i=L+1 li − (L − 1)(N − L − 1) vertices.) Let this

new array beG = (V, E). OutputG and the interleaving
(which is an MCI) on it, and return.

2

Algorithm 3 outputs an arrayG, which is as long as the
algorithm can find, and an MCI onG. Note that Algorithm
3 is recursive. The MCI onG has a ‘hierarchical-chain’
structure, becauseG is a ‘chain’ of sub-arraysAL+1,
AL+2, · · ·, AN of increasing lengths, while each sub-array
is recursively made from more smaller sub-arrays — so
they form both a ‘horizontal hierarchy’ and a ‘vertical hi-
erarchy’. G’s length,n, is unknown before Algorithm 3
ends. But if we can use ton to evaluate the complexity of
Algorithm 3, then Algorithm 3 can be easily seen to have
complexityO(n). If an interleaving on a long array is an
MCI, then the interleaving on a connected subgraph of it
(a sub-array) is also an MCI; and Algorithm 3 constructs
the arrayG piece by piece. So it’s simple to see that the
algorithm can be easily modified to compute the MCI on
any array of less thann vertices.

The following is an example of Algorithm 3.

Example 3:Given the parametersN = 6, K = 4, m =
2 and L = 3, we use Algorithm 3 to compute an MCI
on an array as long as possible. Three arrays —B4, B5



andB6 — need to be found. To compute eachBi (4 ≤
i ≤ 6), Algorithm 3 is (recursively) called; and for this
example we’re considering now,Bi is eventually computed
by Algorithm 1. For4 ≤ i ≤ 6, Bi has(i−2)[(m−1)(i−
1)− 1] + 2 vertices. As a possible result, let’s say that the
numbers onB4 are[1− 3− 1− 2− 3− 2]; and therefore
the numbers onA4 are[4− 1− 3− 4− 1− 2− 4− 3− 2].
Then the numbers onB5 can be made to be[3 − 4 − 3 −
1−3−2−4−2−1−4−1]. (Note that the lastL−1 = 2
vertices ofB5 are assigned numbers ‘4-1’, the same as the
first L− 1 = 2 vertices ofA4. That can be done easily by
permuting numbers onB5.) Then the numbers onA5 are
[3−5−4−3−5−1−3−5−2−4−5−2−1−5−4−1].
Then the numbers onB6 can be made to be[1 − 3 − 1 −
4− 1− 5− 1− 2− 3− 2− 5− 2− 4− 3− 4− 5− 3− 5].
(Note that the lastL − 1 = 2 vertices ofB6 are assigned
numbers ‘3-5’, the same as the firstL − 1 = 2 vertices of
A5.) Then the numbers onA6 are [6 − 1 − 3 − 6 − 1 −
4− 6− 1− 5− 6− 1− 2− 6− 3− 2− 6− 5− 2− 6−
4 − 3 − 6 − 4 − 5 − 6 − 3 − 5]. Finally, A6 is combined
with A5 with L − 1 = 2 overlapping vertices, andA5 is
combined withA4 with L−1 = 2 overlapping vertices, and
we get the arrayG = (V, E) which are assigned numbers
[6−1−3−6−1−4−6−1−5−6−1−2−6−3−2−6−
5−2−6−4−3−6−4−5−6−3−5−4−3−5−1−3−
5−2−4−5−2−1−5−4−1−3−4−1−2−4−3−2].
G has 48 vertices. It can be verified that the interleaving on
G is an MCI. 2

Theorem 5:Algorithm 3 is correct.
Sketch of Proof:Do induction on the parameterL (one

of the inputs of Algorithm 3). The induction assumption
is: Algorithm 3 correctly outputs an MCI on an array for
any given valid set of inputsN , K, m andL; and in that
MCI, any L consecutive vertices are assignedL different
numbers. 2

The length of the longest array on which an MCI exists
increases whenN , the number of integers that are inter-
leaved, increases. The performance of Algorithm 3 can be
evaluated by the difference between the length of the array
constructed by Algorithm 3 and the length of the longest
array on which an MCI exists. We’re interested in studying
how the difference goes whenN increases. The following
theorem shows the result.

Theorem 6:Fix the values of the parametersK, m and
L, whereK = L + 1 ≥ 3 andm ≥ 2, and letN be a vari-
able (N ≥ K). Then the longest linear array on which an
MCI exists has m−1

(L−1)!N
L+O(NL−1) vertices. And the ar-

ray output by Algorithm 3 also hasm−1
(L−1)!N

L +O(NL−1)
vertices.

Proof: Please refer to [9]. 2

Theorem 6 shows that the array output by Algorithm 3
is asymptotically as long as the longest array on which an
MCI exists. As mentioned before, clearly the algorithm
can be easily modified to computer MCI on shorter arrays
as well.

IV. C ONCLUSION

This paper defines the multi-cluster interleaving (MCI)
problem for flexible parallel data-retrieving. Two families
of MCI problems are solved for arrays/rings. MCI seems
to have natural applications in data-streaming, broadcast-
ing, etc. We expect that the techniques for solving the MCI
problems presented in this paper may provide valuable in-
sights into solving more general MCI problems.
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