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Abstract— Interleaving codewords is an important word [4] [10]. Interleaving is also studied in the scenario
method not only for combatting burst-errors, but also of file storage, where a file is encoded into a codeword and
for flexible data-retrieving. This paper defines the components of the codeword are interleavingly placed on a
Multi-Cluster Interleaving (MCI) problem, an inter-  network, such that every node in the network can retrieve
leaving problem for parallel data-retrieving. The MCI  enough distinct codeword components from its proximity
problems on linear arrays and rings are studied. The for recovering the file [8] [11]. In all those cases, the code-
following problem is completely solved: how to inter- word components are interleaved on some graph structure.
leave integers on a linear array or ring such that any For example, in the data streaming and broadcast case, the
m (m > 2) non-overlapping segments of length 2 in the codeword components can be seen as interleaved on a lin-
array or ring have at least 3 distinct integers. We then ear array, because they are sequentially transmitted along
present a scheme using a ‘hierarchical-chain structure’ the time axis. (If the sequence of data are transmitted re-
to solve the following more general problem for linear peatedly — e.g., using a broadcast disk — then they can be
arrays: how to interleave integers on a linear array seen as interleaved on a ring.) For file storage schemes as
such that any m (m > 2) non-overlapping segments those in [8] and [11], the codeword components are inter-
of length L (L > 2) in the array have at leastL. + 1 leaved (placed) on more general graphs, with the graphs’
distinct integers. It is shown that the scheme using the vertices representing network-nodes and edges represent-
‘hierarchical-chain structure’ solves the second inter- ing network-links. What’s more, most of the time, retriev-
leaving problem for arrays that are asymptotically as ing data corresponds to retrieving the interleaved codeword
long as the longest array on which an MCI exists, and components on a connected subgraph — for example, in

clearly, for shorter arrays as well. data streaming/broadcast a client usually listens to the data
in one time period, which form a segment of the array (or
|. |NTRODUCTION ring); and in file storage [8] [11] the proximity of each node

) ) ) is a subgraph. We call every such connected subgraph a
Interleaving codewords is an important method for bothy sier

data-retrieving and error-correction. Its application in o .
error-correction is well-known. The most familiar exam- BY Using interleaving, the above schemes all enable

ple is the interleaving of codewords on a linear array, whicHeXible” data-retrieving, in the sense that the original in-
has the form-1—2—3—...—n—1—2—3—...—n—" for formation contained in the interleaved data can be recov-

combatting one-dimensional burst-errors of length up.to ered by accessingny sufficiently large cluster. The data-
Other interesting examples include [1] [2] [3] [6] [7] [14], retrieving performance can be further improved if multiple
which are mainly for correcting burst-errors of diﬁerenFIUSterS can be accessed in parallel. Accessing data placed
shapes on two- or three-dimensional arrays. in different parts of a graph in parallel has the benefits of
The applications of codeword interleaving in databalancing load and reducing access time, and has already
retrieving, although maybe less well-known, are just d%en studied [5] [13]. In fact, even the RAID system [12]
broad. Data streaming and broadcast schemes usfidj be seen as an example of it. Then it's natural to ask the
forward-error-correcting codes have received extensive ff®/lowing question: what is the appropriate form of inter-
terest in both academia and industry, where interleavi&fving for parallel data-retrieving?
components of a codeword are transmitted in sequence andf it is required that for anyn (m > 2) non-overlapping
every client can listen to this data stream for a while ureiusters, the interleaved codeword components on them are
til a sufficiently large subset of the codeword componengg| distinct, then each codeword component can be placed
are received for recovering the information in the codesnly once on the graph, eveniii is as small as 2. Such

1This work was supported in part by the Lee Center for Advanced Ne! mterleavmg ?Cheme’ althoth mlnlmlz_es the sizes O_f
working at the California Institute of Technology. clusters that a client needs to access to retrieve enough dis-



main results in this paper are:
n=21, N=9, K=5 m=2 L=3 « The family of problems with constraints that = 2

andK = 3 are solved completely for both arrays and
rings. In this case, structural properties of MCI are
revealed, and algorithms are presented which output
MCI on arrays or rings as long as the MCI exists.
« The family of problems with the constraint that =
L + 1 are studied for arrays. A scheme using a
: ‘hierarchical-chain’ structure is presented for con-
Fig. 1. An example of multi-cluster interleaving (MCI) " structing MCI on arrays. It is shown that the scheme
solves the MCI problem for arrays that are asymptot-

tinct codeword components, is not scalable because it re- ically as long as the longest array on which an MCI
quires the number of components in the codeword to equal €Xists, and clearly, for shorter arrays as well.
the size of the graph, which would imply very high encod- Due to the space limitation, we skip or present only
ing/decoding complexity or even non-existence of the codg&etches of the proofs for the results in this paper. For de-
if the graph is huge. So a tradeoff is needed between ti@dled proofs, please refer to [9].
scheme’s scalability and the amount of overlapping among The multi-cluster interleaving on arrays and rings seems
codeword components on different clusters. to have natural applications in data-streaming and broad-
In this paper we only study interleaving on linear arrayssting. Imagine that the interleaved codeword compo-
and rings. We define the following general interleavin€nts are transmitted in several channels, and the data in
problem for parallel data-retrieving: each channel have a different time-offset. Then a client
o ) ) can simultaneously listen to multiple channels in order to
Definition 1: Let & = (V, E) be alinear array (0r ring) et gata faster, which is equivalent to retrieving data from
of nvertices. LetV, K, m andL be positive integers such n, ,iiinje clusters. Another possible application is data stor-
thatNV > K > Landm > 2. A clusteris defined 10,40 on gisks, where we assume multiple instruments can

be a C_O””eCtGd_ subgraph of th? array (or ring) containing,y gitferent parts of a disk in parallel to accelerate 1/0
L vertices. Assign one number in the §&t2,---, N} to speed.

each vertex. Such an assignment is callddudti-Cluster
Interleaving(MCI) if and only if any m clusters that are
non-overlapping are assigned no less thadistinctnum- ||, MCI| WITH CONSTRAINTS L =2
bers. O

Note that theN numbers in{1,2,---, N} assigned AND K =3
to the array (or ring) represent th€ components in a In this section we study the MCI on linear arrays and
codeword decoding which needs§ distinct components. rings with constraints that = 2 and K = 3.
Clearly if we Ietm_: 1 in the above d(_afinitiop (and th.enA. Linear Arrays
let K = L), then it becomes the traditional interleaving.
And if an interleaving on a linear array (or ring) is an MCI
for some given value ofn, then it is an MCI for larger
values ofm as well.

The following is an example of MCI.

The following notations will be used throughout this pa-
per. We denote the vertices in the linear arragy =
(V,E) by v, va, -+, v,. FOr2 < i < n — 1, the two
vertices adjacent to; arev; _; andv; 1. A connected sub-
graph of G induced by vertices;, v;y1,---,v; (j > 1)

Example 1:Aring G = (V, E) of n = 21 vertices is is denoted by(v;, vi+1,---,v;). If G has an interleaving
shown in Fig. 1. The parameters ake = 9, K = 5, on it, thenc(v;) denotes the number assigned to vertex
m = 2andL = 3. An interleaving is shown in the figure, v;. The numbers assigned to a connected subgrah, of
where the number on every vertex is the number assign@g, v; . ;, - - - ,v;), are denoted be(v;) — c(vip1) — - —
to it. It can be verified that any 2 clusters that don't over(v;)].
lap have at least 5 distinct numbers. For example, the twoFor any fixed parameter§, K, m andL, there is a cor-
clusters in circle in Fig. 1 have numbers ‘9, 1, 2’ and ‘7, Iresponding numbet,,, .. of finite value such that an MCI
6’ respectively, so they together have no less than 5 distinstists on an arrag only if G’s lengthn is no greater than
numbers. So the interleaving is a multi-cluster interleaving,, ... That’s because in an MCI, for any setbfdistinct
on the ringG. numbers, there can be at mast- 1 non-overlapping clus-

If we remove an edge in the ring, th&hwill become ters each of which is assigned thadseumbers (including
a linear array. Clearly if all other parameters remain thgsubset of those numbers) only. There are total yi’
same, the interleaving shown in Fig. 1 will be a multisych sets containing distinct numbers; and each cluster is
cluster interleaving on the array. O assigned at modt distinct numbers. S0,,,,. can’t be infi-

The general MCI problem can be divided into smallenite. Below we study the relationship between the structure
problems according to the values of the parameters. Qafrthe MCI and the length of the array.



Lemma 1:Let the values ofV, K, m and L be fixed, numbers assigned to ‘green’ vertices be denotedchyit
whereN > 4, K = 3, m > 2andL = 2. Letn,. can be seen that exact(y“; ) pairs|i, j] are in groupA
denote the maximum Value @TSUCh that an MCI eXiStS and groupB, among Wthh at |ea3i_ 1 pairs are in group

G = (V, E) 0f nna, vertices, no two adjacent vertices are( N ) pairs are in grouD. Therefore the number of
assigned the same number.

Proof: Please refer to [9]. O edges inG is at mOSﬂ( ” ) —(z=1)]-2@m—-2)+(z—

Lemma 2:Let the values ofV, K, m and L be fixed, 1)-(2m —3)+ (N —x)-(2m —2) + ( M ) 0=
whereN > 4, K = 3, m > 2andL = 2. Letnye (1 —m)z? + (2mN — 2N — m)z + 1, whose maximum
denote the maximum value efsuch that an MCI exists on value (at integer solutions) is achieved whea N —1 —
an array ofr vertices. Them,q, < (N —1)[(m—1)N — and that maximum value {8V —1)[(m —1)N —1]+1. So

1] +2. Nmagz, the number of vertices I8, is at mos{N —1)[(m—
Sketch of Proaf Let G = (V, E) be a linear array of 1N — 1] +2.

Nmaz Vertices. And say there is an MCI @d. Then we 0

color the vertices irG with three colors — ‘red’, ‘yellow’ i

and ‘green’ — through the following three steps: Step 1, Lemma 3:Let the values ofV, K, m and [ be fixed,

for 2 <i < npar — 1, if e¢(vi—1) = ¢(vi41), then we color ;Vheer\t]h: 3, K =3 Tn ZfQ amhL t: QMCI:‘Iet nmt”
v; with the ‘red’ color; Step 2, fo2 < i < n,,4., We color enote the maximum vajue afsuch that an exists on

v; with the ‘yellow’ color if v; is not colored ‘red’ and there an array ofu vertices. Themas < (N —1)[(m—1)N —

existsj such that these four conditions are satisfied: (f +2. _
1< j <i,(2)v; is notcolored ‘red’, (3)(v;) = c(vy), (4) 10O Pleasereferto[9]. O
the vertices between; andv; — that is,v; 41, vj42, - - Below we present the algorithm for computing an MCI
v;_1 — are all colored ‘red’; Step 3, for < i < nyaq, if ONalinear array.
v; is neither colored ‘red’ nor colored ‘yellow’, then color Algorithm 1: MCI on linear array with constraint§ =
v; with the ‘green’ color. 2andK = 3

If we arbitrarily pick two different numbers — say’* Input: A linear arrayG = (V, E) of n vertices. Param-
and ' — from the set{1,2,---, N}, then we get a pair etersN, K, m andL, whereN > 3. K — 3, m > 2 and
[i,7]. There are totall;( 1; ) such un-ordered pairs. We, — 9.

divide those( 7 ) pairs into four groupsA’, * B’, * C" Qutput: An MCl on .
and ‘D’ in the following way: Algorithm: ,
(1) A pair[i, j] is placed in groupt if and only if the fol- 1+ fn > (N = 1)[(m — 1)N — 1] + 2, there doesn't

lowing two conditions are satisfied: (i) at least one ‘greer§Xist an MCl, so exit the algorithm.
vertex is assigned number and at least one ‘green’ ver-  2- If n < N, selectn. numbers in{1,2,--, N} and
tex is assigned numbey’ (ii) for any two ‘green’ vertices assign each number to one vertex, and exit the algorithm.
that are assigned numbersand ‘j’ respectively, thereis  3- F N <n < (N = 1)[(m — )N — 1] + 2 andn —
at least one ‘green’ vertex between them. {(NV =1)[(m — 1)N — 1] + 2} is even, then select a set of
(2) A pair i, j] is placed in grougs if and only if the fol-  integers{z; ;|i =1,2,--- N —1;j =2,3,---, Nyi < j}
lowing two conditions are satisfied: (i) at least one ‘greethat satisfy the following four requirements: (1) for<
vertex is assigned numbet and at least one ‘green’ vertex: < N — 1, z; y is even and) < z; y < 2m — 2; (2) for
is assigned numbey* (i) there exist two ‘green’ vertices 1 <@ < N —2andj =i+ 1,z;;isodd andl < z;; <
that are assigned numbeisand ‘5 respectively such that 2m — 3; 3)forl <i < N —3andi +2<j < N —1,
there is no ‘green’ vertex between them. z;jis evenand) < z;; < 2m — 2; (4) if we defineS as
(3) A pair [i, j] is placed in groug” if and only if one S = {zi i = 1,2, N — 1;j = 2,3,---, N3yi < j},
of the following two conditions is satisfied: (i) at least ondhen)_ gz =n— 1.
‘green’ vertex is assigned numbet and no ‘green’ ver- LetH = (Vu, En) be such a multi-graph: the vertex
tex is assigned numbey’: (i) at least one ‘green’ vertex S€tVy = {u1,uz, -+, un}; and foranyl <i <j <N,
is assigned number” and no ‘green’ vertex is assignedthere arer; ; undirected edges betweepandu;.
number 4. Find awalk inH, uy, — ux, — -+ — uy,, that
(4) A pair [i, j] is placed in groupD if and only if no satisfies the following conditions: (1) the walk starts with
‘green’ vertex is assigned numbet or ‘ 5. uy and ends withiy 1 — namely,uy, = u; andug, =
A detailed analysis shows that there are at ast- 2 ux_; — and passes every edgefihexactly once; (2) for
edges inG whose two endpoints form a pair in group Aany1 < i < j < N, the walk passes all the; ; edges
or C, and there are at mo&t: — 3 (respectively, 0) edges betweeru; andu; consecutively
in G whose two endpoints form a pair in group B (respec- Fori = 1,2,---,n, assign the numbef;’ to the
tively, D). By Lemma 1, any two adjacent verticesGh vertexv; in G, and we get an interleaving a@i. Exit the
are assigned different numbers. Let the numbeatistinct algorithm.



‘i — j — 4. If we delete all the ‘ears’ from the walk, the

n=9, N=4, K=3, m=2, L=2, remaining walk is simplys; — uy — -+ — uy_1'. It’s
@ ®) , 5 clear that such a walk i can be easily found based on
(Uy) PN 4 the above observation. The case whate< n < (N —
G —C—C

D[(m—=1)N—-1]4+2andn—{(N-1)[(m—1)N —1]+2}
is odd can be analyzed in similar ways.O

@y @) Theorem 1:Algorithm 1 is correct.
Proof: Please referto [9]. O

@ Q v v 2 Theorem 2:Let the values ofV, K, m and L be fixed,
whereN > 3, K = 3, m > 2andL = 2. Then there
Fig. 2. (a) The graptil = (Vi, En) (D) MClonthe array? =  exists an MCI on a linear array of vertices if and only if
V. B) n< (N —D[(m-1N—1]+2.
Sketch of ProafBy using Lemma 2, Lemma 3, and The-
4. fN <n<(N-1[(m—-1)N—-1+2andn— oreml. O
{(N = 1)[(m —1)N — 1] + 2} is odd, then select a set of
integers{z, ;i = 1,2,---,N—1;5=2,3,--- ,N;i < j} B. Rings
that satisfy the following three requirements: (1) fox Lemma 4: Let the values ofV, K, m and L be fixed,
i< N-1landj =i+1 a;isoddandl < z;; < whereN >4, K =3, m > 2andL = 2. Letn,..
2m —3; (2)forl < i < N —-2andi+2 < j < N, denote the maximum value efsuch that an MCI exists on
z;;isevenand < z; ; < 2m — 2; (3) if we defineS as  aring ofn vertices. Theninany MClonaring = (V, E)
S =A{x i =1,2,---,N =15 = 2,3,---,N;i < j}, of n,a, vertices, no two adjacent vertices are assigned the
then) sz =n—1 same number.

LetH = (Vi, Er) be such a multi-graph: the vertex Lemma 5: Let the values ofV, K, m and L be fixed,
setVy = {ug,uz,---,unx};andforanyl <i < j <N, whereN >4, K =3, m > 2andL = 2. Letn,q,
there arer; ; undirected edges betweepandu;. denote the maximum value efsuch that an MCI exists on

Find a walk inH, ug, — ug, — -+ — uy,, that aring ofn vertices. Them,,,,, < (N —1)[(m—1)N —1].
satisfies the following conditions: (1) the walk starts with Lemma 6: Let the values ofV, K, m and L be fixed,
uy and ends withiy — namely,uy,, = u; andug, = uy  whereN = 3, K = 3, m > 2andL = 2. Letn,a,
— and passes every edge ih exactly once; (2) for any denote the maximum value afsuch that an MCI exists on
1 <i < j < N, the walk passes all the ; edges between a ring ofn vertices. Them, o, < (N —1)[(m—1)N —1].

u; andu; consecutively Below we present the algorithm for computing an MCI

Fori = 1,2,---,n, assign the number;’ to the on aring.
vertexwv; in G, and we get an interleaving ai. Exit the
algorithm.

O

Algorithm 2: MCI on ring with constraintd, = 2 and
K=3

Input: Aring G = (V, E) of n vertices. Parameters,

Algorithm 1 has complexity)(n). The following is an K, m andL, whereN >3, K =3, m > 2andL = 2.
example of the algorithm. Output: An MCl on G.

Example 2:AssumeG = (V, E) is alinear array ofi = Algorithm: Please refer to [9]. O

9 vertices, and the parameters &fe= 4, K = 3, m =2  Algorithm 2 has complexity)(n).

andL = 2. ThereforeV < n < (N-1)[(m—1)N—1]+2  Theorem 3:Algorithm 2 is correct.

andn —{(N = 1)[(m = 1)N — 1] +2} = ~2iseven. S0 Thegrem 4:Let the values ofV, K, m and L be fixed,
Algorithm 1's step 3 is used to compute the interleavingyhere v > 3 K = 3. m > 2 andL = 2. Then there
We can very easily choose the following values f0r;:  gyists an MCI on a ring of: vertices if and only ifn <
T2 = T23 = 1, T13 = T14 = T4 = 2. Then the (N— 1)[(m_ l)N— 1]

graph# = (Vu, E) is as shown in Fig. 2(a). We can  or getailed proofs of Lemma 4 to 6 and Theorem 3 to
easily find the following walk that passes every edge oncg: please refer to [9].

Up — U3 — U — Ug — U] — U2 — Ug — U — U3.

Corresponding to that walk, we get the MCI as shown in

Fig. 2(b). . MCI wiTH CONSTRAINT
Generally speaking, whelY < n < (N — 1)[(m — o

)N — 1]+ 2andn — {(N = 1)[(m — 1)N — 1] + 2} K=L+1

is even, forl < ¢ < N — 3, the walk in graphH that In this section we study the MCI problem on linear ar-

Algorithm 1 needs to find passes all the edges betwgenrays with the constraint thd = L + 1. It covers the MCI
andu;; before passing any edge betwegn, andu;.». problem with constraints thdt = 2 and X' = 3, which is
The walk contains many ‘ears’ (small cycles) of the fornstudied in the previous section, as a special case.



We define three operations on arrays — ‘remove a ver; 1 _o(z—1)—(N€W Vertexy-v;_or—1) — Va—2(1—1)-1 —

tex’, ‘insert a vertex’ and ‘combine two arrays’. Lét .- — v _3(L—1)—(New vertexy------- ". In this new

be an array of. vertices: vy, vg, - -+, v,. By ‘removing array, every connected subgraph bfvertices contains
the vertexv;’ from G (1 < ¢ < n), we get a new array exactly one newly inserted vertex.) Assign the number
‘v —v9 — - —wim1 — Vi1 — -+ — Uy’ By 'insertinga ‘L + 1’ to every newly inserted vertex in the new array,
vertexv’ in front of the vertexv; in G (1 < i < n), we get and denote this new array by’

anewarrayd; —uvg — - — Vi1 — U — U — - — Uy 3.fori=L+2toN do

(Similarly we can define ‘inserting a vertéxbehind the { Find a linear arrayB; as long as possible that satis-

vertexv; in G’ and ‘inserting a vertexy between the ver- fies the following three conditions: (1) each vertexihfis

ticesv; andv,; in G’.) Let H be an array of’ vertices: assigned a number ifi,2,---,i — 1}, namely, there is an

U1, Uz, -+, Up. Assume forl < ¢ < n, v; is assigned interleaving of the numbers ifil, 2, ---,7 — 1} on B;; (2)

the numberc(v;); and assume fot < i < n/, u; is as- anym non-overlapping connected subgraphgireach of

signed the numbert(u;). Also let! be a positive integer which containsl, — 1 vertices are assigned at ledstlis-

between 1 andnin(n,n’), and assume fot < i < [, tinct numbers; (3) fofj = 1to L — 1, thej-th last vertex

¢(v;) = e(un/—144). Then by saying ‘combining? with G of B; is assigned the same number as(the- j)-th vertex

such that the lagtvertices ofH overlap the first vertices of A;_;. To find the arrayB;, (recursively) call Algorithm

of G’, we mean to construct an array of+ n — [ vertices 3 by replacing the inputs of the algorithm &+, K, m and

whose assigned numbers &r@u;) —c(uz)—- - -—c(uny)— L — respectively withi — 1, L, m andL — 1.

c(vi1) — c(vig2) — -+ — c(vp)]. Scan the vertices iB; backward (from the last ver-
Now we present an algorithm which computes an MGkx to the first vertex), and insert a new vertex after every

on a linear array. Different from Algorithm 1 and Algo-L — 1 vertices inB;. Assign the numberi* to every newly

rithm 2, in this algorithm the length of the array is uninserted vertex in the new array, and denote this new array

known. Instead, the algorithm tries to find the longest arrdyy ‘ A;’.

that has an MCI, and compute an MCl on it. Thus the out-  }

put of this algorithm not only provides an MCI solution, 4. Combine Ay with Ax_;, combine Ay_; with

but also gives a lower bound on the maximum length of théy;_,, ---, and combined ., with A7, such that the
array on which an MCI exists. last L — 1 vertices ofAx overlap the firstL — 1 vertices
of Ay_1, the lastL — 1 vertices ofAx_; overlap the first

Algorithm 3: MCI on linear array with the constraint
K=L+1

Input: ParametergV, K, m and L, whereN > K =
L+1>3andm > 2.

Output: An MCI on a linear arrayG = (V,E) of n
vertices, with the value af as large as possible.

Algorithm:

1. If L = 2, then letG = (V, E) be an array ofi =
(N —1)[(m — 1)N — 1] + 2 vertices, and use Algorithm

1 to find an MCI onG. OutputG and the MCI on it, and lorith find. and an MCl ofi. Note that Alorith
return. (So step 2 to step 4 will be executed onlf if 3.) ago” m cgn Ind, and an ' o.e a i gon m
3 is recursive. The MCI ofi7 has a ‘hierarchical-chain’

2. Find alinear arra as long as possible that satis- . .
. . Prii ngasp structure, becausé is a ‘chain’ of sub-arraysAy .,
fies the following two conditions: (1) each vertexBf . . .
. . . . Ar4a, -+, Ay of increasing lengths, while each sub-array
is assigned a number #i,2,---, L}, namely, there is an el de f I b
interleaving of the numbers ifiL, 2. - -, L} on By.1: (2) is recursively made from more smaller sub-arrays — so

. ! they form both a ‘horizontal hierarchy’ and a ‘vertical hi-
anym non-overlapping connected subgraph®in, ; each hv'. s lenath . | K before Algorithm 3
of which containd. — 1 vertices are assigned at ledstlis- erarchy’. &'s 1engih, », 1s Uhknown betore Algorthm

. , : ends. But if we can use to to evaluate the complexity of
tinct numbers. To find the arraiy . 1, (recursively) call , i ,
. . ) . Algorithm 3, then Algorithm 3 can be easily seen to have
Algorithm 3 by replacing the inputs of the algorithm A . . . .
. . complexityO(n). If an interleaving on a long array is an
K, m andL — respectively withl,, L, m andL — 1. . . .
. . MCI, then the interleaving on a connected subgraph of it
Scan the vertices i3, backward (from the last . .
. . a sub-array) is also an MCI; and Algorithm 3 constructs
vertex to the first vertex), and insert a new vertex aft g . o
: . . the arrayG piece by piece. So it's simple to see that the
everyL — 1 vertices inBy11. (In other words, if the ver- . . o
o7 . . . algorithm can be easily modified to compute the MCI on
ticesinBy 1 arevy, ve, - - +, va, then by inserting vertices

. ° . any array of less than vertices.
into Br1, we get a new array of + | ;"] vertices; o )

. . The following is an example of Algorithm 3.
and if we look at the new array in the reverse order —
from the last vertex to the first vertex — then the array is Example 3:Given the parametel¥ = 6, K = 4, m =
of the form vy — va1 — -+ — vap_(r—1)—(new 2 andL = 3, we use Algorithm 3 to compute an MCI

vertex}-v,_ -1y — Va—(L-1)-1 — '+ — onanarray as long as possible. Three array®+-Bs

L — 1 vertices ofAx_s, ---, and the lastL — 1 vertices
of Apo overlap the firstL — 1 vertices of Ar1. (In
other words, if we denote the number of vertices4n
by l;, for L +1 < i < N, then the new array we get
hasy°Y ;. 1; — (L — 1)(N — L — 1) vertices.) Let this
new array bez = (V, E). OutputG and the interleaving
(which is an MCI) on it, and return.

Algorithm 3 outputs an arrags, which is as long as the




V. CONCLUSION

This paper defines the multi-cluster interleaving (MCI)
problem for flexible parallel data-retrieving. Two families
of MCI problems are solved for arrays/rings. MCI seems
f have natural applications in data-streaming, broadcast-
ing, etc. We expect that the techniques for solving the MCI
problems presented in this paper may provide valuable in-

and Bg — need to be found. To compute eath (4 <

1 < 6), Algorithm 3 is (recursively) called; and for this
example we're considering noW; is eventually computed
by Algorithm 1. Ford < i < 6, B; has(i —2)[(m —1)(i —

1) — 1] + 2 vertices. As a possible result, let’s say that th
numbers omB, are[l —3 — 1 — 2 — 3 — 2]; and therefore
the numbersom, are[4—1-3-4—-1-2-4-3-2].

Then the numbers oB5 can be made to b — 4 — 3 —
1-3—-2—-4-2—-1—4-1]. (Note thatthelast —1 = 2
vertices ofB; are assigned numbers ‘4-1’, the same as the
first L — 1 = 2 vertices ofA,. That can be done easily by
permuting numbers o5.) Then the numbers od5 are
[B—5-4—-3-5-1-3-5-2—4—-5-2—-1-5—4-1].
Then the numbers oBs can be madetobg —3 — 1 —
4-1-5-1-2-3-2-5-2—-4-3-4-5-3-5].
(Note that the las. — 1 = 2 vertices of Bz are assigned
numbers ‘3-5’, the same as the filst— 1 = 2 vertices of
As.) Then the numbers odg are[6 — 1 —3—-6—1—
4—-6-1-5-6—-1-2-6—-3—-2—-6—-5—-2—-6-—
4-3-6—-4—-5—6—3-05]. Finally, A is combined
with A5 with L — 1 = 2 overlapping vertices, and; is
combined with4, with L—1 = 2 overlapping vertices, and

(1]

(4]

(5]

we get the arrays = (V, E) which are assigned numbers
6-1-3-6-1-4—6-1-5-6-1-2-6-3-2-6—  [q]
5—-2—-6—4-3-6-4—-5-6—-3-5—4-3-5—-1-3—
5-2-4-5-2-1-5-4-1-3-4-1-2-4-3-2. U
G has 48 vertices. It can be verified that the interleaving on
GisanMCl. O (8]

Theorem 5:Algorithm 3 is correct.

Sketch of ProofDo induction on the parametér (one
of the inputs of Algorithm 3). The induction assumption
is: Algorithm 3 correctly outputs an MCI on an array for
any given valid set of inputd/, K, m andL; and in that [10]
MCI, any L consecutive vertices are assignedlifferent

numbers. O [11]

The length of the longest array on which an MCI exists
increases whemV, the number of integers that are inter-
leaved, increases. The performance of Algorithm 3 can be
evaluated by the difference between the length of the arrgy!
constructed by Algorithm 3 and the length of the longest
array on which an MCI exists. We're interested in studying4]
how the difference goes whe¥ increases. The following
theorem shows the result.

Theorem 6:Fix the values of the parameteks, m and
L,whereK = L +1 > 3andm > 2, and letN be a vari-
able (Vv > K). Then the longest linear array on which an
MCl exists has "=, N*+-O(N*~") vertices. And the ar-
ray output by Algorithm 3 also ha&”_‘—f)!NL +O(NE1)
vertices.

Proof: Please refer to [9].

Theorem 6 shows that the array output by Algorithm 3
is asymptotically as long as the longest array on which an
MCI exists. As mentioned before, clearly the algorithm
can be easily modified to computer MCI on shorter arrays
as well.

[9] A. Jiang and J. Bruck.

sights into solving more general MCI problems.
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