
Topological Hole Detection in Wireless Sensor Networks
and its Applications

Stefan Funke ∗

Computer Science Department
Gates Bldg. 375

Stanford University, CA 94305, U.S.A.

ABSTRACT
The identification of holes in a wireless sensor network is
of primary interest since the breakdown of sensor nodes in
a larger area often indicates one of the special events to be
monitored by the network in the first place (e.g. outbreak of
a fire, destruction by an earthquakes etc.). This task of iden-
tifying holes is especially challenging since typical wireless
sensor networks consist of lightweight, low-capability nodes
that are unaware of their geographic location.

But there is also a secondary interest in detecting holes
in a network: recently routing schemes have been proposed
that do not assume knowledge of the geographic location
of the network nodes but rather perform routing decisions
based on the topology of the communication graph. Holes
are salient features of the topology of a communication graph.

In the first part of this paper we propose a simple dis-
tributed procedure to identify nodes near the boundary of
the sensor field as well as near hole boundaries. Our hole

detection algorithm is based purely on the topology of the
communication graph, i.e. the only information available is
which nodes can communicate with each other. In the sec-
ond part of this paper we illustrate the secondary interest
of our hole detection procedure using several examples.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms: Algorithms, Design

Keywords: Routing, Graph theory, Embedding, Virtual
Coordinates, Topology

1. INTRODUCTION
Picture the following scenario: during a long summer

drought, wild fires have started in a large region of a re-
mote nature preserve that is hardly accessible by ground

∗supported by the Max Planck Center for Visual Comput-
ing and Communication (MPC-VCC) funded by the Ger-
man Federal Ministry of Education and Research (FKZ
01IMC01).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIALM-POMC’05, September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-092-2/05/0009 ...$5.00.

transportation. To be able to continuously assess the situ-
ation and plan appropriate countermeasures, airplanes are
sent out to deploy thousands of wireless sensor nodes. Due
to cost restrictions and to achieve the maximum life-time by
energy savings, these sensor nodes are rather low-capability
devices equipped just with temperature and humidity sen-
sors, a simple processing unit, and a small radio device that
allows for communication between nearby sensor nodes. One
of the first goals is now to have this network organize itself
such that messages are routed within the network, regions
of interest (e.g. the current firefront) can be identified, and
gathered data can be efficiently queried.

Achieving this goal becomes quite challenging since the
only information a node has about the global network topol-
ogy are its immediate neighbors with whom it can commu-
nicate. Lacking an energy-hungry GPS unit and being de-
ployed from an airplane in a rather uncontrolled fashion,
none of the sensor nodes is aware of its geographic location.

Before we describe our contribution in more detail, let us
make the scenario more precise. Assume the area of interest
is some region R. The airplanes have deployed sufficiently
many sensors such that – if all of the sensors were in opera-
tion after reaching the ground – the area of interest is com-
pletely monitored by the sensors. Formally we have that for
every point p ∈ R there would be at least one sensor s within
distance d(p, s) ≤ rsense. Where rsense is the sensing ra-

dius of the wireless nodes, i.e. the radius within which they
can monitor or estimate temperature or humidity. Unfortu-
nately, not all sensors will be operational upon reaching the
ground. Some of them might fall right into the flames and
be destroyed, others might plunge into a lake or pond and
be unable to perform their monitoring task. Paradoxically
we are particularly interested in those areas where there’s
an ongoing fire (and maybe also where there is a lake or
pond), but sensor nodes that fell into these areas are unable
to report this fact to us.

Our approach of detecting the (boundaries of) such holes
in the monitored space created by fire or other phenomena
will based on the examination of the communication graph

of the wireless nodes. The communication graph of a wire-
less network has a node for each wireless station and an edge
between two nodes if the respective stations can communi-
cate with each other. For simplicity let us assume that two
nodes can communicate with each other if they are within
distance of at most rcomm (communication radius). So the
communication graph is essentially a unit disk graph (UDG).
Typically, the communication radius rcomm is considerably
larger than the sensing radius rsense, let κ = rcomm/rsense

44

be the ratio between these two quantities. Clearly, the larger
the value κ becomes, the denser the communication graph
gets. For example, a simple calculation shows that for κ = 5,
i.e. the communication radius is five times the sensing ra-
dius – which is a quite realistic assumption for temperature,
humidity, or acoustic sensors –, the degree of a node not
close to a (hole or outer) boundary is at least 24.

In essence the primary problem that we consider in this
paper is that of identifying holes just by examining a rather
dense communication graph. If in a sufficiently large region
sensors break down, this hole will also manifest itself in the
communication graph, hence holes identified using the com-
munication graph are indicative of some large-scale special
event in the region to be monitored.

The secondary benefit of our hole finding routine arises
more generally in wireless networks. Wired networks usually
have a rather static behavior where nodes or links change
seldom, and hence efficient routing can be achieved by ag-
gregating routing information in IP addresses and by having
powerful routers maintain these tables to distribute message
within the network. Wireless networks on the other hand
tend to be much less structured due to the volatility of node
links. A lot of research effort has been spent in designing
good protocols for this setting, see e.g. [14] for an overview.

One powerful approach to routing within wireless net-
works is the idea of geographic routing pioneered in GPSR /
GFG [2, 7] and improved later e.g. in [8]. This approach is
based on attaching geographic location information to each
network node and then apply a greedy-routing mechanism
where a packet is always sent to a neighbor which is closer to
the final destination. The main disadvantage of these proto-
cols is the need for location information for each node of the
network. This can be, of course, provided by a GPS system
on each network node, but given that in many scenarios es-
pecially in wireless sensor networks, the network nodes are
very light-weight and low-capability devices, this is a rather
prohibitive assumption. Alternatively, few dedicated nodes
could be equipped with a GPS system and protocols for lo-
calization could be used to construct location information
for the other nodes (see e.g. [4]).

More recently, several papers have proposed routing sche-
mata which do not rely on geographic location information
at all. They proceed either by constructing virtual coordi-

nates as in [11, 13, 15] which are derived from the network
topology but do not necessarily reflect the true geographic
locations, or by routing via landmarks as in [12]. In spite of
or maybe because they intentionally ignore any geographic
information, these algorithms rely even more on other means
of capturing the topology of the underlying network. The
secondary benefit of the hole finding approach presented in
this paper is to provide a powerful tool that exhibits more of
this topology information to location-free routing protocols.
In general, global topological features of the network like
large holes tend to be stable under changes of few network
links, so schemes based on these global topological proper-
ties, are likely to enjoy a natural robustness against network
volatility, as it was for example shown in the GLIDER ap-
proach (see [12]).

Related to our work are geometry-based hole detection
algorithms like [5] as well the statistics-based approach pre-
sented in [6]. They are not direct competitors to our ap-
proach, though, since the former inherently relies on the
availability of geographic location information at the nodes,

and the latter seems feasible only for uniform and very high
density node distributions. We are not aware of other work
addressing the same problem as our algorithm.

1.1 Our Contribution
In this paper we present a simple procedure to identify

nodes on the outer and hole boundaries in a field of wireless
network nodes. Our algorithm relies purely on the connec-
tivity information of the underlying communication graph
and does not make use of any location information of the
nodes. While our work does not propose new routing proto-
cols, we believe our procedure is of great interest to location-
free algorithms that have recently become the focus of active
research. We give evidence for the usefulness of our approach
by providing two example applications where topological
hole detection allows for improved performance of the ex-
isting schemata. In the first example we investigate a recent
protocol called GLIDER [12], which proposes load-balanced
routing in the absence of geometric location information by
using so-called landmarks to give structure to the underly-
ing network. A key issue of this approach – which was not
addressed in the original paper – is the appropriate selec-
tion of landmarks as it immediately affects the performance
of the network. Using our hole detection algorithm we pro-
vide a sound landmark selection strategy which guarantees
certain desirable properties. Furthermore we investigate the
use of our topological hole detection routine in the context of
virtual coordinate computations as proposed for example in
[13]. We show that using the additional information about
hole boundaries, it is possible to actually approximate the
original geometry information rather well from just the con-
nectivity of the communication graph – even in the presence
of holes. The distributed complexity of our algorithm is es-
sentially the same as that of flooding the network a constant
number of times (where the constant is really small!), and
since we expect this type of topology-exploration to happen
rather infrequently during the lifetime of the network, we
believe that our approach can be very useful in practice.

2. TOPOLOGICAL HOLE FINDING
This section introduces a novel way to detect holes in

networks consisting of a set of wireless nodes. While the
intuition behind our approach stems from geometric obser-
vations, the resulting algorithm is purely based upon the
topology of the connectivity graph and does not assume any
geographical location information.

2.1 The continuous case
Picture the following continuous variant of our problem:

Given a (possibly non-simply) connected region R ⊂ R2 and
some point p ∈ R – we call that point beacon –, we consider
the isolevels of the geodesic distance function dp from p in
the domain R as in Figure 2.1. That is, for any point x ∈ R
dp(x) denotes the minimum Euclidean length of an open
curve Γ ⊂ R with one endpoint being p, the other x. Or in
other words, dp(x) is the length of the shortest path from p
to x which stays within R and avoids all holes.

The isolevel, isoline, or contour of level k of the distance
function dp is the set of points I(k) = {x ∈ R|dp(x) =
k}. In Figure 2.1 we have depicted the contours of level
10, 30, 50, If the region R is free of holes and all points
on the boundary of R can be seen from p (without obstruc-
tion by a hole), the contour of level k is a subset of the

45

Figure 1: The continuous case: One beacon, 3 tri-
angular holes, induced contours/isolines.

circle centered at p with radius k. In the more general case
with polygonal obstacles, though, the contour of level k is a
collection of (possibly disconnected) circular arcs.

What is interesting for our purposes is the observation
that a contour is always ’broken’ either at the outer bound-
ary or the boundary of a hole. In fact the reverse, i.e. every
point x of a hole/outer boundary is the endpoint of a con-
tour component, is ’almost’ true. The only way that x with
dp(x) = k might not be the endpoint of a component of the
contour of level k is in case that the tangents of the contour
of level k and of the boundary agree at x. In Figure 2.1, this
is the case for example in the right lower and left upper cor-
ner of the region R, where the ’wavefronts’ hit tangentially
the outer boundary. The same happens at the upper left tip
of the rightmost triangular hole in the picture.

The key idea of our hole detection routine is to make use
of these ’broken isolines’ to determine nodes that are close
to the outer boundary or to a boundary of some hole.

2.2 The discrete case
Of course, in the context of wireless networks, things are

quite a bit different from the continuous setting. First of
all, distances are not defined between any two points of the
region R, but only between sensor nodes – hence the no-
tion of contour curves and their breakpoints is completely
ill-defined. Secondly, these distances are measured in terms
of the network distance, i.e. the number of hops in the com-
munication graph. In our scenario – where the network con-
sists of a number of light-weight wireless nodes – there is
no knowledge of geographic position, so these network dis-
tances are the only description of the relationship of a node
to the rest of the network.

2.2.1 The Boundary-Detection Algorithm
Things are not hopeless, though. Given some beacon node

of the network, what we can do, is to compute shortest dis-
tances in terms of hops in the communication graph of the
network. And while there is no continuous notion of con-
tour, we can define a similar structure via connected com-
ponents of nodes with the same distance label. Assuming
that within the ’non-hole’ parts of R, the node distribution
is reasonably high, the hop-distance between two nodes ap-
proximates geodesic distances reasonably well, and hence
we can hope to mimic the continuous setting. We fill in the
details in the following.

Before we give a precise description of our algorithm let us
start with some definitions. As in the continuous setting, we

Figure 2: The discrete case: One beacon, its induced
isolevels, and their marked boundaries

have one dedicated network node p which is called the bea-

con. For every node v of the network we define as dp(v) the
shortest (in terms of number of edges) path in UDG from
p to v. For fixed integer k, we call I(k) = {v : dp(v) = k}
the isoset of level k. The subgraph of UDG induced by I(k)
might be disconnected, so we call each of the resulting com-
ponents of I(k) as C1(k), C2(k), As in the continuous
case we are interested in finding nodes near the points where
the ’contours’ are broken. It’s just that in the discrete set-
ting there are no contours but only connected components.
Still, we can assume that when embedded into the plane at
their true geometric position, a connected component of an
isoset has a skinny, longish shape. So, if we pick some ran-
dom node r (a local beacon) in Ci(k) and compute shortest-
hop distances restricted to Ci(k), we expect the highest dis-
tance values at both ’ends’ (this refers to their location when
embedded in the plane). We mark these nodes with highest
distance values as being on the boundary.

See Figure 2 for the markers created by a run of this pro-
cedure from a beacon in the top right corner. We have illus-
trated isolevels by black and dark grey colors, the marked
nodes are distinguished by light grey disks around them.
Observe that as predicted for the continuous case, bound-
aries hit tangentially by an isolevel are marked rather un-
reliably (see in particular the parts of the holes closest to
the beacon). But we can remedy this by just repeating the
procedure with another beacon and taking the union of all
marked nodes. In our experiments it turned out that re-
peating this procedure for 4 beacons yields very good re-
sults without increasing the running time too much. So the
description of our algorithm looks as follows:

HOLE-FINDER()

1. pick 4 beacons p1, p2, p3, p4, amongst the network nodes

2. for each pi do:

(a) compute distances of all network nodes to pi

(b) for all 1 ≤ k ≤ diam(UDG):

• determine components C1(k), C2(k), . . .
• for each Cj(k), determine boundary nodes by

calling CompBounds(Cj(k)

46

Figure 3: Output of algorithm after choosing 4 bea-
cons and the resulting classification (left). Result
after coarse boundary sampling (right).

The subroutine for exploring a connected component is
implemented in a more conservative manner than described
above. Instead of marking all nodes that do not have any
’higher’ neighbor, we postulate that no 2-hop neighbor should
be higher:

CompBounds (C)

1. pick a local beacon q in C

2. compute hop-distances h′(v) to q in the subgraph in-
duced by C

3. mark all nodes v ∈ C which do not have a 2-hop neigh-
bor v′ ∈ C with h(v′) > h(v).

The only missing part is the beacon selection which we
address in the following.

2.2.2 Beacon selection
How to pick the 4 beacons is of course quite important.

If they are all close together, each of their induced dis-
tance fields looks about the same and no additional informa-
tion/boundary markers are gained. A very simple strategy
is just to pick 4 random nodes. Typically these are rather
well-spread over the region and hence yield good results.

Another strategy is to force them to be wide-spread over
the network. This can be done by having each node v of the
network maintain a variable CBD(v) (for Closest Beacon
Distance) storing the (hop-)distance to the closest beacon
processed so far. After processing beacons p1, . . . pi−1, pi is
then picked amongst the nodes with maximal CBD(.) value.
This forces the beacons to be spread out over the network.
In Figure 3 (left) we can see the result of our hole find-
ing algorithm with 4 beacons. The first beacon was chosen
randomly, the last 3 following the above strategy (they are
located in top left, lower left, and lower right corner). Ob-
serve that both outer boundary as well as hole boundaries
are rather well captured by a ’thickened’ region of marked
nodes around them. There are some spurious marked nodes
in the middle of the network.

2.3 Coarse Boundary Sampling and Pruning
In particular for the applications discussed in the second

part of this paper, it might be useful to get a more compact
representation of the boundaries. Our hole finder algorithm
essentially marks all nodes that are close to a boundary.
The number of these nodes can be quite considerable, so a

natural way to reduce this number is to compute a maximal
independent set within all the marked nodes which can be
computed using one of the standard distributed algorithms
for the problem (see e.g. [10]). The result can be seen in
Figure 3 (right). Furthermore, in this process we can also
easily get rid of incorrectly marked nodes by only taking into
account connected components of the marked nodes that
have a certain minimum size (observe the missing spurious
nodes in Figure 3 (right)).

2.4 Distributed Implementation and Efficiency
So far we have not mentioned anything about a distributed

implementation of our algorithm. But as we expect that
topology exploration has to be performed only rarely dur-
ing the lifetime of the network (typically at the beginning,
after deployment, and then only in rather large time inter-
vals to adapt to topology changes), we can afford a straight-
forward, naive implementation. Essentially the cost of our
algorithm is that of flooding the network with a message
a constant number of times: computing the distance to a
beacon can be implemented by flooding the network with a
HELLO message originating from the beacon maintaining a
distance counter in the message that is incremented at ev-
ery hop. A node’s distance to the beacon is then just the
minimum counter value over all message received. Similarly
the distance computations within each isolevel sum up to
a flooding of the whole network. If beacons are not to be
chosen randomly but using a deterministic method, this can
also trivially be implemented using O(n) messages and time.
This, of course assumes handling of interference as well as
knowledge of the one-hop neighborhood of each node. But
this assumption on the existence of a low-level infrastructure
is commonly accepted.

2.5 Summary
As we will see later in the experimental section, our hole

finding approach turns out to work really well for scenarios
where the network density is reasonably high. In contrast
to other approaches like [6], we do not require an extraor-
dinarily high node density – anything higher than average
degree 16 for the communication graph seemed to work fine
–, nor can our algorithm be fooled by changing node densi-
ties, as none of the algorithm’s decisions are directly based
upon the number of neighbors.

In Figure 4, we have generated points randomly in the
[0 : 1] × [0 : 1] square and then replaced each x-coordinate
by x/2 + x2/2 and each y-coordinate by y/2 + y2/2. The
resulting set of points is still contained in the unit square,
but somewhat biased towards the origin. Still, our algo-
rithm faithfully determined the boundaries (in the Figure,
the output after sampling and pruning is shown).

3. APPLICATION: TOPOLOGY-BASED
LANDMARK-SELECTION

In [12] Fang et al. present a novel routing scheme named
GLIDER which is purely based on the node-topology and
does not require any geometric information. The key idea is
to choose a set of distinguished nodes – so-called landmarks

– and divide the network into tiles, that is connected sub-
networks which have one particular landmark as closest in
terms of the graph distance (they essentially mimic a geo-
metric Voronoi diagram in the graph setting). The number

47

Figure 4: Complicated sensor field topology with
non-uniform density

Figure 5: Natural load balancing in inter-tile routing

of landmarks is supposedly rather small compared to the
network size, so every node in the network can afford to
have knowledge about all landmarks, distance to the land-
marks, and the adjacency information of landmark tiles (i.e.
which tiles have common boundaries) – the authors call this
the Landmark Voronoi Complex (LVC). Within each tile, a
local coordinate system is constructed, and a network node
is named by a two-tuple consisting of the tile where it resides
and the local coordinates within that tile.

When a node p in tile tp wants to send a message to a node
q in tile tq, using the connectivity information of the LVC
stored at every node, p can determine a sequence of tiles
tp = t1t2 . . . tq to get to tile tq containing q. The routing
strategy for the message on its way to tile tq is as follows:
when being in tile ti the message is always sent to a neighbor
that is closer to the landmark of tile ti+1. When crossing
the boundary to tile ti+1, the ’target’ is switched to ti+2 and
so on. Note that this inter-tile routing scheme provides for
a very natural and elegant way of load-balancing, see Figure
5. Even paths that share the same subsequence of tiles, are
kept apart, as shown in the example where several paths
were routed from random positions in the lower center tile
to the upper left tile. We refer to [12] for a more detailed
description of this scheme. Finally being in the tile tq where

q resides, a greedy procedure based upon the local coordi-
nates is used to get to the destination q. If this fails due to
a local minimum, the tile is flooded with the message.
We cite from the GLIDER paper [12]:

While the definition and properties of LVC and
CDT hold for any subset of landmarks, careful
selection of landmarks is crucial for the effective-
ness and efficiency of routing.

Fang et al. propose that the number of landmarks should
be roughly proportional to the number of holes in the com-
munication network. But even such information is typically
not available a priori. We propose to use our hole find-
ing algorithm to help with the landmark selection process.
While just obtaining a rough count of the number of holes
in the network obviously already helps improve the perfor-
mance of GLIDER, we will also illustrate in the following
how topology-unaware landmark selection can decrease net-
work performance (even if a rough count of the number of
holes is available). We then propose a landmark selection
scheme based on the presence of holes. Again, we want to
emphasize that without a hole detection algorithm not even
a rough estimate of the number of holes in the network is
available a priori.

3.1 Problems of unaware Landmark-Selection
In the following we will briefly illustrate the problems in-

curred by landmark selection that is unaware of the actual
topology of the network. Figure 6 shows the LVC for two
different landmark selections. On the left, a random set of
8 landmarks was chosen, on the right, the 8 landmarks were
chosen taking into account the topology of the network (in
fact based upon our hole finding algorithm). One can see
that on the left, one of the main topological features of the
network – one of the two holes – was essentially overlooked
by the LVC, as it resides completely within a tile. This has
implications for the efficiency of both inter-tile as well as
intra-tile routing as we will see in the following. On the
other hand, the topology-aware landmark selection ensured
that all tiles are topologically simple. This is essential for
the LVC routing strategy to perform as claimed.

Let us now turn to concrete examples where we can ex-
hibit the implications of topology-unaware landmark selec-
tion. We first consider inter-tile routing. In Figure 5 we
have seen that the LVC-based routing provides for a very
natural load balancing mechanism, where packets – even
though traversing the same sequence of tiles – are routed
on different paths. Unfortunately this nice property does
not hold anymore when holes are contained within a tile.
Consider the situation in Figure 7. Here a hole contained
within the center tile essentially forces all the routing paths
to pass close to the hole boundaries. In the example we have
generated random path queries from the lower center tile to
the upper center tile; in absence of the hole, the load would
have been rather nicely distributed.

Another problem arises in the intra-tile routing phase of
the LVC protocol. As soon as a packet has arrived at the tile
of the destination, a greedy gradient-based routing scheme is
employed to find a path to the destination. In Figure 8, we
have depicted the distance values to a destination (marked
by a white cross slightly above the hole) within a tile ac-
cording to the local coordinates and the distance measure
as defined in [12]. Darker colors denote smaller distances.

48

Figure 6: LVCs for different landmark selection: random vs. topology-aware

Figure 7: Uncaptured topology: hole contained
within Voronoi tile and resulting load imbalance in
inter-tile routing

As we can see, the presence of the hole creates a region with
a local minimum (below the hole) where no descending path
to the actual destination is possible. In this case, the LVC
protocol resorts to flooding the whole tile with the message.

We summarize that it seems absolutely essential for the
performance of the LVC routing protocol to ensure that the
landmark selection takes into account the actual topology of
the network, in particular holes should never be completely
contained within a tile of the LVC.

In the following we will explain how to make use of our
hole finding routine to obtain good landmark selections. As
in case of the hole detection, the intuition is taken from
the continuous case, but practically translates well to the
discrete case.

3.2 First Attempt: Capturing Topology by Hole
Sampling

The first attempt is motivated by the simple observation
that if at least two landmarks are on the boundary of every
hole, there cannot be a hole completely contained within a

Figure 8: Uncaptured topology: hole contained
within Voronoi tile and resulting local minima in
intra-tile routing

Figure 9: Load imbalance due to Landmarks being
too close to boundaries

49

Figure 10: Coarse boundary (left) and result of
feature-sensitive pruning (right, with resulting LVC)

tile of the LVC. This is clearly true since hole containment
implies that all nodes on the boundary of the hole have one
single landmark as their closest landmark. We have modi-
fied our hole finding algorithm to decimate the sampled and
pruned output (Figure 10, top) further by allowing only 4
marked nodes on the boundary of a large hole (we allow only
2 marked nodes on smaller holes). The respective landmarks
and the resulting LVC can be seen in Figure 10, bottom. We
have 4 landmarks on the boundary of the hole and 4 land-
marks on the outer boundary.

What seems not so nice is the fact that the landmarks
always lie quite off-center in their respective tile in the VC.
This has some implications for the load balancing behavior
of the LVC protocol, as can be seen in Figure 9. Here, due to
the landmarks being too close to the boundary of the hole,
all traffic from the lower center to the upper cell is attracted
towards the hole boundary and hence load-balancing behav-
ior gets quite bad. This is similar to the case depicted in
Figure 7.

3.3 Second Attempt: Hole-Repulsion and
Pruning

The idea for remedy is to have the holes ’repulse’ the
landmarks and by that allow for tiles with more centered
landmarks. But we still want to ensure that no hole is
completely contained within a tile of the LVC, which might
happen if landmarks are moved too far away from the hole
boundaries. Let us describe our strategy by focusing on one
hole. To move landmarks ’away’ from hole boundaries it
is convenient to have each node v in the network store a
value ∆(v), which denotes the hop-distance to the closest
boundary node. This can easily be implemented by a one-
time-flooding procedure where each sampled boundary node
(before decimation to get the preliminary landmarks) sends
a HELLO message with distance counter 0 which increases
at every hop. The value ∆(v) is then the minimum counter
value over all messages received.

For each landmark p chosen according to the previous
strategy let dlocal(p) denote the minimum hop-distance to
another landmark q of the same hole. We replace p by some
node p′ within p’s (dlocal(p)/3)-hop neighborhood which has
maximal ∆(p′) value (intuitively: which is furthest away
from a boundary). Observe that moving all landmarks in
this way, still ensures that no hole is completely contained
within one tile. The reason for that being that p – the old
landmark on the boundary of the hole – is still closer to p′

than to any other landmark of the same hole (since they
were at least dlocal(p) hops away and have moved by at

Figure 11: Landmark selection with hole repulsion
(left) and pruning (right)

most dlocal(p)/3 towards p. So p will be in p′’s tile whereas
by the same argument node q of the same hole will belong to
q′’s tile. Hence this hole cannot be completely be contained
in one tile. This procedure might move landmarks of differ-
ent holes rather close together, creating unnecessary land-
marks, see Figure 11, left. But there is a way to prune the
landmarks even further – without violating the guarantee of
hole-free tiles. Let us consider a pair of landmarks (p′, q′)
(after the movement and not originating from the same hole)
at hop-distance h. We claim that if h < dlocal(p), p′ can
be removed (if q′ remains in the set of chosen landmarks).
As before this can easily be verified by establishing that
q′ is closer to p than any other landmark originating from
the same hole as p. The resulting set of landmarks can be
seen in Figure 11, right. The landmark set of Figure 6, right,
was also selected using this process of repulsion and pruning
(without pruning, there used to more redundant landmarks
in the center between the holes).

3.4 Distributed Implementation
As in case of the hole detection algorithm, we assume

that the landmark selection process will be performed not
very frequently. As already mentioned in [12], the commu-
nication cost of establishing the landmark Voronoi complex
is essentially dominated by flooding the network k times,
where k is the number of landmarks selected (according to
our landmark selection scheme k will be in the order of the
number of holes in the network). This also dominates the
cost of computing hole boundaries and the topology-aware
selection of landmarks.

4. FURTHER APPLICATIONS
In this section we will rather briefly sketch other applica-

tions where our hole finding routine might be of interest.

4.1 (Virtual) Coordinates in the absence of
Location Information

In [13] Rao et al. have presented a scheme for comput-
ing virtual coordinates of network nodes based purely on
the connectivity information of the communication graph.
They first determine a set of nodes on the outer boundary
of the sensor field Then using the distance information be-
tween all boundary nodes which are used as approximations
of their Euclidean distances, they embed these nodes in the
Euclidean plane by a simple triangulation scheme. (Virtual)
coordinates of non-boundary nodes can then be obtained ei-
ther by triangulation or by an iterated relaxation algorithm.

The problem with the straightforward extension of this

50

Figure 12: Node distribution in a sensor area with
one hole (left), embedding of boundary nodes using
standard triangulation (center), embedding only re-
lying on ’truthful’ distances (right)

Figure 13: ’Truthful distances’ from bold point

scheme is that in a region of non-simple topology, holes
might ’obstruct’ the shortest paths between nodes of the
network and hence their lengths are not a good estimate of
the true, geometric distance. As already observed in [13],
this leads to an exaggerated blow-up of the size of contained
holes, see Figure 12, center.

4.1.1 Embedding via Triangulation on ’truthful’
Distances

One way to solve this problem is to ’classify’ distances
based on the fact whether in their measurement via hop-
distances in the communication graph, the shortest path
got diverted due to holes in the network. We do this as
follows: let P be the set of boundary nodes that are to be
embedded. We say the distance measured between a pair
(p, q) ∈ P × P is truthful, if the respective shortest path in
the communication graph from p to q providing this esti-
mate does not contain any r ∈ P as intermediate node. The
intuition behind that is, that non-obstructed nodes certainly
do not have another boundary node on their shortest con-
necting path, whereas in the presence of holes, chances are
quite good that one of the marked boundary nodes of the
obstructing hole are part of the shortest path. See Figure
13 for the nodes which have truthful distances (the hollow
nodes) to a fixed node (bold).

In our embedding algorithm we then start with the dis-
tance matrix and another matrix with boolean entries spec-
ifying whether a distance between two nodes is truthful or
not. We start by picking a set of 3 well-spread, but mutu-
ally truthful set of nodes (preferably three nodes that form
a non-skinny triangle) and embed them in the plane (the
first point at the origin (0, 0), the second at (0, d12), and the

third at either intersection of the circle centered at (0, d12)
of radius d23 and the circle centered at (0, 0) of radius d13.
From now on we pick the additional nodes one by one and
determine their location in the embedding by a simple tri-
angulation scheme. A new node p with truthful distances to
already embedded nodes q1, q2 has two potential locations
(again the two intersection points of the respective circles
centered at the locations of q1 and q2). To choose the cor-
rect one of these two, we select another already embedded
node q3 which is close to either of the intersection points. We
iterate this procedure until all nodes have been embedded.
Of course, quite important for the quality of the outcome
is a ’good choice’ of the order of the nodes to be embedded
and which already embedded nodes to base the new loca-
tion upon. Again as for the first three points, we prefer
nicely-shaped, ’fat’ triangles, and direct distances between
the nodes involved. The result of this procedure can be seen
in Figure 12, right, where – like the direct approach – the
global topology is roughly captured, but the extensions of
the hole are far more accurate due to the more conservative
use of distances only if they are ’truthful’.

4.2 Medial-Axis-Based Routing
In a very recent work ([3]), a routing scheme based on the

medial axis of the underlying domain has been developed.
The medial axis M of a set of points P ⊆ R2 is defined
as the locus of all points which have more than two closest
neighbors in P . For a region R bounded by a closed curve
potentially with holes described by other closed curves, we
are interested in the part of the medial axis of these curves,
that lie within the interior of R. The approach described
in [3] derives for each node of the network canonical coordi-
nates which are then used for all routing decisions. While
the medial axis at first sight is a purely geometric struc-
ture (in some sense the continuous version of the Voronoi
diagram), our hole finding algorithm can be used to simu-
late it even in the absence of any geometric information at
the nodes. The idea is first to determine boundary nodes
and then compute for every node of the network its distance
to all hole boundaries (again this can be done by sending
HELLO messages from the hole boundaries maintaining a
distance counter). In case of convex holes, a node is then
part of the medial axis / the Voronoi diagram if its two ’clos-
est holes’ are at about the same distance. For non-convex
holes things get slightly more difficult, see [3].

In Figure 14 we have determined for each node in the
network the distance to the closest boundary node (con-
structed by our hole finding algorithm) – light color denotes
large, dark color denotes small distance values. We see that
the resulting picture resembles the (geometric) Voronoi dia-
gram and hence the medial axis without actually using any
geographic location information.

5. EXPERIMENTAL EVALUATION
Our algorithm as well as the applications mentioned in

the second part of the paper have been implemented and
evaluated on various problem instances. While our imple-
mentation does not mimic network attributes like packet
loss or delay, we are confident that the results give a good
indication about the usefulness of our approach in practical
scenarios. Due to space restrictions we focus in this section
on the performance of the hole finding algorithm itself and
leave the evaluation of the applications where the algorithm

51

Figure 14: Approximate offsets from hole-detection
for medial-axis approximation

is employed as a subroutine for the long version of the pa-
per. The benchmark communication graphs we use for our
experiments contain several thousand wireless nodes, which
might seem overly large. But in recent research projects like
ExScal ([1]) people have actually started operating wireless
sensor networks whose sizes are in the thousands.

5.1 Unit-disk graphs
We examine the performance of our algorithm on classical

unit-disk graphs, i.e. we assume that two nodes can com-
municate with each other if they are closer than the global
communication radius.

5.1.1 Random Uniform Distributions
In the first experiment we placed 4900 nodes in a 800×800

square region uniformly at random and then removed a disk-
like center portion of the nodes. By adjusting the commu-
nication ranges between 15 and 40 we obtained communica-
tion graphs of different densities. The pictures in Figure 15
show the results after running our hole detection algorithm
(including coarsening and pruning). In parentheses we state
the average degree of the respective communication graph.
It turns out that only for graph densities with average degree
around 18 or more our hole finding algorithm produces rea-
sonable results. For lower densities, the output is of no use.
We note, though that due to well-known transition-phase
results, the graph with communication radius 15 and re-
spective avg. node degree of 5 is hardly connected, i.e. even
the largest connected component is very small. For avg.
node degree of 10 the UDG is still not connected, though
there is a rather large connected component.

5.1.2 Randomly perturbed Grid
Several routing papers evaluate their routing protocols on

networks generated by a randomly skewed grid. This is a
reasonable model in case the wireless nodes were e.g. de-
ployed by an aircraft in a roughly regular pattern, but due
to imprecision in the deployment process, the wireless nodes
do not end up exactly at desired location. We placed 4900
nodes on a 70×70 grid with grid width of about 11. We then
perturbed each grid point in x- and y-direction by a random

Figure 15: Algorithm output for UDGs of ran-

domly distributed points and communication ranges
15 (avg. degree 5), 20 (10), 27 (18), 40(39)

Figure 16: Algorithm output for UDGs of skewed

grid points and communication ranges 15 (avg. de-
gree 5), 17 (7), 19 (10), 20(11)

amount between 0 and 11. Visually the node distribution
looks similar to the random distribution, but the resulting
communication graph is much better connected. So – like
many other routing schemes – our algorithm performs ex-
tremely well, faithfully capturing the hole even in networks
of average degree 10. See Figure 15 for the output.

52

Figure 17: Wavefronts for a unit-disk graph (left)
and a non-unit-disk graph (right).

Figure 18: Algorithm output for non-UDGs of av-
erage degrees 8,16, and 20.

5.2 Non-UDGs
Our algorithm does not crucially rely on the graph being

a unit-disk graph, but also tolerates deviations e.g. inspired
by the so-called quasi-unit-disk-graph [9]. In our model we
have a lower bound rlow as well as an upper bound rup for
the communication radius. Two nodes at distance at most
rlow can always communicate with each other whereas for
nodes at distance between rlow and rup, they can only com-
municate with a certain probability p. In Figure 17 we have
depicted the distance fields induced by a ’regular’ unit-disk
graph (left) as well as a non-unit-disk graph according to our
model with a probability p = 1/20 of edges of length between
rlow and rup = 2 · rlow being present in the communica-
tion graph. While the general appearance of a wavefront
remains the same, this non-unit-disk graph model leads to
less ’smooth’ distance fields. We note that increasing the
probability p actually smoothes out the wavefronts.

The success rate of the hole detection decreases with the
volatility of the communication radius. See Figure 18 for
detection results in our non-UDG graph for varying aver-
age degrees 8, 16, and 20. For low average degrees in the
non-UDG, the performance is comparable to the UDG case,
though increasing the average degree does not lead to the
very ’clean’ results as in case of the UDG. The sensor nodes
were placed on a perturbed grid as in Figure 16. What
is important to note here, though is the fact that the hole
detection algorithm still does reasonably well as it does not
rely on the hop-distances in the graph resembling closely the
geometric distance between the respective nodes; crucial is
rather the fact that nodes with the same hop-distance label
form a connected wavefront.

6. CONCLUSIONS
In this paper we have presented a rather simple and straight-

forward algorithm for detecting holes in a wireless commu-
nication network, that is purely based on the connectivity of

the communication graph. This has immediate applications
in the interpretation and evaluation of data acquired via a
wireless sensor network, since large holes in the communi-
cation graph are typically caused by events that the sensor
network was installed to monitor in the first place. We have
also sketched further applications of our hole finding routine,
where the knowledge about holes in the network provides for
better performance of existing topology-based, location-free
protocols. Currently, a lot of research is conducted in the
area of location-free routing and organization of networks.
The reason for that is the intuition that salient, global fea-
tures like large holes in the communication graph are rather
stable under local changes in the network topology. Hence,
algorithms or protocols relying on this global topology are
likely to enjoy a certain natural robustness against local net-
work changes. We believe that hole detection will play a
crucial role in this context.

While our experiments suggest that the presented hole de-
tection approach is viable only in the setting of large, rather
dense communication graphs, recent deployments of wireless
sensor networks have reached such densities and sizes of sev-
eral thousand nodes, see for example the ExScal project ([1].
We expect a rapid increase in the deployment of large-scale
sensor networks in the near future and a growing interest
in topology-based routing and organization schemes, since
equipment of such a large number of nodes with location
devices like GPS is prohibitive due to its cost.

7. REFERENCES
[1] A. Arora, R. Ramnath, P. Sinha, and et al. Project exscal. In

Proc. 1st Int. IEEE Conf. on Distributed Computing in
Sensor Systems (DCOSS), 2005.

[2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. Wireless
Networks, 7(6):609–616, 2001.

[3] J. Bruck, J. Gao, and A. Jiang. Map: Medial-axis-based
geometric routing in sensor networks. Proc. MobiCom, 2005.

[4] D. De Couto and R. Morris. Location proxies and intermediate
node forwarding for practical geographic forwarding,
MIT-LCS-TR824, 2001.

[5] Q. Fang, J. Gao, and L. Guibas. Locating and bypassing
routing holes in sensor networks. In 23rd Conf. of the IEEE
Communications Society (INFOCOM), 2004.

[6] S. P. Fekete, A. Kröller, D. Pfisterer, S. Fischer, and
C. Buschmann. Neighborhood-based topology recognition in
sensor networks. In ALGOSENSORS, 2004.

[7] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless
routing for wireless networks. In Mobile Computing and
Networking, pages 243–254, 2000.

[8] F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically
optimal geometric mobile ad-hoc routing. In Proc. DIAL-M,
2002.

[9] Fabian Kuhn and Aaron Zollinger. Ad-hoc networks beyond
unit disk graphs. In Proc. DIALM-POMC, pages 69–78, 2003.

[10] T. Moscibroda and R. Wattenhofer. Maximal independent sets
in radio networks. In 24th ACM Symp. on the Principles of
Distributed Computing (PODC), 2005.

[11] Radhika Nagpal, Howard E. Shrobe, and Jonathan Bachrach.
Organizing a global coordinate system from local information
on an ad hoc sensor network. In Proc. IPSN, 2003.

[12] L. Guibas Q. Fang, J. Gao, V. de Silva, and L. Zhang. Glider:
Gradient landmark-based distributed routing for sensor
networks. In 24rd Conf. of the IEEE Communications Society
(INFOCOM), 2005.

[13] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and
I. Stoica. Geographic routing without location information. In
Proc. MobiCom, 2003.

[14] E. Royer and C. Toh. A review of current routing protocols for
ad-hoc mobile wireless networks. In IEEE Personal
Communications, 1999.

[15] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization
from mere connectivity. In MobiHoc’03, 2003.

53

