
Floating Codes for Joint Information Storage in
Write Asymmetric Memories

Anxiao (Andrew) Jiang
Computer Science Department

Texas A&M University
College Station, TX 77843-3112

ajiang@cs.tamu.edu

Vasken Bohossian
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125
vincent@paradise.caltech.edu

Jehoshua Bruck
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125
bruck@paradise.caltech.edu

Abstract— Memories whose storage cells transit irreversibly
between states have been common since the start of the data
storage technology. In recent years, flash memories and other
non-volatile EEPROM’s based on floating-gate cells have become
a very important family of such memories. We model them by
the Write Asymmetric Memory (WAM), a memory where each
cell is in one of q states – state 0, 1,· · ·, q − 1 – and can only
transit from a lower state to a higher state. Data stored in a WAM
can be rewritten by shifting the cells to higher states. Since the
state transition is irreversible, the number of times of rewriting
is limited. When multiple variables are stored in a WAM, we
study codes, which we callfloating codes, that maximize the total
number of times the variables can be written and rewritten.

In this paper, we present several families of floating codes
that are either optimal or asymptotically optimal. We also
present bounds to the performance of general floating codes. The
results show that floating codes can integrate a WAM’s rewriting
capabilities for different variables to a surprisingly high degree.

I. I NTRODUCTION

Memories whose storage cells transit irreversibly between
states have been common since the beginning of the data
storage technology. Examples include punch cards and digital
optical discs, where a cell can change from a 0-state to a
1-state but notvice versa. In recent years, flash memories
and some other non-volatile EEPROM’s based on floating-gate
cells have become a very important family of such memories.
They have good properties including high data density, fast
reading time, physical robustness, etc., and have been widely
used in mobile, mass as well as standard storage devices.

We use flash memories as a typical example to explain
the basic storage mechanisms based on floating-gate cells.
A flash memory consists of floating-gate cells as its basic
storage elements. In most products, a cell has two states;
but to increase data density, multi-level storage (where a cell
has 4 to 256 or even more states) is being developed. For a
cell with q states, we denote its states by0, 1, · · · , q − 1. To
write (program) a cell, the hot-electron injection mechanism
or the Fowler-Nordheim tunneling mechanism is used to inject
electrons into the cell, where the electrons become trapped.
The number of trapped electrons in a cell determines the
threshold voltage of the cell: the more electrons, the higher the
threshold voltage. The number of trapped electrons is chosen
to concentrate aroundq discrete levels, corresponding to the
q cell states. The state of a cell can be read by measuring

the threshold voltage. Programming and reading cells are fast;
however, rewriting data is much more complex. Most of the
time, it requires moving cells to lower states for rewriting
data, which means to remove electrons from the cells. In flash
memories, cells are organized into blocks. A typical block
using binary cells stores 64, 128 or 256 kilobytes of data. Due
to circuit complexity reasons, to rewrite, first the whole block
has to be erased (which means to lower all the cells of the
block to the 0-state), then all the cells are reprogrammed. This
happens even if only one cell really needs to lower its state for
the rewriting, and it leads to a writing speed about105 times
slower than reading. Therefore, it will be very beneficial to
design codes for storing data such that the data can be rewritten
many times before the block has to be erased. Reducing the
number of block erasing operations is critical not only for
improving rewriting speed, but also for the flash memory’s
lifetime. Every erasing reduces the quality of the cells, and
currently, a flash memory’s lifetime is bounded by about105

program-erase cycles. Although technically speaking, a cell
can return to a lower state through block erasing, in this paper,
we are interested in the writing and rewriting of data between
two block erasing operations. In that period, the cells can only
go from lower states to higher states.

We model the memories mentioned above using the fol-
lowing Write Asymmetric Memory (WAM) model. A WAM
consists of n cells, where each cell hasq states: state
0, 1, · · · , q − 1. Such a cell is called aq-ary cell. A cell can
go from statei to statej if and only if i < j.

WAM is a straightforward generalization of the Write
Once Memory (WOM) model, firstly proposed by Rivest and
Shamir [9], whereq = 2. WAM is also a special case of
the Generalized WOM model [3], where the state transition
diagram of a cell can be any directed acyclic graph.

Research has been done on (generalized) WOM codes,
where a single variable is stored in a WOM, and the code
enables the variable to be rewritten numerous times. In prac-
tice, a memory stores many – let’s sayk – words. A simple
approach to use the WOM codes in a memory is to partition
it into k parts, where each part stores a word independently.

This simple approach, however, has a serious limitation. If
the sequence of rewriting is very nonuniform across the words,
which is common in many applications, the WAM becomes

unusable very soon. For example, say that each storage part
allowst times of rewriting of a word. Once one of thek words
needs rewriting for the(t+1)-th time, the WAM can no longer
meet the requirement, even if the otherk − 1 words have
not been rewritten yet. Therefore, it will be very beneficial
to integrate the rewriting capabilities of the words, so that
the words can be rewritten many times regardless of what the
rewriting sequence is. As we will show in this paper, such
an integration is feasible, many times to a surprisingly high
degree. We call the codes that achieve it theFloating Codes.

We formally define the problem we study as follows.k
variables are stored in a WAM, where each variable takes its
value from an alphabet of sizel: {0, 1, · · · , l− 1}. The WAM
hasn q-ary cells. Initially, all the cells are in the 0-state, and all
the variables have the default value 0. Each rewriting updates
the value of one variable. We use(v1, v2, · · · , vk) – which
we call thevariable vector– to denote the values of thek
variables, wherevi ∈ {0, 1, · · · , l−1}. We use(c1, c2, · · · , cn)
– which we call thecell state vector– to denote the states of
the n cells, whereci ∈ {0, 1, · · · , q − 1}. A cell state vector
(c1, c2, · · · , cn) is said to beaboveanother cell state vector
(c′1, c

′
2, · · · , c′n) if ci ≥ c′i for all i. When the cells change

their states, they can only change to a state vector above the
current one.

A floating codehas two functions,α : {0, 1, · · · , q−1}n →
{0, 1, · · · , l−1}k, andβ : {0, 1, · · · , q−1}n×{1, 2, · · · , k}×
{0, 1, · · · , l− 1} → {0, 1, · · · , q− 1}n. Functionα maps each
cell state vector to a variable vector, which is used to decode
(interpret) the stored data. Functionβ shows how to rewrite:
given the current cell state vector and the information on which
of the k variables is to be updated to which new value, the
functionβ outputs the new cell state vector. The new cell state
vector should correspond to the new values of the variables.

A floating code allowingt times of rewritingis a code that
allows the variables to be rewritten at leastt times in total,
regardless of what the sequence of rewriting is. A fundamental
objective of floating codes is to maximizet.

In the following, we first present a brief overview of the
related work. Then, we present the constructions of several
families of floating codes, which are either optimal or asymp-
totically optimal. We also present upper and lower bounds to
t for general floating codes. The details are as follows.

II. RELATED WORK

WOM codes were first studied by Rivest, Shamir [9]et
al., where a single variable is stored in a WOM and needs
to be updated multiple times. Capacities of WOM have been
studied [3] [4] [6] [7] [9] [10], and multiple classes of WOM
codes have been invented. The majority of the known codes are
binary, and they include linear codes [2] [9], tabular codes [9],
codes constructed using Golay codes [2] or projective ge-
ometries [8], etc. Besides WOM, constrained memories also
include write efficient memory (WEM), write unidirectional
memory (WUM) and write isolated memory (WIM) [7].

There is no work we are aware of that addresses the use
of codes for flash memories for increasing the number of

(re)writes between two erasing operations, useful for improv-
ing writing speed and prolonging the memory lifetime. The
use of error-correcting codes for improving data reliability in
flash memories has been proposed in some works [1] [5].

III. A N OPTIMAL CODE FORTWO BINARY VARIABLES

In this section, we present a floating code for binary
variables. That is,l = 2, so each variable has value 0 or 1. In
flash memories, the 16 bits of a word are usually stored at the
same position of 16 parallel blocks. Consequently, a rewriting
operation on a word becomes the rewriting of a bit in a block.
Therefore, it is important to study the case ofl = 2.

The code we present is fork = 2, l = 2 and arbitraryn
and q. The code maximizest, the number of rewrites, and is
thus optimal. We prove the code’s optimality by providing a
general upper bound tot for floating codes, not limited to the
casek = 2, l = 2.

A. Optimal Floating Code fork = 2, l = 2 and Arbitraryn, q

Three examples of the code are shown in Fig. 1, correspond-
ing to n = 1, 2 and 3, respectively. We comment thatn = 1, 2
are, in fact, degenerated cases; it is only whenn = 3 or more
that the code reveals the full structure of its construction.

The numbers inside each circle are a cell state vector,
while the bold numbers beside the circle are the corresponding
variable vector. For example, in Fig. 1(a), the cell state vector
(c1) = (3) corresponds to the variable vector(v1, v2) = (0, 0);
in Fig. 1(c), the cell state vector(c1, c2, c3) = (1, 0, 0)
corresponds to the variable vector(v1, v2) = (1, 0). The
arrows leaving a cell state vector shows how the next rewriting
should be performed when this cell state vector is the current
cell state vector. For example, for the code in Fig. 1(c), if
the current cell state vector is(1, 0, 0) and the new rewriting
request is to change the first variable to ‘0’ (which means to
change the variable vector from(1, 0) to (0, 0)), then the cell
state vector will become(1, 1, 0). Similarly, if the sequence
of rewriting changes the variable vector as(0, 0) → (1, 0) →
(1, 1) → (0, 1) → · · · (note that every rewriting changes the
value of just one variable), the cell state vector changes as
(0, 0, 0) → (1, 0, 0) → (1, 0, 1) → (1, 0, 2) → · · ·

We define the cell state vectors of thei-th generationto
be the cell state vectors reachable afteri times of rewriting.
In Fig. 1, all the cell state vectors in the same generation are
placed at the same horizontal level. For example, in Fig. 1(c),
the cell state vectors in the 2nd generation are(1, 1, 0), (1, 0, 1)
and (0, 1, 1). The codes in Fig. 1 are all forq → ∞, and
they all have periodic patterns; specifically, every code is a
repetition of the structure shown in the dotted box labelled by
“one period.” To see how, notice that the first generation in
the dotted box contains two cell state vectors corresponding to
two different variable vectors, and so is true for the generation
of cell state vectors directly following the dotted box; what’s
more, the latter two cell state vectors can be obtained from the
former two cell state vectors by raising every cell’s state by
2. (For example, in Fig. 1(b), the former two cell state vectors
are (1, 0) and (0, 1); when we raise every cell’s state by 2,

65

43

21

(1,1)(0,0)

0,0period
one

period
one

0

(1,0)

(0,0) (1,1)

(0,1)(1,0)(1,0)
(1,1)(0,0)

(0,1)(1,0)(1,0)

(1,1)(0,0)(0,0)

(0,1)

0,1

3,32,44,2

3,2 2,3

2,21,22,1

2,0 0,2 1,1

1,0(0,1)(1,0)
(0,1)(1,0)

(0,0)

(b)(a)

(0,0)

(c)

(0,1)

2,3,23,2,2

2,2,1 2,1,2 1,2,2 2,2,2

period
one(1,1)(0,0)

(0,1)(1,0)

(0,0)

1,1,21,2,12,1,10,2,22,0,22,2,0

0,1,20,2,11,0,2

(1,1)

(1,0)(1,0)(1,0)

(1,1)(1,1)(1,1)(0,0)(0,0)(0,0)

(0,1)(1,0)(0,1)(1,0)(0,1)(1,0)
2,1,0 1,2,0 2,0,1

1,1,0 1,0,1 0,1,1

0,1,01,0,0

0,0,0

Fig. 1. Three examples of an optimal floating code fork = 2, l = 2 and
arbitraryn, q. (a) n = 1. (b) n = 2. (c) n = 3.

we get(3, 2) and(2, 3), the latter two cell state vectors.) The
code is built for arbitrarily largeq in the following way. A
“period” in the code contains2n− 1 generations. The second
period directly follows – and has the same structure as – the
first period, except that: (i) every cell’s state is raised by 2, (ii)
the pair of variable vectors(1, 0) and(0, 0) are switched, and
the pair of variable vectors(0, 1) and(1, 1) are also switched.
For i = 1, 2, 3, · · ·, the (2i + 1)-th (resp.,(2i + 2)-th) period
has the same structure as the 1st (resp. 2nd) period except that
every cell’s state is raised by4i.

If q is finite, it is simple to get the corresponding code: just
truncate the above code to the maximum generation, subject
to the constraint that every cell’s state is at mostq − 1.

We present the formal construction of the code in Fig. 2.
The construction is in fact quite regular and elegant.

It is straightforward to verify the correctness (validity) of
the code in Fig. 2. The key step is to verify that for every
cell state vector, its two outgoing arrows enter two cell state
vectors in the next generation that correspond to two different
and correct variable vectors(v1, v2). It is also straightforward
to verify the correctness of the following theorem.

Theorem 1:For the code constructed in Fig. 2,t = (n −
1)(q − 1) + b q−1

2 c.
We see that the floating code integrates the WAM’s rewriting

capabilities for different variable to a very high degree. Let’s
call

∑n
i=1 ci the weightof the cell state vector. Clearly, every

rewriting needs to increase thatweightby at least 1. If then
cells are evenly split to be used independently by thek = 2
variables,t can never exceedn2 · (q − 1). The floating code,
however, achievest ≈ (n− 0.5)(q − 1).

1. For i = 1, 2, · · · , n− 1, do:
The i-th generation of cell state vectors contains all thei + 1
elements that satisfy the following properties: among the firsti+1
cells, i of them are in state 1 and one of them is in state 0; the
last n− (i + 1) cells are all in state 0.
In the i-th generation, if a cell state vector is
(1, 1, · · · , 1, 0, 0, · · · , 0) (that is, the first i cells are in
state 0, and the lastn− i cells are in state 0), then it corresponds
to the variable vector(v1, v2) = (1, 0) (if i is odd) or
(v1, v2) = (0, 0) (if i is even); otherwise, the cell state vector
corresponds to the variable vector(v1, v2) = (0, 1) (if i is odd)
or (v1, v2) = (1, 1) (if i is even).
Let a denote a cell state vector in the(i− 1)-th generation. The
two outgoing arrows ofa are as follows: one arrow goes to the
cell state vector in thei-th generation where the firsti cells are
in state 1 and the lastn − i cells are in state 0; the other arrow
goes to the cell state vector of thei-th generation that is the same
asa except that its(i + 1)-th cell is in state 1 instead of state 0.

2. Note that by the above construction, the(n − 1)-th generation
containsn cell state vectors, where each cell state vector hasn−1
cells in the state 1 and one cell in the state 0. Let’s denote those
n cell state vectors bys1, s2, · · · , sn. For si (1 ≤ i ≤ n), let’s
denote then−1 cells in state 1 bybπ(i,1), bπ(i,2), · · · , bπ(i,n−1),
and denote the cell in state 0 bybπ(i,n). (1 ≤ π(i, j) ≤ n.)

3. For i = n, n + 1, · · · , 2n− 3, do:
The i-th generation of cell state vectors containsn(i − n + 2)
elements, which we partition inton groups. Forj = 1, 2, · · · , n,
thej-th group contains all thei−n+2 = [i−(n−1)]+1 elements
that satisfy the following properties: among the[i− (n− 1)] + 1
cells bπ(j,1), bπ(j,2), · · · , bπ(j,i−(n−1)+1), i− (n− 1) of them
are in state 2 and one of them is in state 1; the2n − i − 3
cells bπ(j,i−(n−1)+2), bπ(j,i−(n−1)+3), · · · , bπ(j,n−1) are all
in state 1; the cellbπ(j,n) is in state 0.
In the i-th generation, for a cell state vector in thej-th group,
if the cellsbπ(j,1), bπ(j,2), · · · , bπ(j,i−(n−1)) are all in state 2,
then it corresponds to the variable vector(v1, v2) = (1, 0) (if i
is odd) or(v1, v2) = (0, 0) (if i is even); otherwise, the cell state
vector corresponds to the variable vector(v1, v2) = (0, 1) (if i
is odd) or(v1, v2) = (1, 1) (if i is even).
Let a denote a cell state vector in the(i − 1)-th generation and
in the j-th group. (If i− 1 = n− 1, then leta be sj .) The two
outgoing arrows ofa are as follows: one arrow goes to the cell
state vector in thei-th generation and thej-th group where the
i − (n − 1) cells bπ(j,1), bπ(j,2), · · · , bπ(j,i−(n−1)) are all in
state 2; the other arrow goes to the cell state vector in thei-th
generation and thej-th group that is the same asa except that its
cell bπ(j,i−(n−1)+1) is in state 2 instead of state 1.

4. Note that by the above construction, the(2n − 3)-th generation
containsn(n− 1) cell state vectors, where each vector hasn− 2
cells in state 2, one cell in state 1, and one cell in state 0.

5. The (2n − 2)-th generation of cell state vectors containsn +(
n
2

)
elements, which we partition into two groups. The first group

contains all then vectors wheren−1 cells are in state 2 and one
cell is in state 0. The second group contains all the

(
n
2

)
vectors

wheren− 2 cells are in state 2 and two cells are in state 1. All
the cell state vectors in the first (resp., second) group correspond
to the variable vector(v1, v2) = (0, 0) (resp.,(1, 1)).
The (2n − 1)-th generation of cell state vectors containsn +
1 elements, which we partition into two groups. The first group
contains all then cell state vectors wheren−1 cells are in state 2
and one cell is in state 1; the second group contains one cell state
vector where all then cells are in state 2. The cell state vectors
in the first (resp. second) group correspond to the variable vector
(v1, v2) = (1, 0) (resp.(0, 1)).
Let a denote a cell state vector in the(2n− 3)-th (resp.,(2n−
2)-th) generation. The two outgoing arrows ofa enter two cell
state vectors of the(2n − 2)-th (resp.,(2n − 1)-th) generation,
respectively in the first group and in the second group, both of
which areabovea.

6. The above2n− 1 generations of cell state vectors form the first
period of the code. Repeat the period’s structure to get the 2nd,
3rd, · · · periods (as described before in this paper). Just remember
that for thei-th period, ifi is even, then switch the variable vector
(0, 0) with (1, 0), and switch the variable vector(1, 1) with (0, 1).
If q is finite, truncate the code to the maximum generation subject
to the constraint that all the cells’ states are at mostq − 1.

Fig. 2. Construction of a code fork = 2, l = 2 and arbitraryn, q.

The code construction in Fig. 2 can be easily converted
into very efficient encoding (for rewriting) and decoding (for
mapping cell state vectors to variable vectors) algorithms. Due
to the space limitation, we skip the details.

B. A General and Tight Upper Bound tot

We now present a general upper bound tot, which holds
for any k, l, n and q. The bound can show that the code in
Fig. 2 is optimal.

Theorem 2:For any floating code, ifn ≥ k(l − 1) − 1,
then t ≤ [n − k(l − 1) + 1] · (q − 1) + b [k(l−1)−1]·(q−1)

2 c; if
n < k(l − 1)− 1, thent ≤ bn(q−1)

2 c.
Proof: First, consider the casen ≥ k(l − 1)− 1.

Assume that the floating code is given. Note that since a
rewriting operation can update any of thek variables, and
every variable hasl−1 possible values that are different from
its current value, a rewriting operation hask(l−1) possibilities
that do change the value of the variables. We will choose a
sequence of rewriting operationsW1,W2,W3 · · ·, whereWi

denotes thei-th rewriting operation. Fori = 1, 2, · · · , n and
j = 0, 1, 2, · · ·, let ai denote thei-th cell, and letcj

i denote the
state of thei-th cell after thej-th rewriting operation. (So0 ≤
cj
i ≤ q− 1, andc0

i = 0.) We choose the sequence of rewriting
operations – and build a sequence of setsS0, S1, S2, · · · at the
same time – in the following way:

1. Let S0 be any subset of{a1, a2, · · · , an} of cardinal-
ity k(l − 1) − 1. (For example, we can letS0 =
{a1, a2, · · · , ak(l−1)−1}.)

2. For i = 1, 2, 3, · · ·, do:
{ For thei-th rewriting operationWi, if all the k(l− 1)
possible choices increase theweight of the cell state
vector (defined as

∑n
i=1 ci, as before) by 1, chooseWi

to be a rewriting operation that increases the state of
a cell p /∈ Si−1 by 1; otherwise, chooseWi to be a
rewriting operation that increases theweight of the cell
state vectorby at least 2.
Let Si be a subset of{a1, a2, · · · , an} of cardinality
k(l − 1) − 1 satisfying this property: for any two cells
ax ∈ Si and ay /∈ Si, ci

x ≤ ci
y. (In other words,Si

containsk(l − 1)− 1 cells whose states are lower than
or equal to the others’ afteri rewriting operations.)}

We use the above method to keep obtaining rewriting
operations until no more rewriting is allowed by the floating
code. Say that the above method gives us totallyt0 rewriting
operations:W1,W2, · · · ,Wt0 . We will prove thatt0 ≤ [n −
k(l− 1) + 1] · (q− 1) + b [k(l−1)−1]·(q−1)

2 c, which will in turn
prove the final conclusion.

For i = 0, 1, · · · , t0, let Pi =
∑

aj∈Si
(q − 1 − ci

j), and let
Qi =

∑
aj /∈Si

(q−1− ci
j). We now use induction to prove the

following assertion:

• Assertion:For any0 ≤ i ≤ t0, t0− i ≤ Qi + bPi

2 c. (Note
that t0− i is the number of rewriting operations we have
after thei-th rewriting operation.)

The induction is in the reverse order of the rewriting oper-
ations. Wheni = t0, the assertionis true becauset0 − i = 0

andQi ≥ 0, Pi ≥ 0. That is our base case. Now we start the
induction.

Assume that theassertion holds for any i > I0. Now
consider the casei = I0. There are two subcases:

Subcase 1: The(I0 + 1)-th rewriting operation,WI0+1,
increases theweight of the cell state vectorby 1. Then, let
ax denote the cell whose status is raised by 1 byWI0+1. It
is not difficult to see thatax /∈ SI0 , ax /∈ SI0+1, cI0+1

x =
cI0
x + 1, cI0+1

j = cI0
j for any j 6= x, PI0 = PI0+1, and

QI0 = QI0+1+1. By the induction assumption,t0−(I0+1) ≤
QI0+1 + bPI0+1

2 c, so we gett0 − I0 ≤ QI0 + bPI0
2 c. So the

assertionholds.
Subcase 2: The(I0 + 1)-th rewriting operation,WI0+1,

increases theweight of the cell state vectorby at least 2.Let
P ′I0

=
∑

aj∈SI0
(q − 1− cI0+1

j), and letQ′I0
=

∑
aj /∈SI0

(q −
1− cI0+1

j). SinceWI0+1 increases theweight of the cell state
vector by at least 2, there are two possibilities; (1)QI0 ≥
Q′I0

+ 1 and PI0 ≥ P ′I0
; (2) QI0 = Q′I0

and PI0 ≥ P ′I0
+ 2.

In both cases, we getQI0 + bPI0
2 c ≥ 1 + Q′I0

+ bP ′I0
2 c.

Now we compareQ′I0
+bP ′I0

2 c with QI0+1 +bPI0+1

2 c. Let’s
partition the n cells into four setsA,B, C,D as follows:
A = {aj |aj ∈ SI0 , aj ∈ SI0+1}, B = {aj |aj /∈ SI0 , aj /∈
SI0+1}, C = {aj |aj ∈ SI0 , aj /∈ SI0+1}, D = {aj |aj /∈
SI0 , aj ∈ SI0+1}. By definition, P ′I0

, Q′
I0

, PI0+1, QI0+1 are
all summations of terms of the formq − 1 − cy

x; we see the
value ofq− 1− cy

x as thecontribution of the cellax. It is not
difficult to see that every cell inA or B contributes the same

value toQ′I0
+ bP ′I0

2 c andQI0+1 + bPI0+1

2 c. As for the cells
in C andD, since|SI0 | = |SI0+1| = k(l− 1)− 1, |C| = |D|.
So we can partition the cells inC ∪D into pairs in the form
of (ax ∈ C, ay ∈ D). Consider a pair(ax ∈ C, ay ∈ D).
Clearly, cI0+1

x ≥ cI0+1
y becauseax /∈ SI0+1 anday ∈ SI0+1.

So ax and ay together contribute more toQ′
I0

+ bP ′I0
2 c than

to QI0+1 + bPI0+1

2 c. By combining the above results, we get

Q′I0
+ bP ′I0

2 c ≥ QI0+1 + bPI0+1

2 c.
Therefore, inSubcase 2, QI0+bPI0

2 c ≥ 1+QI0+1+bPI0+1

2 c.
By the induction assumption,t0−(I0+1) ≤ QI0+1+bPI0+1

2 c,
so we gett0−I0 ≤ QI0 +bPI0

2 c. So theassertionagain holds.
So in any case, theassertionholds wheni = I0.

We have now proved by induction that theassertionholds
for all 0 ≤ i ≤ t0. Note thatP0 = |S0|(q − 1) = [k(l − 1)−
1](q−1), andQ0 = (n−|S0|)(q−1) = [n−k(l−1)+1](q−1).
By makingi = 0 in the assertion, we gett0 ≤ [n−k(l−1)+
1] · (q − 1) + b [k(l−1)−1]·(q−1)

2 c. SinceW1,W2, · · · ,Wt0 is a
maximal sequence of writing operations,t ≤ t0. So for any
floating code,t ≤ [n−k(l−1)+1]·(q−1)+b [k(l−1)−1]·(q−1)

2 c.
Now, consider the casen < k(l − 1) − 1. There arek(l −

1) possible choices for a rewriting operation (that changes
the value of the variables), but there are onlyn < k(l −
1) cells. So there is always a choice for the next rewriting
operation that can increase theweight of the cell state vector
by at least 2. We choose a maximal sequence of rewriting
operationsW1,W2, · · · , Wt0 such that everyWi increases the

weight of the cell state vectorby at least 2. Theweight of the
cell state vectorcan never exceedn(q−1). Sot0 ≤ bn(q−1)

2 c.
So t ≤ bn(q−1)

2 c.
Theorem 2 shows that the code we presented in Fig. 2 is

optimal. To see why, just makek = 2 andl = 2 in Theorem 2,
and compare it with Theorem 1. Therefore,

Theorem 3:The floating code presented in Fig. 2 is opti-
mal, namely, it maximizes the number of times of rewriting
t.

The above observation also shows that wheneverk = 2 and
l = 2, the upper bound shown in Theorem 2 is exact. In this
sense, the bound is tight.

IV. A SYMPTOTICALLY OPTIMAL L INEAR CODES

In this section, we present two linear codes for binary
variables. Both codes havelimn→∞ t = (q − 1)n + o(n).
Since all floating codes havet ≤ (q − 1)n, the two codes are
asymptotically optimal inn.

In both codes, every cell essentially corresponds to an
integer, and a linear combination of those integers form the
numerical representation of thek variables. We borrow the
idea from the WOM codes proposed by Fiat and Shamir in [3].
Those WOM codes are for updating a single variable in a
binary WOM. The floating codes we present are, respectively,
for rewriting two or three variables inq-ary WAMs.

We define a functionodd(x) as follows: for any non-
negative integerx, if x is odd, odd(x) = 1; otherwise,
odd(x) = 0. Let (ax1

1 ax2
2 · · · axh

h) denote a string that consists
of x1 consecutivea1’s, followed by x2 consecutivea2’s, · · ·,
ended withxh consecutiveah’s. For example,(12011103)
is (1, 1, 0, 1, 0, 0, 0). Given the value ofk binary variables
x = (v1, v2, · · · , vk), f(x) mapsx to a number between 0
and2k − 1: f(x) = v1 · 2k−1 + v2 · 2k−2 + · · ·+ vk · 20.

Below are the constructions of the two floating codes.

• Code Construction I:k = 2, l = 2, n ≥ 3, arbitrary q
In this code, a valid cell state vector(c1, c2, · · · , cn)
always satisfies the following two constraints: (1)∀ i, j,
|ci − cj | ≤ 1; (2) (c1, c2, · · · , cn) = ((a + 1)x1ax2(a +
1)x3) for somea, x1, x2, x3 where0 ≤ a < q − 1, x1 +
x2 + x3 = n, x2 ≥ 1. (For example, whenn = 5, q = 3,
(1, 1, 1, 0, 1) = (130111) and (1, 1, 1, 1, 2) = (201421)
are both valid cell state vectors.)
A cell state vector((a+1)x1ax2(a+1)x3) corresponds to
the variable vectory = (v1, v2, · · · , vk) in the following
way: f(y) = odd(x1) · 2 + odd(x3). (For example, when
n = 5, q = 3, both cell state vectors(1, 0, 0, 0, 1) and
(2, 2, 2, 1, 2) correspond to the variable vector(v1, v2) =
(1, 1).)
The rewriting operation is as follows. When the rewriting
changes the value of variablev1 (resp.,v2), we usually
increasex1 (resp.,x3) by 1 and decreasex2 by 1. The
exception happens whenx2 = 1; in that case, we first
raise all the cells to the statea + 1 (which makesx1 =
x3 = 0 and x2 = n), then increasex1 or x3 (or both)
based on necessity.

For example, assume thatn = 4, q = 3 and the rewriting
operations change the variable vector(v1, v2) as follows:
(0, 0) → (0, 1) → (0, 0) → (1, 0) → (1, 1). Then,
the cell state vector changes as follows:(0, 0, 0, 0) →
(0, 0, 0, 1) → (0, 0, 1, 1) → (1, 0, 1, 1) → (2, 1, 1, 2).

Theorem 4:When n is odd, the floating code in Code
Construction I hast = (n − 1)(q − 1); if n is even, it has
t = (n− 2)(q − 1) + 1.

Proof: When every cell is either in statea or a + 1,
we say that the cells are inphasea + 1. So the rewriting
operations change the cells from phase 1 to phase 2 to· · · to
phaseq−1. Consider phase 1. Every rewriting increasesx1 or
x3 by 1, andx1 + x3 ≤ n− 1. Son− 1 rewriting operations
can happen in phase 1.

When a rewriting operation changes the cells from phase 1
to phase 2, the following analysis considers the worst cases:
(1) When n is even, the rewriting operation can make the
variable vector become(v1, v2) = (1, 1), so in phase 2, both
x1 andx3 need to be set as 1; (2) Whenn is odd, the rewriting
operation cannot make the variable vector be(1, 1). That is
because right before the rewriting operation,x1 + x3 = n− 1
is even, so the variable vector is either(0, 0) or (1, 1). So the
rewriting operation changes the variable vector to be either
(1, 0) or (0, 1); therefore in phase 2, eitherx1 = 1, x3 = 0 or
x1 = 0, x3 = 1. So whenn is odd (resp., even),n− 1 (resp.,
n − 2) rewriting operations can happen in phase 2. Phases
3, 4, · · · , q− 1 are the same as phase 2. That leads to the final
conclusion.

By theorems 2 and 4, we see that whenq = 2, the above
code is strictly optimal.

• Code Construction II:k = 3, l = 2, n ≥ 5, arbitrary q
In this code, a valid cell state vector(c1, c2, · · · , cn)
always satisfies the following two constraints: (1)∀ i, j,
|ci−cj | ≤ 1; (2) the cell state vector is either in the form
((a + 1)x1ax2(a + 1)x3ax4(a + 1)x5), where

∑5
i=1 xi =

n, x2 ≥ 1, x4 ≥ 1 (which we callform I), or in the form
((a+1)x1ax2(a+1)x5), wherex1 +x2 +x5 = n, x2 ≥ 1
(which we callform II).
A cell state vector corresponds to the variable vectory =
(v1, v2, · · · , vk) in the following way: if the cell state
vector is inform I, thenf(y) = odd(x1) · 4 + odd(x3) ·
2 + odd(x5); if the cell state vector is inform II, then
f(y) = odd(x1) · 4 + odd(x5).
The rewriting operation is as follows. When the rewriting
changes the value of variablev1 (resp.,v3), we usually
increasex1 (resp.,x5) by 1 and decreasex2 (resp.,x4 or
x2, depending on if the cell state vector is inform I or
form II) by 1. When the rewriting changes the value of
variablev2, we either increasex3 by 1 and decreasex2 or
x4 by 1 (when the cell state vector is inform I), or change
the cell in the middle of the sequence ofa’s from statea
to statea+1 (when the cell state vector is inform II). If x2

or x4 becomes zero due to the above operation, the cell
state vector is reevaluated, and the operation described
above is carried out again based on the values of the

variables. If the above operation cannot be carried out
any more when the cells remain in the current two states
– statea and statea + 1 – then we start to use the two
statesa + 1 anda + 2, in the same way as we have used
the two statesa anda + 1 above.
The following examples show how the code works.
Assume thatn = 10, q = 3. (1) If the cell state vector
is (110910), then (v1, v2, v3) = (1, 0, 0); if the next two
rewriting operations change(v1, v2, v3) to (0, 0, 0) and
then to(0, 1, 0), the cell state vector changes to(120810),
and then to(1203110410). (2) If the cell state vector is
(1301110411), then (v1, v2, v3) = (1, 1, 1); if the next
two rewriting operations change(v1, v2, v3) to (0, 1, 1)
and then to(0, 1, 0), the cell state vector changes to
(1601110111), and then to(2014211520).

Theorem 5:The floating code in Code Construction II has
t ≥ (n− 6− 2 log2 n)(q − 1) + 2.

Proof: A rewriting operation increases theweight of the
cell state vectorby one except in the following three occasions:
(1) The rewriting makesx2 or x4 become zero, in which case
the weight of the cell state vectorcan be increased by at most
3; (2) The rewriting cannot be accomplished while the cells
continue to use the current two states, which happens only if
x2 + x4 ≤ 4 before the rewriting; (3) When the previous case
happens, the rewriting is accomplished by making cells use
the next pair of states, which leads tox1 ≤ 1, x3 ≤ 1, x5 ≤ 1
(that is, increasing theweight of the cell state vectorby at
most 3).

Let a anda + 1 indicate the two states that the cells are in.
Every time after the cell state vector changes fromform II into
from I, case (1) can happen only once. For any fixeda, the
cell state vector can change intoform I no more thanlog2 n
times, because such a change is caused by splitting a sequence
of consecutive cells in statea into two nearly equally long
subsequences in statea – with a cell of statea + 1 separating
them – and the length of this sequence at least halves every
time. So case (1) happens at most(q− 1) log2 n time in total.
Both case (2) and case (3) happen at most once for any fixed
a, and case (3) happens only ifa > 0. Therefore, if we use
z1, z2, z3 to represent, respectively, the numbers of times that
cases (1), (2) and (3) happen, and usez4 to represent the
number of rewriting operations that do not involve those three
cases, then3z1 + 4z2 + 3z3 + z4 ≥ n(q − 1). Since z1 ≤
(q − 1) log2 n, z2 ≤ q − 1, z3 ≤ q − 2, we getz1 + z3 + z4 ≥
(n−6−2 log2 n)(q−1)+2. Sot ≥ (n−6−2 log2 n)(q−1)+2.

V. BOUNDS FORFLOATING CODES

A general upper bound tot has been shown in theorem 2.
It has also been shown that whenk = 2, l = 2, the bound is
exact. For largek or l, the following theorem can give a better
upper bound.

Theorem 6:Let w be the smallest positive integer such that(
w+n

n

) ≥ lk. Then,t ≤ d (q−1)n
w ek.

Let w′ be the smallest positive integer such that
(
w′+n

n

)
>

lk. Then, whenk ≥ 2, t ≤ d (q−1)n
w′ ek.

Proof: First, consider the general casek ≥ 1. DefineS as
S = {(a1, a2, · · · , an)|∑n

i=1 ai ≤ w, a1, a2, · · · , an are non-
negative integers}, and letw be the smallest integer such that
|S| ≥ lk. DefineS′ asS′ = {(d1, d2, · · · , dn)|∑n

i=1 di ≤ w+
n, d1, d2, · · · , dn are positive integers}. By letting di = ai +1
for i = 1, 2, · · · , n, we see that there is a one-to-one mapping
betweenS andS′. So |S| = |S′|. An element(d1, d2, · · · , dn)
belongs toS′ if and only if it is a solution to the following
problem: partition a path ofw + n vertices inton or more
sub-paths such that fori = 1, 2, · · · , n, the i-th sub-path has
di > 0 vertices. Therefore,|S′| =

(
w+n

n

)
. So w is also the

smallest positive integer such that
(
w+n

n

) ≥ lk.
k consecutive rewriting operations can make the variables

change to or go through any of thelk possible values. If we
seeai (for i = 1, 2, · · · , n) as the increase inci – the state of
the i-th cell – and consider the wayS andw are defined, we
see that whatever the current cell state vector is, there existk
consecutive rewriting operations that increases theweight of
the cell state vector

∑n
i=1 ci by at leastw. Now consider the

first batch of suchk rewriting operations, the second batch,
and so on. Since the maximum weight of the cell state vector
is (q − 1)n, we gett ≤ d (q−1)n

w ek.
For the slightly more restrictive casek ≥ 2, we refine the

above proof a little. Whenk ≥ 2, among the cell state vectors
thatk consecutive rewriting operations can make the cell state
vector change to or go through, there are at least two cell state
vectors (including the current cell state vector) that correspond
to the current variable vector. The rest of the proof is similar.

Whenk or l is sufficiently large, theorem 6 gives an upper
bound to t that is roughly (q−1)nk

(n!)
1
n l

k
n

. Now we present an

elementary lower bound.
Theorem 7:There exist floating codes wheret ≥ bn

k c ·
b q−2

l−1 c.
Proof: We show a code that achieves the bound. For

i = 1, 2, · · · , k and j = 0, 1, · · · , bn
k c − 1, let the (i + jk)-

th cell be used for thei-th variable. Thei-th variable is first
encoded using thei-th cell, then the(i+k)-th cell, and so on.
For a cell, the value of the variable it corresponds to equals its
state modulol unless its state becomesq− 1, which indicates
that this cell is “no longer usable.” This gives a code with
t = bn

k c · b q−2
l−1 c.

Theorem 8:Whenk, l, q are fixed andn →∞, there exist
floating codes wheret = (q − 1)n + o(n).

Proof: The idea is on the conversion between floating
codes and WOM codes. A (binary) WOM is a special case
of WAM with q = 2, and a WOM code is a special case of
floating codes withk = 1. Rivest and Shamir have shown a
tabular WOM code [9] achievingt = n+o(n) asl is fixed. We
can see thek variables from an alphabet of sizel as a super
variable from an alphabet of sizelk. Then, every rewriting for
the k variables is an instance of the rewriting of the super
variable (although notvice versa). We can therefore use the
WAM layer by layer: first use the states 0 and 1 as much as
possible, then use the states 1 and 2 in the same way,· · ·, then

use the statesq−2 andq−1. For each layer, apply the tabular
WOM code to the super variable. That gives us a floating code
with t = (q − 1)n + o(n).

Theorem 8 shows that whenn → ∞, floating codes
can integrate the WAM’s rewriting capabilities for different
variables nearly perfectly.

VI. CONCLUSIONS

Floating codes for WAMs have been explored in this paper.
Both optimal/asymptotically optimal floating codes and per-
formance bounds for general codes have been presented. They
show that floating codes can integrate very well the rewriting
capabilities of different variables in many cases. Such an
ability is useful for the storage of multiple variables in WAMs,
including flash memories, etc. as example applications. We
will continue the exploration of floating codes, and expand
the knowledge on coding in memories with irreversible state
transitions.

REFERENCES

[1] P. Cappelletti, C. Golla, P. Olivo and E. Zanoni (Ed.), Flash memories,
Kluwer Academic Publishers, 1st Edition, 1999.

[2] G. D. Cohen, P. Godlewski and F. Merkx, “ Linear binary code for write-
once memories,”IEEE Trans. Inform. Theory, vol. IT-32, pp. 697-700,
Sept. 1986.

[3] A. Fiat and A. Shamir, “Generalized ‘write-once’ memories,”IEEE Trans.
Inform. Theory, vol. IT-30, pp. 470-480, May 1984.

[4] F. Fu and A. J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Information Theory, vol. 45, no. 1, pp. 308-313,
1999.

[5] S. Gregori, A. Cabrini, O. Khouri and G. Torelli, “On-chip error correct-
ing techniques for new-generation flash memories,”Proceedings of The
IEEE, vol. 91, no. 4, April 2003.

[6] C. Heegard, “On the capacity of permanent memory,”IEEE Trans. Inform.
Theory, vol. IT-31, pp. 34-42, Jan. 1985.

[7] A. V. Kuznetsov and A. J. H. Vinck, “On the general defective channel
with informed encoder and capacities of some constrained memories,”
IEEE Trans. Inform. Theory, vol. 40, no. 6, pp. 1866-1871, Nov. 1994.

[8] F. Merkx, “WOMcodes constructed with projective geometries,”Traite-
ment du Signal, vol. 1, no. 2-2, pp. 227-231, 1984.

[9] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,”
Information and Control, vol. 55, pp. 1-19, 1982.

[10] J. K. Wolf, A. D. Wyner, J. Ziv and J. Korner, “Coding for a write-once
memory,”AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089-1112, 1984.

