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Outline of this talk

We will learn about

@ Joint rewriting and error correction scheme
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Outline of this talk

We will learn about
@ Joint rewriting and error correction scheme

@ Rank modulation scheme and its error correction
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Joint rewriting and error correction scheme

Joint rewriting and error correction scheme
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Joint rewriting and error correction scheme

Concept of Rewriting

TLC: 8 Levels
No rewrite One rewrite Six rewrites
t 011 01 0
010 00 1
000 10 0
001 11 1
101 01 0
100 00 1
110 10 0
111 11 1
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Joint rewriting and error correction scheme

Concept of Rewriting

Advantage of rewriting: Longevity of memory.
Why?

@ Delay block erasures.

@ Trade instantaneous capacity for sum-capacity over the
memory's lifetime.

Rewriting can be applied to any number of levels, including SLC.
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Joint rewriting and error correction scheme

Introduction of the Rewriting Concept to Flash Memories

@ A. Jiang, V. Bohossian and J. Bruck, Floating Codes for Joint Information
Storage in Write Asymmetric Memories, in IEEE International Symposium on
Information Theory (ISIT), 2007.

@ V. Bohossian, A. Jiang and J. Bruck, Buffer Coding for Asymmetric Multi-level
Memory, in ISIT, 2007.

@ A. Jiang, On the Generalization of Error-Correcting WOM Codes, in ISIT, 2007.

@ E. Yaakobi, P. Siegel, A. Vardy and J. Wolf, Multiple Error-Correcting WOM
Codes, in ISIT, 2010.

@ R. Gabrys and L. Dolecek, Characterizing Capacity Achieving Write Once
Memory Codes for Multilevel Flash Memories, in ISIT, 2011.
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Joint rewriting and error correction scheme

Review: Basic Problem for Write-Once Memory

Let us recall the basic question for Write-Once Memory (WOM):

@ Suppose you have n binary cells. Every cell can change its
value only from 0 to 1, not from 1 to 0.
How can you write data, and then rewrite, rewrite, rewrite - - -
the data?
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Joint rewriting and error correction scheme

Review: Write Once Memory (WOM) [1]

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

Cell Levels:

Data: 00

[1] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” in Information and Control, vol. 55, pp.
1-19, 1982.
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Joint rewriting and error correction scheme

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

1st write: 10

Cell Levels:

Data: 00
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Joint rewriting and error correction scheme

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

1st write: 10
2nd write: 01

Cell Levels:

Data: 00
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Joint rewriting and error correction scheme

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

1st write: 10
2nd write: 01

Cell Levels:

Data: 00

2,2
Sum rate: 5+5=133
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Joint rewriting and error correction scheme

Review: Write-Once Memory Code

This kind of code is called Write-Once Memory (WOM) code.

It is potentially a powerful technology for Flash Memories.
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Joint rewriting and error correction scheme

Review: Capacity of WOM [1][2]

For WOM of g-level cells and t rewrites, the capacity (maximum
achievable sum rate) is
| t+qg—-1
o)
g2 g—1
bits per cell.

[1] C. Heegard, On the capacity of permanent memory, in I[EEE Trans. Information Theory, vol. 1T-31, pp. 34-42,
1985.

[2] F. Fu and A. J. Han Vinck, On the capacity of generalized write-once memory with state transitions described
by an arbitrary directed acyclic graph, in IEEE Trans. Information Theory, vol. 45, no. 1, pp. 308-313, 1999.
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Joint rewriting and error correction scheme

Review: Capacity of WOM

— WOM-q=2 ----- WOM-q=4 WOM-q=8
Ordinary-q=2 — - Ordinary-q=4 — - Ordinary-q=8
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Joint rewriting and error correction scheme

Recent Developments

How to design good WOM codes?

Two capacity-achieving codes were published in 2012 — the same
year!:
@ A. Shpilka, Capacity achieving multiwrite WOM codes, 2012.

@ D. Burshtein and A. Strugatski, Polar write once memory
codes, 2012.
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Joint rewriting and error correction scheme

For Rewriting to be used in flash memories, it is CRITICAL to
combine it with Error-Correcting Codes.
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Joint rewriting and error correction scheme

Some Codes for Joint Rewriting and Error Correction

Previous results are for correcting a few (up to 3) errors:

@ G. Zemor and G. D. Cohen, Error-Correcting WOM-Codes, in
IEEE Transactions on Information Theory, vol. 37, no. 3, pp.
730-734, 1991.

o E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf, Multiple
Error-Correcting WOM-Codes, in IEEE Transactions on
Information Theory, vol. 58, no. 4, pp. 2220-2230, 2012.
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Joint rewriting and error correction scheme

New Code for Joint Rewriting and Error Correction

We now present a joint coding scheme for rewriting and error
correction, which can correct a substantial number of errors and
supports any number of rewrites.

e A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, Joint
Rewriting and Error Correction in Write-Once Memories, 2013.
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Joint rewriting and error correction scheme

Model of Rewriting and Noise

1st
write BSC(p) —» 2nd — BSC(p) — 0 0 0 tth

write write > BSC(P)
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Joint rewriting and error correction scheme

Two Channels

Consider one rewrite. (The same analysis applies to all rewrites.)
We use polar code.

Consider two channels for polar code:
Q@ WOM channel. Let its frozen set be Fyyom(a,e)-
© BSC channel. Let its frozen set be Fgsc(p)-
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Joint rewriting and error correction scheme

General Coding Scheme

WOM (Rewrite) channel
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Joint rewriting and error correction scheme

Lower Bound to Achievable Sum-Rate
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Fig. 6. Lower bound to achievable sum-rates for different error probability
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Rank Modulation

Rank Modulation
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Rank Modulation

Definition of Rank Modulation [1-2]

Rank Modulation:

We use the relative order of cell
levels (instead of their absolute
values) to represent data.

[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for Flash Memories,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1731-1735, July 2008.

[2] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1736-1740, July 2008.
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Rank Modulation

Examples and Extensions of Rank Modulation

@ Example: Use 2 cells to store 1 bit.

Relative order: (1,2) Relative order: (2,1)
Value of data: 0 Value of data: 1

&% 5%
cell 2 cell 1
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Rank Modulation

Examples and Extensions of Rank Modulation

@ Example: Use 2 cells to store 1 bit.

Relative order: (1,2) Relative order: (2,1)
Value of data: 0 Value of data: 1

SISIS)
&% 5%
cell 2 cell 1

@ Example: Use 3 cells to store log, 6 bits. The relative orders

(1,2,3),(1,3,2),---,(3,2,1) are mapped to data 0,1,--- ,5.
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Rank Modulation

Examples and Extensions of Rank Modulation

@ Example: Use 2 cells to store 1 bit.

Relative order: (1,2) Relative order: (2,1)
Value of data: 0 Value of data: 1

SISIS)
&% 5%
cell 2 cell 1

@ Example: Use 3 cells to store log, 6 bits. The relative orders
(1,2,3),(1,3,2),---,(3,2,1) are mapped to data 0,1,--- ,5.
@ In general, k cells can represent log,(k!) bits.
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Rank Modulation

Rank Modulation

Partition a page into many rank-modulation cell groups.

There is no need to use global thresholds to separate levels.
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Rank Modulation

Rank Modulation using Multi-set Permutation

Extension: Let each rank have m cells.

Let m = 4. The following is a multi-set permutation

({2,4,6,9},{1,5,10,12},{3,7,8,11}).

©) @ O) O Rank 3
@ @ @ Rank 2
@ @ @ Rank 1
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Rank Modulation

Advantages of Rank Modulation

Easy Memory Scrubbing:

o Long-term data reliability.

@ Easier cell programming.

29/42



Rank Modulation

Error-Correcting Codes for Rank Modulation

Error Correcting Codes for Rank Modulation
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Rank Modulation

Error Models and Distance between Permutations

Based on the error model, there are various reasonable choices for
the distance between permutations:

e Kendall-tau distance. (To be introduced in detail.)

o [, distance.
@ Gaussian noise based distance.

@ Distance defined based on asymmetric errors or inter-cell
interference.

We should choose the distance appropriately based on the type and
magnitude of errors.
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Rank Modulation

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(31,"' ydi—1, a,’,a,‘+1 aai+27"' aan) _>(317"' ydi—1, a,‘+]_./3,' aai+27"‘ ,an)
N—— ——
adjacent pair adjacent pair
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Rank Modulation

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(31,"' ydi—1, aiaaf+1 aai+27"' aan) _>(317"' ydi—1, ai+l-,ai aai+27"‘ ,an)
N—— ——
adjacent pair adjacent pair
Example:
Original Cell Levels Noisy Cell Levels
(2.1,534) (2,1,3,5,4)
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Rank Modulation

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(31,"' ydi—1, a,’,a,‘+1 aai+27"' aan) — (317"' ydi—1, a,‘+]_./3,' aai+27"‘ ,an)
N—— ——

adjacent pair adjacent pair
Example:
Original Cell Levels Noisy Cell Levels
il -
U D
(2.1,534) (2,1,3,5,4)

We can extend the concept to multiple such “local exchanges” (for larger
errors).

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1736-1740, July 2008.
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Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(31,"' ydi—1,j,dj+1,dj+2," " 73n) — (31,"' ydi—1,48i4+1,8j,di42, """ ,dn
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Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(31,"' ydi—1,j,dj+1,dj+2," " 73n) — (31,"' ydi—1,8i4+1,8j,di42," " *

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, d.(A, B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that d,(A, B) = d,(B,A).)
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Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(31,"' ydi—1,j,dj+1,dj+2," " 73n) — (31,"' ydi—1,48i4+1,8j,di42, """ ,dn

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, d.(A, B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that d,(A, B) = d,(B,A).)

If the minimum Kendall-tau distance of a code is 2t+1, then it can
correct t adjacent transposition errors.
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Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Definition (State Diagram)
Vertices are permutations. There is an undirected edge between
two permutations A, B € S, iff d-(A, B) = 1.

Example: The state diagram for n = 3 cells is

(2,1,3) = (23,1) =,
(1,2,3) (3,2,1)
*(1,32) —e (3,1,2)«"
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Rank Modulation

Kendall-tau Distance for Rank Modulation ECC

Example: The state diagram for n = 4 cells is

2 0 e o
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Rank Modulation

One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau
distance 3, which corrects one Kendall (i.e., adjacent
transposition) error.

The idea is based on embedding.

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1736-1740, July 2008.
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Rank Modulation

One-Error-Correcting Code

Example: When n =3 or n = 4, the embedding is as follows. (Only
the solid edges are the edges in the state graph of permutations.)

Permutation Coordinates Permutation ~ Coordinates ~ Permutation ~ Coordinates

123 ©0) 1234 —= (0,0,0) 3124 —= (02,0

132 —= (0,1) N - 0.23) (1,2.3)
1243 — (0,0,1) 3142 — (0,2,1)

213 — (1,0) 0,1,3)
1324 — (0,1,0) 3214 —= (12,0 1, L

231 — (1)) (122
1342 — (0,1,1) 3241 — (1.2,1) i

312 —= (0.2) (0,0,3)
1423 — (0,02) 3412 —= (022)

321 — (2 - q

@) 1432 (0,1,2) 3421 (1,2,2) RER)

2134 — (1,0,0) 4123 —>(0,03) 0,0.2) 4
2143 —= (1,0,1) 4132 —= (0,13) 4

0.2) 1.2 . . (1,2,0)
2314 —= (1,1,0) 4213 —= (1,03) 0o 22
2341 —= (1,11 4231 —= (1,13 "

©1) ¢$----¢ (LD (1,1,0)
2413 —* (1,02 4312 —*=(023)
2431 —= (11,2 4321 —= (1,23 0,0.0 10,0

©0) w“) (1,12 (1,2.3) (0,0,0) (1,0,0)

(b) © (d
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Rank Modulation

One-Error-Correcting Code

Construction (One-Error-Correcting Rank Modulation Code)

Let Ci, G, C S, denote two rank modulation codes constructed as
follows. Let A € S, be a general permutation whose inversion vector is
(X1, X2, ,Xn—1). Then A is a codeword in Cy iff the following equation

is satisfied:
n—1

> ixi=0 (mod 2n-—1)

i=1

A is a codeword in G, iff the following equation is satisfied:

Between C; and C,, choose the code with more codewords as the final
output.
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Rank Modulation

One-Error-Correcting Code

For the above code, it can be proved that:
@ The code can correct one Kendall error.
o The size of the code is at least ("Z1)! 1)

@ The size of the code is at least half of optimal.

39/42



Rank Modulation

Codes Correcting More Errors [1]

@ The above code can be generalized to correct more errors.
n—1
C:{(Xl,X2,~" ,X,,,l) | E h,'X,'EO mod m}
i=1

o Let A(n, d) be the maximum number of permutations in S,
with minimum Kendall-tau distance d. We call

C(d) = fim NA:9)

n—oo  |nnl

capacity of rank modulation ECC of Kendall-tau distance d.

1 if d = O(n)
Cd)=q1l—-¢ ifd=0(n'"9), 0<e<1
0 if d = ©(n?)

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” ISITE'10.
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Rank Modulation

More Aspects of Rank Modulation

Rank Modulation with Multi-set Permutation: A bridge to existing
ECC.

Efficient rewriting.
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Summary

Summary

@ Error correction mandates for flash memories.

@ Algebraic and graph-based constructions of error correcting
codes

@ Joint rewriting and error correction.

@ Rank modulation.
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