Making Error Correcting Codes Work for Flash Memory

Part III: New Coding Methods

Anxiao (Andrew) Jiang

Department of Computer Science and Engineering Texas A&M University

Tutorial at Flash Memory Summit, August 12, 2013

Outline of this talk

We will learn about

• Joint rewriting and error correction scheme

Outline of this talk

We will learn about

- Joint rewriting and error correction scheme
- Rank modulation scheme and its error correction

Joint rewriting and error correction scheme Rank Modulation Summary

Joint rewriting and error correction scheme

Concept of Rewriting

TLC: 8 Levels

Concept of Rewriting

Advantage of rewriting: Longevity of memory.

Why?

- Delay block erasures.
- Trade instantaneous capacity for sum-capacity over the memory's lifetime.

Rewriting can be applied to any number of levels, including SLC.

Introduction of the Rewriting Concept to Flash Memories

- A. Jiang, V. Bohossian and J. Bruck, Floating Codes for Joint Information Storage in Write Asymmetric Memories, in IEEE International Symposium on Information Theory (ISIT), 2007.
- V. Bohossian, A. Jiang and J. Bruck, Buffer Coding for Asymmetric Multi-level Memory, in ISIT, 2007.
- A. Jiang, On the Generalization of Error-Correcting WOM Codes, in ISIT, 2007.
 - : :
- E. Yaakobi, P. Siegel, A. Vardy and J. Wolf, Multiple Error-Correcting WOM Codes, in ISIT, 2010.
- : :
- R. Gabrys and L. Dolecek, Characterizing Capacity Achieving Write Once Memory Codes for Multilevel Flash Memories, in ISIT, 2011.

Introduction of the Rewriting Concept to Flash Memories

- A. Jiang, V. Bohossian and J. Bruck, Floating Codes for Joint Information Storage in Write Asymmetric Memories, in IEEE International Symposium on Information Theory (ISIT), 2007.
- V. Bohossian, A. Jiang and J. Bruck, Buffer Coding for Asymmetric Multi-level Memory, in ISIT, 2007.
- A. Jiang, On the Generalization of Error-Correcting WOM Codes, in ISIT, 2007.
 - : :
- E. Yaakobi, P. Siegel, A. Vardy and J. Wolf, Multiple Error-Correcting WOM Codes, in ISIT, 2010.
- R. Gabrys and L. Dolecek, Characterizing Capacity Achieving Write Once Memory Codes for Multilevel Flash Memories, in ISIT, 2011.

Review: Basic Problem for Write-Once Memory

Let us recall the basic question for Write-Once Memory (WOM):

• Suppose you have *n* binary cells. Every cell can change its value only from 0 to 1, not from 1 to 0.

How can you write data, and then rewrite, rewrite, rewrite ... the data?

Review: Write Once Memory (WOM) [1]

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

[1] R. L. Rivest and A. Shamir, "How to reuse a 'write-once' memory," in Information and Control, vol. 55, pp. 1-19, 1982.

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

Review: Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

Sum rate: $\frac{2}{3} + \frac{2}{3} = 1.33$

Review: Write-Once Memory Code

This kind of code is called Write-Once Memory (WOM) code.

It is potentially a powerful technology for Flash Memories.

Review: Capacity of WOM [1][2]

For WOM of q-level cells and t rewrites, the capacity (maximum achievable sum rate) is

$$\log_2\binom{t+q-1}{q-1}.$$

bits per cell.

^[1] C. Heegard, On the capacity of permanent memory, in *IEEE Trans. Information Theory*, vol. IT-31, pp. 34-42, 1985

^[2] F. Fu and A. J. Han Vinck, On the capacity of generalized write-once memory with state transitions described by an arbitrary directed acyclic graph, in *IEEE Trans. Information Theory*, vol. 45, no. 1, pp. 308-313, 1999.

Review: Capacity of WOM

Recent Developments

How to design good WOM codes?

Two capacity-achieving codes were published in 2012 – the same year!:

- A. Shpilka, Capacity achieving multiwrite WOM codes, 2012.
- D. Burshtein and A. Strugatski, Polar write once memory codes, 2012.

Joint rewriting and error correction scheme Rank Modulation Summary

For **Rewriting** to be used in flash memories, it is **CRITICAL** to combine it with **Error-Correcting Codes**.

Some Codes for Joint Rewriting and Error Correction

Previous results are for correcting a few (up to 3) errors:

- G. Zemor and G. D. Cohen, Error-Correcting WOM-Codes, in *IEEE Transactions on Information Theory*, vol. 37, no. 3, pp. 730–734, 1991.
- E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf, Multiple Error-Correcting WOM-Codes, in *IEEE Transactions on Information Theory*, vol. 58, no. 4, pp. 2220–2230, 2012.

New Code for Joint Rewriting and Error Correction

We now present a joint coding scheme for rewriting and error correction, which can correct a substantial number of errors and supports any number of rewrites.

• A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, Joint Rewriting and Error Correction in Write-Once Memories, 2013.

Model of Rewriting and Noise

Two Channels

Consider one rewrite. (The same analysis applies to all rewrites.)

We use polar code.

Consider two channels for polar code:

- **1 WOM channel**. Let its frozen set be $F_{WOM(\alpha,\epsilon)}$.
- **2 BSC channel**. Let its frozen set be $F_{BSC(p)}$.

General Coding Scheme

Lower Bound to Achievable Sum-Rate

Fig. 6. Lower bound to achievable sum-rates for different error probability p.

Rank Modulation

Definition of Rank Modulation [1-2]

Rank Modulation:

We use the relative order of cell levels (instead of their absolute values) to represent data.

^[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, "Rank Modulation for Flash Memories," in *Proc. IEEE International Symposium on Information Theory (ISIT)*. pp. 1731–1735. July 2008.

^[2] A. Jiang, M. Schwartz and J. Bruck, "Error-Correcting Codes for Rank Modulation," in *Proc. IEEE International Symposium on Information Theory (ISIT)*, pp. 1736–1740, July 2008.

Examples and Extensions of Rank Modulation

• Example: Use 2 cells to store 1 bit.

Examples and Extensions of Rank Modulation

• Example: Use 2 cells to store 1 bit.

• Example: Use 3 cells to store $\log_2 6$ bits. The relative orders $(1,2,3),(1,3,2),\cdots,(3,2,1)$ are mapped to data $0,1,\cdots,5$.

Examples and Extensions of Rank Modulation

• Example: Use 2 cells to store 1 bit.

- Example: Use 3 cells to store $\log_2 6$ bits. The relative orders $(1,2,3),(1,3,2),\cdots,(3,2,1)$ are mapped to data $0,1,\cdots,5$.
- In general, k cells can represent $log_2(k!)$ bits.

Rank Modulation

Partition a page into many rank-modulation cell groups.

There is no need to use global thresholds to separate levels.

Rank Modulation using Multi-set Permutation

Extension: Let each rank have m cells.

Example

Let m = 4. The following is a multi-set permutation

$$({2,4,6,9},{1,5,10,12},{3,7,8,11}).$$

Advantages of Rank Modulation

Easy Memory Scrubbing:

Long-term data reliability.

• Easier cell programming.

Error-Correcting Codes for Rank Modulation

Error Correcting Codes for Rank Modulation

Error Models and Distance between Permutations

Based on the error model, there are various reasonable choices for the distance between permutations:

- Kendall-tau distance. (To be introduced in detail.)
- L_{∞} distance.
- Gaussian noise based distance.
- Distance defined based on asymmetric errors or inter-cell interference.

We should choose the distance appropriately based on the type and magnitude of errors.

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local exchange of two adjacent numbers in the permutation. That is,

$$(a_1,\cdots,a_{i-1},\underbrace{a_i,a_{i+1}}_{ ext{adjacent pair}},a_{i+2},\cdots,a_n)
ightarrow (a_1,\cdots,a_{i-1},\underbrace{a_{i+1},a_i}_{ ext{adjacent pair}},a_{i+2},\cdots,a_n)$$

Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local exchange of two adjacent numbers in the permutation. That is,

$$(a_1,\cdots,a_{i-1},\underbrace{a_i,a_{i+1}}_{\text{adjacent pair}},a_{i+2},\cdots,a_n) o (a_1,\cdots,a_{i-1},\underbrace{a_{i+1},a_i}_{\text{adjacent pair}},a_{i+2},\cdots,a_n)$$

Example:

When errors happen, the smallest change in a permutation is the local exchange of two adjacent numbers in the permutation. That is,

$$(a_1,\cdots,a_{i-1},\underbrace{a_i,a_{i+1}}_{\text{adjacent pair}},a_{i+2},\cdots,a_n) o (a_1,\cdots,a_{i-1},\underbrace{a_{i+1},a_i}_{\text{adjacent pair}},a_{i+2},\cdots,a_n)$$

Example:

We can extend the concept to multiple such "local exchanges" (for larger errors).

[1] A. Jiang, M. Schwartz and J. Bruck, "Error-Correcting Codes for Rank Modulation," in *Proc. IEEE* International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008,

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring numbers in a permutation, namely,

$$(a_1,\cdots,a_{i-1},a_i,a_{i+1},a_{i+2},\cdots,a_n)\rightarrow(a_1,\cdots,a_{i-1},a_{i+1},a_i,a_{i+2},\cdots,a_n)$$

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring numbers in a permutation, namely,

$$(a_1, \cdots, a_{i-1}, a_i, a_{i+1}, a_{i+2}, \cdots, a_n) \rightarrow (a_1, \cdots, a_{i-1}, a_{i+1}, a_i, a_{i+2}, \cdots, a_n)$$

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between them, $d_{\tau}(A, B)$, is the minimum number of adjacent transpositions needed to change A into B. (Note that $d_{\tau}(A, B) = d_{\tau}(B, A)$.)

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring numbers in a permutation, namely,

$$(a_1, \cdots, a_{i-1}, a_i, a_{i+1}, a_{i+2}, \cdots, a_n) \rightarrow (a_1, \cdots, a_{i-1}, a_{i+1}, a_i, a_{i+2}, \cdots, a_n)$$

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between them, $d_{\tau}(A, B)$, is the minimum number of adjacent transpositions needed to change A into B. (Note that $d_{\tau}(A, B) = d_{\tau}(B, A)$.)

If the minimum Kendall-tau distance of a code is 2t+1, then it can correct t adjacent transposition errors.

Definition (State Diagram)

Vertices are permutations. There is an undirected edge between two permutations $A, B \in S_n$ iff $d_{\tau}(A, B) = 1$.

Example: The state diagram for n = 3 cells is

$$(2,1,3)$$
 $(2,3,1)$ $(3,2,1)$ $(3,2,1)$ $(3,1,2)$

Example: The state diagram for n = 4 cells is

We introduce an error-correcting code of minimum Kendall-tau distance 3, which corrects one Kendall (i.e., adjacent transposition) error.

The idea is based on embedding.

[1] A. Jiang, M. Schwartz and J. Bruck, "Error-Correcting Codes for Rank Modulation," in *Proc. IEEE* International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.

Example: When n = 3 or n = 4, the embedding is as follows. (Only the solid edges are the edges in the state graph of permutations.)

Permutation	Coordinates	Permutation	Coordinates	Permutation	Coordinates
123 — 132 — 213 — 231 —	(0,0) (0,1) (1,0) (1,1)	1 2 3 4 — 1 2 4 3 — 1 3 2 4 — 1 3 4 2 —	(0,0,1) (0,1,0)	3 1 2 4	(0,2,1) - (1,2,0)
3 1 2 3 2 1 (a)	(0,2) (1,2)	1 4 2 3 — 1 4 3 2 — 2 1 3 4 —	→ (0,0,2) → (0,1,2) → (1,0,0)	3 4 1 2	(0,2,2) (1,2,2) (0,0,3)
(0,2)	(1,2)	2 1 4 3 — 2 3 1 4 — 2 3 4 1 —	► (1,1,0)	4213	(1,0,3)
(0,0) (b)	(1,0)	2413 — 2431 —		4312	

Construction (One-Error-Correcting Rank Modulation Code)

Let C_1 , $C_2 \subseteq S_n$ denote two rank modulation codes constructed as follows. Let $A \in S_n$ be a general permutation whose inversion vector is $(x_1, x_2, \cdots, x_{n-1})$. Then A is a codeword in C_1 iff the following equation is satisfied:

$$\sum_{i=1}^{n-1} ix_i \equiv 0 \pmod{2n-1}$$

A is a codeword in C_2 iff the following equation is satisfied:

$$\sum_{i=1}^{n-2} ix_i + (n-1) \cdot (-x_{n-1}) \equiv 0 \pmod{2n-1}$$

Between C_1 and C_2 , choose the code with more codewords as the final output.

For the above code, it can be proved that:

- The code can correct one Kendall error.
- The size of the code is at least $\frac{(n-1)!}{2}$.
- The size of the code is at least half of optimal.

Codes Correcting More Errors [1]

• The above code can be generalized to correct more errors.

$$C = \{(x_1, x_2, \dots, x_{n-1}) \mid \sum_{i=1}^{n-1} h_i x_i \equiv 0 \mod m\}$$

• Let A(n, d) be the maximum number of permutations in S_n with minimum Kendall-tau distance d. We call

$$C(d) = \lim_{n \to \infty} \frac{\ln A(n, d)}{\ln n!}$$

capacity of rank modulation ECC of Kendall-tau distance d.

$$C(d) = egin{cases} 1 & ext{if } d = O(n) \ 1 - \epsilon & ext{if } d = \Theta(n^{1+\epsilon}), \ 0 < \epsilon < 1 \ 0 & ext{if } d = \Theta(n^2) \end{cases}$$

More Aspects of Rank Modulation

Rank Modulation with Multi-set Permutation: A bridge to existing ECC.

Efficient rewriting.

Summary

- Error correction mandates for flash memories.
- Algebraic and graph-based constructions of error correcting codes
- Joint rewriting and error correction.
- Rank modulation.