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Preliminaries

Concepts of interest

input message codeword retrieved word decoded message
Noisy Channel | Decoder [~
k bits n bits n bits k bits

@ A channel code C maps a message m of length k into a
codeword ¢ of length n, with n > k (encoder)

e Total number of codewords: 2%
e Code rate: R = k/n.

@ Structure of C is used to determine the stored message
(decoder).

LORTS
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Preliminaries

Concepts of interest

Linear block code C of dimension k and codeword length n can be
represented by

@ a k x n generator matrix G
@ a (n— k) x n parity check matrix H

@ G specifies the range space of C and H specifies the null
space of C.

@ The two representations are mathematically equivalent.
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Preliminaries

Concepts of interest

Linear block codes can be divided in two categories:

@ algebraic codes (BCH codes, Hamming codes, Reed-Solomon
codes)

e graph-based codes (LDPC codes, Turbo codes)
A good practical channel code should
@ be able to correct as many transmission errors as possible

@ be equipped with a simple decoding algorithm
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Algebra review

Algebraic codes BCH codes

Algebraic codes for Flash

Algebraic Codes
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Brief review of finite fields

Suppose g is prime.
e GF(q) can be viewed as the set {0,1,...,q — 1}.
@ Operations are performed modulo g.

Example:

@ GF(5) has elements {0,1,2,3,4} such that

product |0 1 2 3 4 sum [0 1 2 3 4
0 0 0 0 0O 0 |01 2 3 4
1 01 2 3 4 1 11 2 3 40
2 0 2 4 1 3 2 12 3 4 0 1
3 0 3 1 4 2 3 13 4 01 2
4 0 4 3 2 1 4 |4 0 1 2 3
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Brief review of finite fields

e GF(q) can also be expressed as
{a=>°=0,a° =1,a,a?,...,a971}, for suitably chosen a.

Example:

e InGF(5):0—=a">1—-a 2> 0a 3—=a®and4— a?

e Consider an element a of GF(q) such that a # 0 and a # 1.

@ Let s be the smallest positive integer such that o® = 1. Then,
s is the order of a.

o If s=g— 1, then « is called a primitive element of GF(q).

’ GF(q) is thus generated by powers of a primitive element «. ‘

L R S Flash Memory Summit 2013, Santa Clara, CA 8 / 56



. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

Brief review of finite fields

@ We are often interested in the extension field GF(q™) of
GF(q), where g is prime and m is a positive integer.

e GF(g™)isthen {a=>® =10,a"=1,a,a?,...,a9 "1}, where
« denotes a primitive element of GF(g™) and is a root of
so-called primitive polynomial.

Example:

e GF(8) = GF(23).

@ Here, « is a root of the polynomial x3 4 x 4 1.

o We then have

0 _ 1 4

al Qa = a? +
a2 - 042 a®> = a?+4+a+1
a3 -« ab = a?+1
o> = a+1l o — 0
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BCH code construction

BCH code C is a linear, cyclic code described by a (d — 1) x n
parity check matrix H with elements from GF(q™) with « having

order n:
1 ob o2b L a(n—l)b
y 1 abtl Q2+ L G (n=1)(b+1)
1 obtd—2 2b+d-2) .. (n-1)(b+d-2)

@ b is any (positive) integer and d is integer 2 < d < n.
@ Minimum distance of C is at least d. The code corrects at

least t = | 951 | errors,
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BCH code construction

o If a is a primitive element, then the blocklength is n =q¢™ — 1
(largest possible).

e If b=1, BCH code is called narrow-sense (simplifies some
encoding and decoding operations).

@ For m =1, BCH codes are also known as Reed-Solomon
codes.
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BCH code properties

@ A code C is called a cyclic code if all cyclic shifts of a
codeword in C are also codewords.

Example:
@ Suppose (0,1,0,1,1) <> x3 + x + 1 is a codeword in C. Then
so are (1,0,1,1,0), (0,1,1,0,1), (1,1,0,1,0) and

(1,0,1,0,1).
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BCH code properties

@ A code C is called a cyclic code if all cyclic shifts of a

codeword in C are also codewords.
Example:

@ Suppose (0,1,0,1,1) <> x3 + x + 1 is a codeword in C. Then
so are (1,0,1,1,0), (0,1,1,0,1), (1,1,0,1,0) and
(1,0,1,0,1).

e Cyclic code is generated by a generator polynomial g(x), such
that each codeword c corresponds to a polynomial
pc(x) = m(x)g(x). All rows of the generator matrix G are
cyclic shifts of g(x).

@ BCH code: Each codeword ¢ corresponds to a polynomial
pc(x) = m(x)g(x) where g(x) is LCM of
(X _ ab)(X _ ab—i—l) . (X _ ab+d—2).
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BCH code example

@ Let's construct a narrow-sense BCH code over GF(8)
correcting t = 1 error and of length n=7.

@ We consider a primitive element « that satisfies
o® +a+1=0. Notice that o/ = 1.

@ Then,
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BCH code example

We can interpret this code in the binary domain by substituting

1 0 0 1
110 a— |1 =10 S |
0 0 1 0
0 1 1 0
ot = |1 a®— |1 a® =10 00— 1|0
1 1 1 0
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BCH code example

We can then interpret this parity check matrix in the binary

domain as ) _
1 001011
0101110
H_ 001 0111
1 001011
001 0111
101 1100 1]

Here H is 6 x 7 and has rank 3. This code can correct 1 error.
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Decoding BCH codes

Decoding algorithm heavily relies on the algebraic structure of the

code: recall that each codeword polynomial ¢(x) must have as

roots af, aPt1,  abtd-2,

@ Compute the syndromes of the received polynomial r(x)- tells
us which of a's are not the roots.

@ Based on the syndromes, compute the locations of the errors
(system of linear equations).

© Compute the error values at these location (system of
non-linear equations that are in the Vandermode form)

O Based on steps 2 and 3, build error polynomial e(x).
© Add e(x) to r(x) to produce the estimate of c(x).
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Decoding BCH codes

@ If the system of equations cannot be solved, declare a
decoding failure. This is a hard limit on the number of
correctable errors.

@ Implementation can be greatly reduced using the
shift-registers viewpoint in the Berlekamp-Massey algorithm.
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Algebraic codes

Performance evaluation

Figure: Theoretical bound for length n = 1023 binary BCH code for
different error correction capability ¢ (and different code rate).

10°
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Algebraic codes BCH codes

Algebraic codes for Flash

Graph-Based Codes
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Low Density Parity Check (LDPC) Codes

Definition 1: LDPC code

An LDPC block code C is a linear block code whose parity-check
matrix H has a small number of ones in each row and column.

@ Invented by Gallager in 1963 but were all but forgotten until
late 1990's.

@ In the limit of very large block-lengths LDPC codes are known
to approach the Shannon limit (i.e., the highest rate at which
the code can be designed that guarantees reliable
communication)

@ LDPC codes are amenable to low-complexity iterative
decoding.
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An Example

LDPC code described by the sparse parity check matrix H:

100100100
010010010
y_|00100100°1
100001010
010100001
(00101010 0|

Matrix H has 9 columns and 6 rows.
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An Example

LDPC code described by the sparse parity check matrix H:

100100100
010010010
y_|00100100°1
1000071010
010100001
(00101010 0|

Matrix H has 9 columns and 6 rows.

There are 9 coded bits and 6 parity-check equations.

Each coded bit participates /=2 parity-check equations and each
parity-check equation contains r = 3 coded bits.
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LDPC Preliminaries

Definition 3: Tanner graph

A Tanner graph of a code C with a parity check matrix H is the
bipartite graph such that:

@ each coded symbol i is represented by a variable node v;,
@ each parity-check equation j is represented by a check node ¢;,

@ there exists an edge between a variable node and a check
node if and only if H(j,i) = 1.
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Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

1001 001 O0O0
010010010
H:001001001
100 0 01 010
01 0100O0O01
001010100
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Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

1 001 00100 Vi V2 V3 V4 V5 Vg V7 Vg W9
01 001O0O0T10
H— 001 001O0TO0T1
1 00 0 01 010
01 010O0O0O0T1
001010100

Vi Vo V3 V4 V5 Vg V7 Vg g
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Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

Vi V2 V3 V4 V5 Vo V7 V8 Vo

OO OO+
O OO O
H O ORFrr OO
O OOOoOM
_H O OOoORrOo
OO R P OO
_H O OOOoOH
OO H+Hr OO
O O OO
IS

Vi Vo V3 V4 V5 Vg V7 Vg g
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Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:
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Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

O (bit-to-check) Each variable node sends a message to each
check node it is connected to,
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Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

O (bit-to-check) Each variable node sends a message to each
check node it is connected to,

@ (check processing) Each check node then computes the
consistency of incoming messages,
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Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

O (bit-to-check) Each variable node sends a message to each
check node it is connected to,

@ (check processing) Each check node then computes the
consistency of incoming messages,

© (check-to-bit) Each check node then sends a message to each
variable node it is connected to,
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Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:
O (bit-to-check) Each variable node sends a message to each
check node it is connected to,
@ (check processing) Each check node then computes the
consistency of incoming messages,
© (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

O (bit processing) Each variable node (coded symbol) updates
its value.
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Message Passing Decoding

Passed messages can be either
@ Hard decisions: 0 or 1

@ Soft decisions/likelihoods: real numbers
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An Example

input message codeword retrieved word decoded message
Encoder |- Noisy Channel —>
1 1101 1001 ?

Message m Codeword y Y1 Y2 Y3 Y4
m, Y1Y2YaVa ] - A 0
0 — 0000
1 - 1101

O O O

YitYotys=0  yitysty, =0 y,tys+y,=0
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Message Passing Decoding

Bit-flipping algorithm

L R S Flash Memory Summit 2013, Santa Clara, CA
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Received Codeword

Y1tYotys Y1tYysty, YotYstyy
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Graph-based codes LDPC codes for Flash

Bit-to-Check Messages

1+y,+y; 1+ys+y, Yotystys
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Graph-based codes LDPC codes for Flash

Bit-to-Check Messages

1+0+y, 1+y;+y, 0+ysty,
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Check Processing

140+0=1?7  1+0+y, 0+0+y,
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Check Processing

1+0+0=1 77 1+0+1=0+ 0+0+1=177?
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Graph-based codes LDPC codes for Flash

Check-to-Bit Messages

1 0 0 1
Flip, Flip, Flip,

1+0+0=1??  1+0+1=0+ 0+0+1=1 ??
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Check-to-Bit Messages

1 0 0 1
Flip, Stay Flip, Flip, Stay, Stay,

1+0+0=1?? 1+0+1=0 0+0+1=1 2?7
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Check-to-Bit Messages

1 0 0 1
Flip, Stay Flip, Flip  Flip, Stay, Flip Stay, Flip

1+0+0=1?? 1+0+1=0 0+0+1=17??
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Bit Processing

1
Flip, Stay

0 1
Flip, Stay, Flip Stay, Flip

1+0+0=17?? 1+0+1=0+ 0+0+1=1?7?
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Bit Processing

YitYyotys YitYystys Yotysty,
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Bit-to-Check Messages

1+y,+y; 1+ys+y, Yotysty,
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LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Bit-to-Check Messages

1+1+y, 1+ys+y, 1+y;+y,
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Bit-to-Check Messages

1+1+0=0 1+0+y, 1+0+y,
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Check Processing

1+1+0=0+ 1+0+1=0+ 1+0+1=0+
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Check-to-Bit Messages

1 1 0 1
Stay, Stay, Stay,

1+1+0=0+ 1+0+1=0+ 1+0+1=0+
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Check-to-Bit Messages

1 1 0 1
Stay, Stay Stay, Stay Stay, Stay, Stay Stay, Stay

1+1+0=0 1+0+1=0+ 1+0+1=0
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Bit Processing

Decoded Codeword
1 1 0 1

1+1+0=0+ 1+0+1=0+ 1+0+1=0+
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Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log %.
Sum-product algorithm (SPA) [1,2]

Min-sum algorithm (MSA) [3]

[1] R. Gallager, MIT Press, 1963.
[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.
[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.
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Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log %.
Sum-product algorithm (SPA) [1,2]
@ bit-to-check L(v; = ¢j) =
S peniiny L(ch = vi) + L™ (v;)
o check-to-bit L(¢; = v;) =
O (e ULV = 6)) Loengy s8n(Lv > 6))
where ®(x) = — log(tanh(x/2))
Min-sum algorithm (MSA) [3]
o check-to-bit L(¢c; = v;) =
minyengni 1L = )| Tivengy sgn(L(vi — ¢))
[1] R. Gallager, MIT Press, 1963.

[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.
[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.
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Soft Decoding

Bit values 1 1 0 1
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Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
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Graph-based codes

Soft Decoding

Bit values 1
Values using BPSK -1

Values from channel -1.1

LDPC code construction
Iterative Decoding
LDPC codes for Flash

1 0
-1 +1
0.1 1.2

L R S Flash Memory Summit 2013, Santa Clara, CA
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Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel 11 0.1 1.2 0.9
Beliefs (Li")) 22 iz zia —ris

~i~1?/207 2
(int) _ e _c
Ly~ = log <—g—@i+1)z/253) ==V

0-"
We assume g, = 1.
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Graph-based codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 0.9
Beliefs 2.2 0.2 2.4 1.8

Lej, = 2tanh™! H tanh > Ly,
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Graph-based codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 0.9
Beliefs 2.2 02 2.4 a8

1
Lejo, = 2tanh™! 1_[ tanhEL

1#i
V¢

V¢

LORTS
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Graph-based codes

Soft Decoding

Bit values 1 1 0 1
Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 0.9

l
Beliefs 4108 7893 ){5621 )f}(ms

int
L, = L&) + z Le,o,

cjov;
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Graph-based codes

Soft Decoding

Bit values 1 1 0 1
Values using BPSK -1 '\ -1 \ +1 \ -1 \
Values from channel -1.1 |
Beliefs 7

3.4108 -2.7893 3.5621 =3.2453

QG
=
=

?

All variable nodes are decoded to correct bit value.
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Performance evaluation

Figure: Bnary LDPC codes vs. BCH codes performance comparison for
AWGN channel. Code rate is 0.9, block length is 1000 bits. BCH code
corrects 13 errors.
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Extracting soft information in SLC Flash

@ In Flash, levels are represented by distributions

@ 1 read compares against a single threshold
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Extracting soft information in SLC Flash

o Idea: multiple word line reads

@ 2 reads compare against two thresholds
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LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

Extracting soft information in SLC Flash

o Idea: multiple word line reads

@ 2 reads compare against two thresholds

1

sumMmMIT

1

@ Maximize mutual information of the induced channel to

determine the best thresholds (here g and —q)
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Extracting soft information in SLC Flash

@ |dea: multiple word line reads

@ 3 reads compare against three thresholds

@ Maximize mutual information of the induced channel to
determine the best thresholds (here g1, —g1 and 0)
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LDPC codes for Flash

Graph-based codes

LDPC vs. BCH code performance

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of
length n = 9100.

Frame Error Rate vs. SNR (BPSK)
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LDPC codes for Flash

Graph-based codes

LDPC vs. BCH code performance

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of

length n = 9100.
Frame Error Rate VS. SNR (BPSK)

— o theory
LDPC soft

—&A— LDPC 2-bit (3 reads) ||

—— LDPC 1.6-bit (2 reads)

—&— LDPC 1-bit (1 read)
Capacity soft

= = = Capacity 2-bit

= = = Capacity 1.6-bit

~ = = Capacity 1-bit

Frame Error Rate
>

ES/N; (dB)
o Caution: AWGN-optimized LDPC codes may not be the best
for the quantized Flash channel !
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Graded algebraic codes

Motivation: Raw error rate for TLC flash

Error Rates for TLC Flash

LSB: least significant bit
CSB:  center significant bit
el MSB: most significant bit
[ T FEFTE
T ++Jrf‘*J"’*’*’ﬁd‘lﬁkF
o T .
5 prtt ooso000000 Table: Mapping between Voltage
=4 aeeeeeoee . .
w 00000897 Levels and Triple-bit Words
107 50099 |
[ 000
14" 0% Voltage Level  Triple-bit Word
e * LsB 0 111
csB 1 110
—>—MSB 2 100
. 7Symbol Error Rate 3 101
10 L
[ 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 4 001
P/E Cycles 5 000
6 010
7 011
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Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors
1 0.9617
2 0.0314
3 0.0069

@ Standard error-correction codes are designed to correct all
symbol-to—symbol errors and do not differentiate among these
errors.
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Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors
1 0.9617
2 0.0314
3 0.0069

@ Standard error-correction codes are designed to correct all
symbol-to—symbol errors and do not differentiate among these
errors.

@ Usage of standard codes: overkill in terms of redundancy, as
certain symbol-to—symbol errors are not as important.
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Graded algebraic codes

@ Idea: Design codes for the observed intracell error patterns

@ Approach: Algebraic codes that simultaneously control the
number of symbols in error and the number of bits in error
per erroneous symbol

@ Construction: Tensor-product operations
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Performance evaluation

Error Rates of Codes Applied to TLC Flash
10 T T T

Page Error Rate
5

_._Non-binary BCH [4095,3534,80]a

107'F| _Binary BCH [4095,3531,47],

__TPC [81,7;1 ’S]B

——Binary BCH [4096 , 3351, 62], (LSB), [4096 , 3339, 63], (MSB), [4096, 3915, 15], (CsB)

I I I I I I I
2800 3000 3200 3400 3600 3800 4000 4200 4400
P/E Cycles

All codes are of rate 0.86 and length 4000 bits,
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Error Rates of Codes Applied to TLC Flash
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Non-binary LDPC codes

Entries in the parity check matrix H are taken from GF(q).
Example: GF(8) =0,1,2,...,7. (with o — k+1 for 0 < k < 6)

a Vi Vo V3 V4 V5 Vg V7 V8 W

Y
I
coroor
ocwooNn o
oo woo
oNvoOoOoOow
~Noocoooo
couvuroo
moooowm
co~No N o
orMOrR OO
iy

Vi Vo V3 V4 V5 Vg V7 Vg g

Parity check ¢c3: 3vs 4+ v + vg =0 mod 8.
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Advanced Coding Approaches

Non-binary LDPC codes

@ Decoding is more complex than in the binary case. Keep track
of g — 1 likelihoods on each edge.

@ Popular approaches:

o Direct implementation has complexity on the order of O(g?)
o FFT-based SPA has complexity on the order of O(qlog q)
e Min-sum and its variants can further reduce the complexity
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Advanced Coding Approaches

Performance evaluation

Figure: Non-binary LDPC codes vs. BCH codes performance comparison
for AWGN channel. Code rate is 0.9, block length is 1000 bits. BCH
code corrects 13 errors.
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Summary and Outlook

Algebraic codes (BCH) Graph-based codes (LDPC)
— Performance is acceptable + Performance is excellent
+ Guaranteed error correction — No guaranteed error correction
capability capability (but we have ideas)
+ Structure allows for efficient — Decoder complexity is acceptable
decoder implementation but now low

— Not amenable for soft decoding ~ + Amenable for soft decoding

With the move to MLC/TLC technologies, advanced coding
schemes will need to be considered!
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Summary and Outlook

Further information, papers, references etc. available at
http://loris.ee.ucla.edu

Selected list:

@ R. Gabrys, E. Yaakobi and L. Dolecek, " Graded bit error correcting codes with applications to Flash
memory,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2315 — 2327, Apr. 2013.

@ J. Wang, L. Dolecek and R. Wesel, " The Cycle Consistency Matrix Approach to Absorbing Sets in
Separable Circulant-Based LDPC Codes,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2293 —
2314, Apr. 2013.

@ B. Amiri, J. Kliewer, and L. Dolecek, " Analysis and Enumeration of Absorbing Sets for Non-Binary

Graph-Based Codes,” submitted to IEEE Transactions on Communications, 2013. (Conference version in
ISIT 2013.)
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Summary and Outlook

UCLA Coding talks and posters at 2013 Flash Summit

@ R. Gabrys, “Coding for Unreliable Flash Memory Cells,”
Session 301-A: Flash Controller Design Options - from 8:30 to
9:40 am on Thursday, August 15.

@ B. Amiri, “Low Error Floor LDPC Codes and Their Practical
Decoders for Flash Memory Applications,” Hall B, booths
916-920 — Exhibit Hours

e K. Vakilinia, “Non-Binary LDPC Code Design from
Inter-Connected Cycles,” Hall B, booths 916-920 — Exhibit
Hours

L R S Flash Memory Summit 2013, Santa Clara, CA 55 / 56



Summary and Outlook

Announcement

New center on Coding for Storage at UCLA:
http://www.loris.ee.ucla.edu/codess

Kick-off day on Thursday 9/19/2013!

Registration is free. Register early, space is limited.
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