Making Error Correcting Codes Work for Flash
Memory

Part II: Algebraic and Graph-based Codes with Applications to
Flash Memory

Lara Dolecek

Laboratory for Robust Information Systems (LORIS)
Center on Development of Emerging Storage Systems (CoDESS)
Department of Electrical Engineering, UCLA

Flash Memory Summit 2013

L R S Flash Memory Summit 2013, Santa Clara, CA

1/56

Outline

Outline

@ Preliminaries
© Algebraic codes
@ Algebra review
@ BCH codes
@ Algebraic codes for Flash
© Graph-based codes
@ LDPC code construction
@ lterative Decoding
@ LDPC codes for Flash
@ Advanced Coding Approaches
@ Graded algebraic codes
@ Non-binary LDPC codes

© Summary and Outlook

L R S Flash Memory Summit 2013, Santa Clara, CA 2 /56

Preliminaries

Concepts of interest

input message codeword retrieved word decoded message
Noisy Channel | Decoder [~
k bits n bits n bits k bits

@ A channel code C maps a message m of length k into a
codeword ¢ of length n, with n > k (encoder)

e Total number of codewords: 2%
e Code rate: R = k/n.

@ Structure of C is used to determine the stored message
(decoder).

LORTS

Flash Memory Summit 2013, Santa Clara, CA 3 /56

Preliminaries

Concepts of interest

Linear block code C of dimension k and codeword length n can be
represented by

@ a k x n generator matrix G
@ a (n— k) x n parity check matrix H

@ G specifies the range space of C and H specifies the null
space of C.

@ The two representations are mathematically equivalent.

L R S Flash Memory Summit 2013, Santa Clara, CA 4 /56

Preliminaries

Concepts of interest

Linear block code C of dimension k and codeword length n can be
represented by

@ a k x n generator matrix G

@ a (n— k) x n parity check matrix H

@ G specifies the range space of C and H specifies the null
space of C.

@ The two representations are mathematically equivalent.

L R S Flash Memory Summit 2013, Santa Clara, CA 4 /56

Preliminaries

Concepts of interest

Linear block code C of dimension k and codeword length n can be
represented by

@ a k x n generator matrix G

@ a (n— k) x n parity check matrix H cHT =0

@ G specifies the range space of C and H specifies the null
space of C.

@ The two representations are mathematically equivalent.

L R S Flash Memory Summit 2013, Santa Clara, CA 4 /56

Preliminaries

Concepts of interest

Linear block codes can be divided in two categories:

@ algebraic codes (BCH codes, Hamming codes, Reed-Solomon
codes)

e graph-based codes (LDPC codes, Turbo codes)
A good practical channel code should
@ be able to correct as many transmission errors as possible

@ be equipped with a simple decoding algorithm

L R S Flash Memory Summit 2013, Santa Clara, CA 5 /56

Algebra review

Algebraic codes BCH codes

Algebraic codes for Flash

Algebraic Codes

L R S Flash Memory Summit 2013, Santa Clara, CA 6 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

Brief review of finite fields

Suppose g is prime.
e GF(q) can be viewed as the set {0,1,...,q — 1}.
@ Operations are performed modulo g.

Example:

@ GF(5) has elements {0,1,2,3,4} such that

product |0 1 2 3 4 sum [0 1 2 3 4
0 0 0 0 0O 0 |01 2 3 4
1 01 2 3 4 1 11 2 3 40
2 0 2 4 1 3 2 12 3 4 0 1
3 0 3 1 4 2 3 13 4 01 2
4 0 4 3 2 1 4 |4 0 1 2 3

L R S Flash Memory Summit 2013, Santa Clara, CA 7 /56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

Brief review of finite fields

e GF(q) can also be expressed as
{a=>°=0,a° =1,a,a?,...,a971}, for suitably chosen a.

Example:

e InGF(5):0—=a">1—-a 2> 0a 3—=a®and4— a?

e Consider an element a of GF(q) such that a # 0 and a # 1.

@ Let s be the smallest positive integer such that o® = 1. Then,
s is the order of a.

o If s=g— 1, then « is called a primitive element of GF(q).

’ GF(q) is thus generated by powers of a primitive element «. ‘

L R S Flash Memory Summit 2013, Santa Clara, CA 8 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

Brief review of finite fields

@ We are often interested in the extension field GF(q™) of
GF(q), where g is prime and m is a positive integer.

e GF(g™)isthen {a=>® =10,a"=1,a,a?,...,a9 "1}, where
« denotes a primitive element of GF(g™) and is a root of
so-called primitive polynomial.

Example:

e GF(8) = GF(23).

@ Here, « is a root of the polynomial x3 4 x 4 1.

o We then have

0 _ 1 4

al Qa = a? +
a2 - 042 a®> = a?+4+a+1
a3 -« ab = a?+1
o> = a+1l o — 0

L R S Flash Memory Summit 2013, Santa Clara, CA 9 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

BCH code construction

BCH code C is a linear, cyclic code described by a (d — 1) x n
parity check matrix H with elements from GF(q™) with « having

order n:
1 ob o2b L a(n—l)b
y 1 abtl Q2+ L G (n=1)(b+1)
1 obtd—2 2b+d-2) .. (n-1)(b+d-2)

@ b is any (positive) integer and d is integer 2 < d < n.
@ Minimum distance of C is at least d. The code corrects at

least t = | 951 | errors,

L R S Flash Memory Summit 2013, Santa Clara, CA 10 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

BCH code construction

o If a is a primitive element, then the blocklength is n =q¢™ — 1
(largest possible).

e If b=1, BCH code is called narrow-sense (simplifies some
encoding and decoding operations).

@ For m =1, BCH codes are also known as Reed-Solomon
codes.

L R S Flash Memory Summit 2013, Santa Clara, CA 11 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

BCH code properties

@ A code C is called a cyclic code if all cyclic shifts of a
codeword in C are also codewords.

Example:
@ Suppose (0,1,0,1,1) <> x3 + x + 1 is a codeword in C. Then
so are (1,0,1,1,0), (0,1,1,0,1), (1,1,0,1,0) and

(1,0,1,0,1).

L R S Flash Memory Summit 2013, Santa Clara, CA 12 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

BCH code properties

@ A code C is called a cyclic code if all cyclic shifts of a

codeword in C are also codewords.
Example:

@ Suppose (0,1,0,1,1) <> x3 + x + 1 is a codeword in C. Then
so are (1,0,1,1,0), (0,1,1,0,1), (1,1,0,1,0) and
(1,0,1,0,1).

e Cyclic code is generated by a generator polynomial g(x), such
that each codeword c corresponds to a polynomial
pc(x) = m(x)g(x). All rows of the generator matrix G are
cyclic shifts of g(x).

@ BCH code: Each codeword ¢ corresponds to a polynomial
pc(x) = m(x)g(x) where g(x) is LCM of
(X _ ab)(X _ ab—i—l) . (X _ ab+d—2).

L R S Flash Memory Summit 2013, Santa Clara, CA 12 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

BCH code example

@ Let's construct a narrow-sense BCH code over GF(8)
correcting t = 1 error and of length n=7.

@ We consider a primitive element « that satisfies
o® +a+1=0. Notice that o/ = 1.

@ Then,

L R S Flash Memory Summit 2013, Santa Clara, CA 13 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

BCH code example

@ Let's construct a narrow-sense BCH code over GF(8)
correcting t = 1 error and of length n =7.

@ We consider a primitive element « that satisfies
a®+ a+1=0. Notice that o’ = 1.

@ Then,

L R S Flash Memory Summit 2013, Santa Clara, CA 13 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

BCH code example

We can interpret this code in the binary domain by substituting

1 0 0 1
110 a— |1 =10 S |
0 0 1 0
0 1 1 0
ot = |1 a®— |1 a® =10 00— 1|0
1 1 1 0

L R S Flash Memory Summit 2013, Santa Clara, CA 14 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

BCH code example

We can then interpret this parity check matrix in the binary

domain as) _
1 001011
0101110
H_ 001 0111
1 001011
001 0111
101 1100 1]

Here H is 6 x 7 and has rank 3. This code can correct 1 error.

L R S Flash Memory Summit 2013, Santa Clara, CA 15 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

Decoding BCH codes

Decoding algorithm heavily relies on the algebraic structure of the

code: recall that each codeword polynomial ¢(x) must have as

roots af, aPt1, abtd-2,

@ Compute the syndromes of the received polynomial r(x)- tells
us which of a's are not the roots.

@ Based on the syndromes, compute the locations of the errors
(system of linear equations).

© Compute the error values at these location (system of
non-linear equations that are in the Vandermode form)

O Based on steps 2 and 3, build error polynomial e(x).
© Add e(x) to r(x) to produce the estimate of c(x).

L R S Flash Memory Summit 2013, Santa Clara, CA 16 / 56

. Algebra review
Algebraic codes BCH codes *
Algebraic codes for Flash D 'H“-,‘”

sumMmMIT

Decoding BCH codes

@ If the system of equations cannot be solved, declare a
decoding failure. This is a hard limit on the number of
correctable errors.

@ Implementation can be greatly reduced using the
shift-registers viewpoint in the Berlekamp-Massey algorithm.

L R S Flash Memory Summit 2013, Santa Clara, CA 17 / 56

Algebra review
BCH codes
Algebraic codes for Flash

Algebraic codes

Performance evaluation

Figure: Theoretical bound for length n = 1023 binary BCH code for
different error correction capability ¢ (and different code rate).

10°

—1=10, rate= 0.9022
1072l| —t=11, rate= 0.8925 J
—t=12, rate= 0.8827
—t=13, rate= 0.8729
——t=14, rate= 0.8631
10 *f| ——t=15, rate= 0.8534 \ 1
—t=16, rate= 0.8436 \
4 4.2 4.4 4.6 4.8 5 5.2
SNR(dB)

L R S Flash Memory Summit 2013, Santa Clara, CA 18 / 56

FER

Algebra review

Algebraic codes BCH codes

Algebraic codes for Flash

Graph-Based Codes

L R S Flash Memory Summit 2013, Santa Clara, CA 19 / 56

LDPC code construction : F‘E
Iterative Decoding
Graph-based codes LDPC codes for Flash D '“‘5.‘”

sumMmMIT

Low Density Parity Check (LDPC) Codes

Definition 1: LDPC code

An LDPC block code C is a linear block code whose parity-check
matrix H has a small number of ones in each row and column.

@ Invented by Gallager in 1963 but were all but forgotten until
late 1990's.

@ In the limit of very large block-lengths LDPC codes are known
to approach the Shannon limit (i.e., the highest rate at which
the code can be designed that guarantees reliable
communication)

@ LDPC codes are amenable to low-complexity iterative
decoding.

L R S Flash Memory Summit 2013, Santa Clara, CA 20 / 56

LDPC code construction : F‘E
Iterative Decoding
Graph-based codes LDPC codes for Flash D '“‘5.‘”

sumMmMIT

An Example

LDPC code described by the sparse parity check matrix H:

100100100
010010010
y_|00100100°1
100001010
010100001
(00101010 0|

Matrix H has 9 columns and 6 rows.

L R S Flash Memory Summit 2013, Santa Clara, CA 21 / 56

LDPC code construction : F‘E
Iterative Decoding
Graph-based codes LDPC codes for Flash D '“‘5.‘”

sumMmMIT

An Example

LDPC code described by the sparse parity check matrix H:

100100100
010010010
y_|00100100°1
1000071010
010100001
(00101010 0|

Matrix H has 9 columns and 6 rows.

There are 9 coded bits and 6 parity-check equations.

Each coded bit participates /=2 parity-check equations and each
parity-check equation contains r = 3 coded bits.

L R S Flash Memory Summit 2013, Santa Clara, CA 21 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

LDPC Preliminaries

Definition 3: Tanner graph

A Tanner graph of a code C with a parity check matrix H is the
bipartite graph such that:

@ each coded symbol i is represented by a variable node v;,
@ each parity-check equation j is represented by a check node ¢;,

@ there exists an edge between a variable node and a check
node if and only if H(j,i) = 1.

L R S Flash Memory Summit 2013, Santa Clara, CA 22 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

1001 001 O0O0
010010010
H:001001001
100 0 01 010
01 0100O0O01
001010100

L R S Flash Memory Summit 2013, Santa Clara, CA 23 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

1 001 00100 Vi V2 V3 V4 V5 Vg V7 Vg W9
01 001O0O0T10
H— 001 001O0TO0T1
1 00 0 01 010
01 010O0O0O0T1
001010100

Vi Vo V3 V4 V5 Vg V7 Vg g

L R S Flash Memory Summit 2013, Santa Clara, CA 23 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

Vi V2 V3 V4 V5 Vo V7 V8 Vo

OO OO+
O OO O
H O ORFrr OO
O OOOoOM
_H O OOoORrOo
OO R P OO
_H O OOOoOH
OO H+Hr OO
O O OO
IS

Vi Vo V3 V4 V5 Vg V7 Vg g

L R S Flash Memory Summit 2013, Santa Clara, CA 23 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

L R S Flash Memory Summit 2013, Santa Clara, CA 24 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

O (bit-to-check) Each variable node sends a message to each
check node it is connected to,

L R S Flash Memory Summit 2013, Santa Clara, CA 24 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

O (bit-to-check) Each variable node sends a message to each
check node it is connected to,

@ (check processing) Each check node then computes the
consistency of incoming messages,

L R S Flash Memory Summit 2013, Santa Clara, CA 24 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

O (bit-to-check) Each variable node sends a message to each
check node it is connected to,

@ (check processing) Each check node then computes the
consistency of incoming messages,

© (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

L R S Flash Memory Summit 2013, Santa Clara, CA 24 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:
O (bit-to-check) Each variable node sends a message to each
check node it is connected to,
@ (check processing) Each check node then computes the
consistency of incoming messages,
© (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

O (bit processing) Each variable node (coded symbol) updates
its value.

L R S Flash Memory Summit 2013, Santa Clara, CA 24 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Message Passing Decoding

Passed messages can be either
@ Hard decisions: 0 or 1

@ Soft decisions/likelihoods: real numbers

L R S Flash Memory Summit 2013, Santa Clara, CA 25 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

An Example

input message codeword retrieved word decoded message
Encoder |- Noisy Channel —>
1 1101 1001 ?

Message m Codeword y Y1 Y2 Y3 Y4
m, Y1Y2YaVa] - A 0
0 — 0000
1 - 1101

O O O

YitYotys=0 yitysty, =0 y,tys+y,=0

L R S Flash Memory Summit 2013, Santa Clara, CA 26 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Message Passing Decoding

Bit-flipping algorithm

L R S Flash Memory Summit 2013, Santa Clara, CA

27 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Received Codeword

Y1tYotys Y1tYysty, YotYstyy

L R S Flash Memory Summit 2013, Santa Clara, CA 28 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Bit-to-Check Messages

1+y,+y; 1+ys+y, Yotystys

L R S Flash Memory Summit 2013, Santa Clara, CA 29 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Bit-to-Check Messages

1+0+y, 1+y;+y, 0+ysty,

L R S Flash Memory Summit 2013, Santa Clara, CA 29 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Check Processing

140+0=1?7 1+0+y, 0+0+y,

L R S Flash Memory Summit 2013, Santa Clara, CA 30 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Check Processing

1+0+0=1 77 1+0+1=0+ 0+0+1=177?

L R S Flash Memory Summit 2013, Santa Clara, CA 30 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Check-to-Bit Messages

1 0 0 1
Flip, Flip, Flip,

1+0+0=1?? 1+0+1=0+ 0+0+1=1 ??

L R S Flash Memory Summit 2013, Santa Clara, CA 31 /56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Check-to-Bit Messages

1 0 0 1
Flip, Stay Flip, Flip, Stay, Stay,

1+0+0=1?? 1+0+1=0 0+0+1=1 2?7

L R S Flash Memory Summit 2013, Santa Clara, CA 31 /56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Check-to-Bit Messages

1 0 0 1
Flip, Stay Flip, Flip Flip, Stay, Flip Stay, Flip

1+0+0=1?? 1+0+1=0 0+0+1=17??

L R S Flash Memory Summit 2013, Santa Clara, CA 31 /56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Bit Processing

1
Flip, Stay

0 1
Flip, Stay, Flip Stay, Flip

1+0+0=17?? 1+0+1=0+ 0+0+1=1?7?

L R S Flash Memory Summit 2013, Santa Clara, CA 32 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Bit Processing

YitYyotys YitYystys Yotysty,

L R S Flash Memory Summit 2013, Santa Clara, CA 32 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Bit-to-Check Messages

1+y,+y; 1+ys+y, Yotysty,

L R S Flash Memory Summit 2013, Santa Clara, CA 33 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Bit-to-Check Messages

1+1+y, 1+ys+y, 1+y;+y,

L R S Flash Memory Summit 2013, Santa Clara, CA 33 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'N“-,"‘

sumMmMIT

Bit-to-Check Messages

1+1+0=0 1+0+y, 1+0+y,

L R S Flash Memory Summit 2013, Santa Clara, CA 33 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Check Processing

1+1+0=0+ 1+0+1=0+ 1+0+1=0+

L R S Flash Memory Summit 2013, Santa Clara, CA 34 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Check-to-Bit Messages

1 1 0 1
Stay, Stay, Stay,

1+1+0=0+ 1+0+1=0+ 1+0+1=0+

L R S Flash Memory Summit 2013, Santa Clara, CA 35 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Check-to-Bit Messages

1 1 0 1
Stay, Stay, Stay,

1+1+0=0+ 1+0+1=0+ 1+0+1=0+

L R S Flash Memory Summit 2013, Santa Clara, CA 35 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'N“-,"‘

sumMmMIT

Check-to-Bit Messages

1 1 0 1
Stay, Stay Stay, Stay Stay, Stay, Stay Stay, Stay

1+1+0=0 1+0+1=0+ 1+0+1=0

L R S Flash Memory Summit 2013, Santa Clara, CA 36 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'N“-,"‘

sumMmMIT

Bit Processing

Decoded Codeword
1 1 0 1

1+1+0=0+ 1+0+1=0+ 1+0+1=0+

L R S Flash Memory Summit 2013, Santa Clara, CA 37 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log %.
Sum-product algorithm (SPA) [1,2]

Min-sum algorithm (MSA) [3]

[1] R. Gallager, MIT Press, 1963.
[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.
[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.

L R S Flash Memory Summit 2013, Santa Clara, CA 38 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log %.
Sum-product algorithm (SPA) [1,2]
@ bit-to-check L(v; = ¢j) =
S peniiny L(ch = vi) + L™ (v;)
o check-to-bit L(¢; = v;) =
O (e ULV = 6)) Loengy s8n(Lv > 6))
where ®(x) = — log(tanh(x/2))
Min-sum algorithm (MSA) [3]
o check-to-bit L(¢c; = v;) =
minyengni 1L =)| Tivengy sgn(L(vi — ¢))
[1] R. Gallager, MIT Press, 1963.

[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.
[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.

L R S Flash Memory Summit 2013, Santa Clara, CA 38 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

L R S Flash Memory Summit 2013, Santa Clara, CA 39 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1

L R S Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Graph-based codes

Soft Decoding

Bit values 1
Values using BPSK -1

Values from channel -1.1

LDPC code construction
Iterative Decoding
LDPC codes for Flash

1 0
-1 +1
0.1 1.2

L R S Flash Memory Summit 2013, Santa Clara, CA

-0.9

39 / 56

LDPC code construction
Iterative Decoding
Graph-based codes LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel 11 0.1 1.2 0.9
Beliefs (Li")) 22 iz zia —ris

~i~1?/207 2
(int) _ e _c
Ly~ = log <—g—@i+1)z/253) ==V

0-"
We assume g, = 1.

L R S Flash Memory Summit 2013, Santa Clara, CA 39 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 0.9
Beliefs 2.2 0.2 2.4 1.8

Lej, = 2tanh™! H tanh > Ly,

L R S Flash Memory Summit 2013, Santa Clara, CA 39 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 0.9
Beliefs 2.2 02 2.4 a8

1
Lejo, = 2tanh™! 1_[tanhEL

1#i
V¢

V¢

LORTS

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

Soft Decoding

Bit values 1 1 0 1
Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 0.9

l
Beliefs 4108 7893){5621)f}(ms

int
L, = L&) + z Le,o,

cjov;

L R S Flash Memory Summit 2013, Santa Clara, CA 39 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

Soft Decoding

Bit values 1 1 0 1
Values using BPSK -1 '\ -1 \ +1 \ -1 \
Values from channel -1.1 |
Beliefs 7

3.4108 -2.7893 3.5621 =3.2453

QG
=
=

?

All variable nodes are decoded to correct bit value.

L R S Flash Memory Summit 2013, Santa Clara, CA 39 / 56

LDPC code construction
Iterative Decoding *
Graph-based codes LDPC codes for Flash D 'H“-,"‘

sumMmMIT

Performance evaluation

Figure: Bnary LDPC codes vs. BCH codes performance comparison for
AWGN channel. Code rate is 0.9, block length is 1000 bits. BCH code
corrects 13 errors.

1.0E-1

1.0E-2

ER

[
1.0E-3

1.0E-4

—e—Binary LDPC
—BCH

35 4 4.5 5
SNR (dB)

L R S Flash Memory Summit 2013, Santa Clara, CA

40 / 56

LDPC code construction : F‘ E
Iterative Decoding
Graph-based codes LDPC codes for Flash DY IOt

sumMmMIT

Extracting soft information in SLC Flash

@ In Flash, levels are represented by distributions

@ 1 read compares against a single threshold

L R S Flash Memory Summit 2013, Santa Clara, CA 41 / 56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Extracting soft information in SLC Flash

o Idea: multiple word line reads

L R S Flash Memory Summit 2013, Santa Clara, CA

42 /56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Extracting soft information in SLC Flash

o Idea: multiple word line reads

@ 2 reads compare against two thresholds

L R S Flash Memory Summit 2013, Santa Clara, CA 42 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

Extracting soft information in SLC Flash

o Idea: multiple word line reads

@ 2 reads compare against two thresholds

—-q 1 q |
Py P, b,
L R S Flash Memory Summit 2013, Santa Clara, CA

42 /56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

Extracting soft information in SLC Flash

o Idea: multiple word line reads

@ 2 reads compare against two thresholds

1

sumMmMIT

1

@ Maximize mutual information of the induced channel to

determine the best thresholds (here g and —q)

L R S Flash Memory Summit 2013, Santa Clara, CA

42 /56

LDPC code construction
Iterative Decoding

Graph-based codes LDPC codes for Flash

Extracting soft information in SLC Flash

@ |dea: multiple word line reads

L R S Flash Memory Summit 2013, Santa Clara, CA

43 / 56

LDPC code construction : F‘ E
Iterative Decoding
Graph-based codes LDPC codes for Flash DY IOt

sumMmMIT

Extracting soft information in SLC Flash

@ |dea: multiple word line reads

@ 3 reads compare against three thresholds

@ Maximize mutual information of the induced channel to
determine the best thresholds (here g1, —g1 and 0)

L R S Flash Memory Summit 2013, Santa Clara, CA 43 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

LDPC vs. BCH code performance

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of
length n = 9100.

Frame Error Rate vs. SNR (BPSK)

10 T
1 —BCcheory
i LDPC soft
107k '] —&A— LDPC 2-bit (3 reads) ||
I —— LDPC 1.6-bit (2 reads)
® v —&— LDPC 1-bit (1 read)
"‘-“‘ > (I} Capacity soft
o 107 1 = = = Capacity 2-bit
— LS | = = = Capacity 1.6-bit
9 11 = = = Capacity 1-bit
= oq07L 1.1 4
w LI |
E 1
1
] 107k . : J
[T 1
11
1071 1.1]
11
11
10'5 i LI i i
2 3 7 8
E /N0 (dB)

L R S Flash Memory Summit 2013, Santa Clara, CA 44 / 56

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Graph-based codes

LDPC vs. BCH code performance

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of

length n = 9100.
Frame Error Rate VS. SNR (BPSK)

— o theory
LDPC soft

—&A— LDPC 2-bit (3 reads) ||

—— LDPC 1.6-bit (2 reads)

—&— LDPC 1-bit (1 read)
Capacity soft

= = = Capacity 2-bit

= = = Capacity 1.6-bit

~ = = Capacity 1-bit

Frame Error Rate
>

ES/N; (dB)
o Caution: AWGN-optimized LDPC codes may not be the best
for the quantized Flash channel !

L R S Flash Memory Summit 2013, Santa Clara, CA 44 / 56

Graded algebraic codes
Non-binary LDPC codes

Advanced Coding Approaches

Advanced Coding Approaches

L R S Flash Memory Summit 2013, Santa Clara, CA 45 / 56

Graded algebraic codes
Non-binary LDPC codes
Advanced Coding Approaches

Graded algebraic codes

Motivation: Raw error rate for TLC flash

Error Rates for TLC Flash

LSB: least significant bit
CSB: center significant bit
el MSB: most significant bit
[T FEFTE
T ++Jrf‘*J"’*’*’ﬁd‘lﬁkF
o T .
5 prtt ooso000000 Table: Mapping between Voltage
=4 aeeeeeoee . .
w 00000897 Levels and Triple-bit Words
107 50099 |
[000
14" 0% Voltage Level Triple-bit Word
e * LsB 0 111
csB 1 110
—>—MSB 2 100
. 7Symbol Error Rate 3 101
10 L
[500 1000 1500 2000 2500 3000 3500 4000 4500 5000 4 001
P/E Cycles 5 000
6 010
7 011

L R S Flash Memory Summit 2013, Santa Clara, CA 46 / 56

Graded algebraic codes
Non-binary LDPC codes o >
SN

Advanced Coding Approaches suMmMIT

Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors
1 0.9617
2 0.0314
3 0.0069

@ Standard error-correction codes are designed to correct all
symbol-to—symbol errors and do not differentiate among these
errors.

L R S Flash Memory Summit 2013, Santa Clara, CA 47 / 56

Graded algebraic codes
Non-binary LDPC codes o >
SN

Advanced Coding Approaches suMmMIT

Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors
1 0.9617
2 0.0314
3 0.0069

@ Standard error-correction codes are designed to correct all
symbol-to—symbol errors and do not differentiate among these
errors.

@ Usage of standard codes: overkill in terms of redundancy, as
certain symbol-to—symbol errors are not as important.

L R S Flash Memory Summit 2013, Santa Clara, CA 47 / 56

Graded algebraic codes
Non-binary LDPC codes
Advanced Coding Approaches

Graded algebraic codes

@ Idea: Design codes for the observed intracell error patterns

@ Approach: Algebraic codes that simultaneously control the
number of symbols in error and the number of bits in error
per erroneous symbol

@ Construction: Tensor-product operations

L R S Flash Memory Summit 2013, Santa Clara, CA 48 / 56

Graded algebraic codes
Non-binary LDPC codes

Advanced Coding Approaches

Performance evaluation

Error Rates of Codes Applied to TLC Flash
10 T T T

Page Error Rate
5

_._Non-binary BCH [4095,3534,80]a

107'F| _Binary BCH [4095,3531,47],

__TPC [81,7;1 ’S]B

——Binary BCH [4096 , 3351, 62], (LSB), [4096 , 3339, 63], (MSB), [4096, 3915, 15], (CsB)

I I I I I I I
2800 3000 3200 3400 3600 3800 4000 4200 4400
P/E Cycles

All codes are of rate 0.86 and length 4000 bits,

L R S Flash Memory Summit 2013, Santa Clara, CA 49 / 56

Graded algebraic codes
Non-binary LDPC codes

Advanced Coding Approaches

Performance evaluation

Error Rates of Codes Applied to TLC Flash
10 T T T

]
_—

| }20 % lifetime improvement } 4

40 % lifetime improvement

_._Non-binary BCH [4095,3534,80]a
10™*E{_,_Binary BCH [4095,3531 471, |
__TPC [81,7;1 ’S]B

——Binary BCH [4096 , 3351, 62], (LSB), [4096 , 3339, 63], (MSB), [4096, 3915, 15], (CsB)

Page Error Rate
5

I I I I I I I
2800 3000 3200 3400 3600 3800 4000 4200 4400
P/E Cycles

All codes are of rate 0.86 and length 4000 bits,

L R S Flash Memory Summit 2013, Santa Clara, CA 49 / 56

Graded algebraic codes
Non-binary LDPC codes

Advanced Coding Approaches

Non-binary LDPC codes

Entries in the parity check matrix H are taken from GF(q).
Example: GF(8) =0,1,2,...,7. (with o — k+1 for 0 < k < 6)

a Vi Vo V3 V4 V5 Vg V7 V8 W

Y
I
coroor
ocwooNn o
oo woo
oNvoOoOoOow
~Noocoooo
couvuroo
moooowm
co~No N o
orMOrR OO
iy

Vi Vo V3 V4 V5 Vg V7 Vg g

Parity check ¢c3: 3vs 4+ v + vg =0 mod 8.

L R S Flash Memory Summit 2013, Santa Clara, CA 50 / 56

Graded algebraic codes
Non-binary LDPC codes o >
S

sumMmMIT

Advanced Coding Approaches

Non-binary LDPC codes

@ Decoding is more complex than in the binary case. Keep track
of g — 1 likelihoods on each edge.

@ Popular approaches:

o Direct implementation has complexity on the order of O(g?)
o FFT-based SPA has complexity on the order of O(qlog q)
e Min-sum and its variants can further reduce the complexity

L R S Flash Memory Summit 2013, Santa Clara, CA 51 / 56

Graded algebraic codes
Non-binary LDPC codes o >
S

sumMmMIT

Advanced Coding Approaches

Performance evaluation

Figure: Non-binary LDPC codes vs. BCH codes performance comparison
for AWGN channel. Code rate is 0.9, block length is 1000 bits. BCH
code corrects 13 errors.

1

1.0E-2
1.0E-4
o
i)
[T
1.0E-§
1.0E-§
35 4 45 5
SNR (dB)

L R S Flash Memory Summit 2013, Santa Clara, CA 52 / 56

Summary and Outlook

Algebraic codes (BCH) Graph-based codes (LDPC)
— Performance is acceptable + Performance is excellent
+ Guaranteed error correction — No guaranteed error correction
capability capability (but we have ideas)
+ Structure allows for efficient — Decoder complexity is acceptable
decoder implementation but now low

— Not amenable for soft decoding ~ + Amenable for soft decoding

With the move to MLC/TLC technologies, advanced coding
schemes will need to be considered!

L R S Flash Memory Summit 2013, Santa Clara, CA 53 / 56

Summary and Outlook

Further information, papers, references etc. available at
http://loris.ee.ucla.edu

Selected list:

@ R. Gabrys, E. Yaakobi and L. Dolecek, " Graded bit error correcting codes with applications to Flash
memory,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2315 — 2327, Apr. 2013.

@ J. Wang, L. Dolecek and R. Wesel, " The Cycle Consistency Matrix Approach to Absorbing Sets in
Separable Circulant-Based LDPC Codes,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2293 —
2314, Apr. 2013.

@ B. Amiri, J. Kliewer, and L. Dolecek, " Analysis and Enumeration of Absorbing Sets for Non-Binary

Graph-Based Codes,” submitted to IEEE Transactions on Communications, 2013. (Conference version in
ISIT 2013.)

L R S Flash Memory Summit 2013, Santa Clara, CA 54 / 56

Summary and Outlook

UCLA Coding talks and posters at 2013 Flash Summit

@ R. Gabrys, “Coding for Unreliable Flash Memory Cells,”
Session 301-A: Flash Controller Design Options - from 8:30 to
9:40 am on Thursday, August 15.

@ B. Amiri, “Low Error Floor LDPC Codes and Their Practical
Decoders for Flash Memory Applications,” Hall B, booths
916-920 — Exhibit Hours

e K. Vakilinia, “Non-Binary LDPC Code Design from
Inter-Connected Cycles,” Hall B, booths 916-920 — Exhibit
Hours

L R S Flash Memory Summit 2013, Santa Clara, CA 55 / 56

Summary and Outlook

Announcement

New center on Coding for Storage at UCLA:
http://www.loris.ee.ucla.edu/codess

Kick-off day on Thursday 9/19/2013!

Registration is free. Register early, space is limited.

L R S Flash Memory Summit 2013, Santa Clara, CA 56 / 56

	Preliminaries
	Algebraic codes
	Algebra review
	BCH codes
	Algebraic codes for Flash

	Graph-based codes
	LDPC code construction
	Iterative Decoding
	LDPC codes for Flash

	Advanced Coding Approaches
	Graded algebraic codes
	Non-binary LDPC codes

	Summary and Outlook

