
Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Making Error Correcting Codes Work for Flash
Memory

Part II: Algebraic and Graph-based Codes with Applications to
Flash Memory

Lara Dolecek

Laboratory for Robust Information Systems (LORIS)
Center on Development of Emerging Storage Systems (CoDESS)

Department of Electrical Engineering, UCLA

Flash Memory Summit 2013

Flash Memory Summit 2013, Santa Clara, CA 1 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Outline

1 Preliminaries
2 Algebraic codes

Algebra review
BCH codes
Algebraic codes for Flash

3 Graph-based codes
LDPC code construction
Iterative Decoding
LDPC codes for Flash

4 Advanced Coding Approaches
Graded algebraic codes
Non-binary LDPC codes

5 Summary and Outlook

Flash Memory Summit 2013, Santa Clara, CA 2 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Concepts of interest

!"#$%&'()&#$%&'(

"+,-(.&//01&(#$%&2$'%('&-'&3&%(2$'%(%&#$%&%(.&//01&(

4(5*-/(4(5*-/("(5*-/("(5*-/(

6$*/7(890""&:(

A channel code C maps a message m of length k into a
codeword c of length n, with n > k (encoder)

Total number of codewords: 2k

Code rate: R = k/n.

Structure of C is used to determine the stored message
(decoder).

Flash Memory Summit 2013, Santa Clara, CA 3 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Concepts of interest

Linear block code C of dimension k and codeword length n can be
represented by

a k × n generator matrix G

mG = c

a (n − k)× n parity check matrix H

cHT = 0

G specifies the range space of C and H specifies the null
space of C .

The two representations are mathematically equivalent.

Flash Memory Summit 2013, Santa Clara, CA 4 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Concepts of interest

Linear block code C of dimension k and codeword length n can be
represented by

a k × n generator matrix G mG = c

a (n − k)× n parity check matrix H

cHT = 0

G specifies the range space of C and H specifies the null
space of C .

The two representations are mathematically equivalent.

Flash Memory Summit 2013, Santa Clara, CA 4 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Concepts of interest

Linear block code C of dimension k and codeword length n can be
represented by

a k × n generator matrix G mG = c

a (n − k)× n parity check matrix H cHT = 0

G specifies the range space of C and H specifies the null
space of C .

The two representations are mathematically equivalent.

Flash Memory Summit 2013, Santa Clara, CA 4 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Concepts of interest

Linear block codes can be divided in two categories:

algebraic codes (BCH codes, Hamming codes, Reed-Solomon
codes)

graph-based codes (LDPC codes, Turbo codes)

A good practical channel code should

be able to correct as many transmission errors as possible

be equipped with a simple decoding algorithm

Flash Memory Summit 2013, Santa Clara, CA 5 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

Algebraic Codes

Flash Memory Summit 2013, Santa Clara, CA 6 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

Brief review of finite fields

Suppose q is prime.

GF (q) can be viewed as the set {0, 1, . . . , q − 1}.
Operations are performed modulo q.

Example:

GF (5) has elements {0, 1, 2, 3, 4} such that

product 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

sum 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Flash Memory Summit 2013, Santa Clara, CA 7 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

Brief review of finite fields

GF (q) can also be expressed as
{α−∞ = 0, α0 = 1, α, α2, . . . , αq−1}, for suitably chosen α.

Example:

In GF (5): 0 → α−∞, 1 → α0, 2 → α, 3 → α3 and 4 → α2

Consider an element α of GF (q) such that α �= 0 and α �= 1.

Let s be the smallest positive integer such that αs = 1. Then,
s is the order of α.

If s = q − 1, then α is called a primitive element of GF (q).

GF (q) is thus generated by powers of a primitive element α.

Flash Memory Summit 2013, Santa Clara, CA 8 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

Brief review of finite fields

We are often interested in the extension field GF (qm) of
GF (q), where q is prime and m is a positive integer.
GF (qm) is then {α−∞ = 0, α0 = 1, α, α2, . . . , αqm−1}, where
α denotes a primitive element of GF (qm) and is a root of
so-called primitive polynomial.

Example:

GF (8) = GF (23).
Here, α is a root of the polynomial x3 + x + 1.
We then have

α0 = 1
α1 = α
α2 = α2

α3 = α+ 1

α4 = α2 + α
α5 = α2 + α+ 1
α6 = α2 + 1
α−∞ = 0

Flash Memory Summit 2013, Santa Clara, CA 9 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

BCH code construction

BCH code C is a linear, cyclic code described by a (d − 1)× n
parity check matrix H with elements from GF (qm) with α having
order n:

H =





1 αb α2b · · · α(n−1)b

1 αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

... · · ·
...

1 αb+d−2 α2(b+d−2) · · · α(n−1)(b+d−2)





b is any (positive) integer and d is integer 2 ≤ d ≤ n.

Minimum distance of C is at least d . The code corrects at
least t = �d−1

2 � errors.

Flash Memory Summit 2013, Santa Clara, CA 10 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

BCH code construction

If α is a primitive element, then the blocklength is n = qm − 1
(largest possible).

If b = 1, BCH code is called narrow-sense (simplifies some
encoding and decoding operations).

For m = 1, BCH codes are also known as Reed-Solomon
codes.

Flash Memory Summit 2013, Santa Clara, CA 11 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

BCH code properties

A code C is called a cyclic code if all cyclic shifts of a
codeword in C are also codewords.

Example:
Suppose (0, 1, 0, 1, 1) ↔ x3 + x + 1 is a codeword in C . Then
so are (1, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 1, 0) and
(1, 0, 1, 0, 1).

Cyclic code is generated by a generator polynomial g(x), such
that each codeword c corresponds to a polynomial
pc(x) = m(x)g(x). All rows of the generator matrix G are
cyclic shifts of g(x).
BCH code: Each codeword c corresponds to a polynomial
pc(x) = m(x)g(x) where g(x) is LCM of
(x − αb)(x − αb+1) · · · (x − αb+d−2).

Flash Memory Summit 2013, Santa Clara, CA 12 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

BCH code properties

A code C is called a cyclic code if all cyclic shifts of a
codeword in C are also codewords.

Example:
Suppose (0, 1, 0, 1, 1) ↔ x3 + x + 1 is a codeword in C . Then
so are (1, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 1, 0) and
(1, 0, 1, 0, 1).

Cyclic code is generated by a generator polynomial g(x), such
that each codeword c corresponds to a polynomial
pc(x) = m(x)g(x). All rows of the generator matrix G are
cyclic shifts of g(x).
BCH code: Each codeword c corresponds to a polynomial
pc(x) = m(x)g(x) where g(x) is LCM of
(x − αb)(x − αb+1) · · · (x − αb+d−2).

Flash Memory Summit 2013, Santa Clara, CA 12 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

BCH code example

Let’s construct a narrow-sense BCH code over GF (8)
correcting t = 1 error and of length n = 7.

We consider a primitive element α that satisfies
α3 + α+ 1 = 0. Notice that α7 = 1.

Then,

H =

�
1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α8 α10 α12

�

Flash Memory Summit 2013, Santa Clara, CA 13 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

BCH code example

Let’s construct a narrow-sense BCH code over GF (8)
correcting t = 1 error and of length n = 7.

We consider a primitive element α that satisfies
α3 + α+ 1 = 0. Notice that α7 = 1.

Then,

H =

�
1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

�

Flash Memory Summit 2013, Santa Clara, CA 13 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

BCH code example

We can interpret this code in the binary domain by substituting

1 →




1
0
0



 α →




0
1
0



 α2 →




0
0
1



 α3 →




1
1
0





α4 →




0
1
1



 α5 →




1
1
1



 α6 →




1
0
1



 0 →




0
0
0





Flash Memory Summit 2013, Santa Clara, CA 14 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

BCH code example

We can then interpret this parity check matrix in the binary
domain as

H =





1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
0 0 1 0 1 1 1
0 1 1 1 0 0 1





Here H is 6× 7 and has rank 3. This code can correct 1 error.

Flash Memory Summit 2013, Santa Clara, CA 15 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

Decoding BCH codes

Decoding algorithm heavily relies on the algebraic structure of the
code: recall that each codeword polynomial c(x) must have as
roots αb, αb+1,..,αb+d−2.

1 Compute the syndromes of the received polynomial r(x)– tells
us which of α’s are not the roots.

2 Based on the syndromes, compute the locations of the errors
(system of linear equations).

3 Compute the error values at these location (system of
non-linear equations that are in the Vandermode form)

4 Based on steps 2 and 3, build error polynomial e(x).

5 Add e(x) to r(x) to produce the estimate of c(x).

Flash Memory Summit 2013, Santa Clara, CA 16 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

Decoding BCH codes

If the system of equations cannot be solved, declare a
decoding failure. This is a hard limit on the number of
correctable errors.

Implementation can be greatly reduced using the
shift-registers viewpoint in the Berlekamp-Massey algorithm.

Flash Memory Summit 2013, Santa Clara, CA 17 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

Performance evaluation

Figure: Theoretical bound for length n = 1023 binary BCH code for
different error correction capability t (and different code rate).

4 4.2 4.4 4.6 4.8 5 5.2

10−3

10−2

10−1

100

SNR(dB)

FE
R

t=10, rate= 0.9022
t=11, rate= 0.8925
t=12, rate= 0.8827
t=13, rate= 0.8729
t=14, rate= 0.8631
t=15, rate= 0.8534
t=16, rate= 0.8436

Flash Memory Summit 2013, Santa Clara, CA 18 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebra review
BCH codes
Algebraic codes for Flash

Graph-Based Codes

Flash Memory Summit 2013, Santa Clara, CA 19 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Low Density Parity Check (LDPC) Codes

Definition 1: LDPC code

An LDPC block code C is a linear block code whose parity-check
matrix H has a small number of ones in each row and column.

Invented by Gallager in 1963 but were all but forgotten until
late 1990’s.

In the limit of very large block-lengths LDPC codes are known
to approach the Shannon limit (i.e., the highest rate at which
the code can be designed that guarantees reliable
communication)

LDPC codes are amenable to low-complexity iterative
decoding.

Flash Memory Summit 2013, Santa Clara, CA 20 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

An Example

LDPC code described by the sparse parity check matrix H:

H =





1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0





Matrix H has 9 columns and 6 rows.

There are 9 coded bits and 6 parity-check equations.
Each coded bit participates �=2 parity-check equations and each
parity-check equation contains r = 3 coded bits.

Flash Memory Summit 2013, Santa Clara, CA 21 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

An Example

LDPC code described by the sparse parity check matrix H:

H =





1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0





Matrix H has 9 columns and 6 rows.
There are 9 coded bits and 6 parity-check equations.
Each coded bit participates �=2 parity-check equations and each
parity-check equation contains r = 3 coded bits.

Flash Memory Summit 2013, Santa Clara, CA 21 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

LDPC Preliminaries

Definition 3: Tanner graph

A Tanner graph of a code C with a parity check matrix H is the
bipartite graph such that:

each coded symbol i is represented by a variable node vi ,

each parity-check equation j is represented by a check node cj ,

there exists an edge between a variable node and a check
node if and only if H(j , i) = 1.

Flash Memory Summit 2013, Santa Clara, CA 22 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

An Example

LDPC code: parity check matrix H and its Tanner graph

H =





1
0
0
1
0
0

0
1
0
0
1
0

0
0
1
0
0
1

1
0
0
0
1
0

0
1
0
0
0
1

0
0
1
1
0
0

1
0
0
0
0
1

0
1
0
1
0
0

0
0
1
0
1
0





c1
c2
c3
c4
c5
c6

v1 v2 v3 v4 v5 v6 v7 v8 v9

Flash Memory Summit 2013, Santa Clara, CA 23 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

An Example

LDPC code: parity check matrix H and its Tanner graph

H =





1
0
0
1
0
0

0
1
0
0
1
0

0
0
1
0
0
1

1
0
0
0
1
0

0
1
0
0
0
1

0
0
1
1
0
0

1
0
0
0
0
1

0
1
0
1
0
0

0
0
1
0
1
0





c1
c2
c3
c4
c5
c6

v1 v2 v3 v4 v5 v6 v7 v8 v9

Flash Memory Summit 2013, Santa Clara, CA 23 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

An Example

LDPC code: parity check matrix H and its Tanner graph

H =





1
0
0
1
0
0

0
1
0
0
1
0

0
0
1
0
0
1

1
0
0
0
1
0

0
1
0
0
0
1

0
0
1
1
0
0

1
0
0
0
0
1

0
1
0
1
0
0

0
0
1
0
1
0





c1
c2
c3
c4
c5
c6

v1 v2 v3 v4 v5 v6 v7 v8 v9

Flash Memory Summit 2013, Santa Clara, CA 23 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

1 (bit-to-check) Each variable node sends a message to each
check node it is connected to,

2 (check processing) Each check node then computes the
consistency of incoming messages,

3 (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

4 (bit processing) Each variable node (coded symbol) updates
its value.

Flash Memory Summit 2013, Santa Clara, CA 24 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

1 (bit-to-check) Each variable node sends a message to each
check node it is connected to,

2 (check processing) Each check node then computes the
consistency of incoming messages,

3 (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

4 (bit processing) Each variable node (coded symbol) updates
its value.

Flash Memory Summit 2013, Santa Clara, CA 24 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

1 (bit-to-check) Each variable node sends a message to each
check node it is connected to,

2 (check processing) Each check node then computes the
consistency of incoming messages,

3 (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

4 (bit processing) Each variable node (coded symbol) updates
its value.

Flash Memory Summit 2013, Santa Clara, CA 24 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

1 (bit-to-check) Each variable node sends a message to each
check node it is connected to,

2 (check processing) Each check node then computes the
consistency of incoming messages,

3 (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

4 (bit processing) Each variable node (coded symbol) updates
its value.

Flash Memory Summit 2013, Santa Clara, CA 24 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

1 (bit-to-check) Each variable node sends a message to each
check node it is connected to,

2 (check processing) Each check node then computes the
consistency of incoming messages,

3 (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

4 (bit processing) Each variable node (coded symbol) updates
its value.

Flash Memory Summit 2013, Santa Clara, CA 24 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Message Passing Decoding

Passed messages can be either

Hard decisions: 0 or 1

Soft decisions/likelihoods: real numbers

Flash Memory Summit 2013, Santa Clara, CA 25 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

An Example

!"#$%&'()&#$%&'(

"+,-(.&//01&(#$%&2$'%('&-'&3&%(2$'%(%&#$%&%(.&//01&(

4(5(4464(4664(

7$*/8(9:0""&;(

Message m Codeword y
 m1 y1y2y3y4

 0 ! 0 0 0 0
 1 ! 1 1 0 1

y1 y2 y3 y4

y1+y2+y3 = 0 y2+y3 + y4= 0 y1+y3+y4 = 0

Flash Memory Summit 2013, Santa Clara, CA 26 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Message Passing Decoding

Bit-flipping algorithm

Flash Memory Summit 2013, Santa Clara, CA 27 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Received Codeword

1 0 0 1

y1+y2+y3 y1+y3+y4 y2+y3+y4

Flash Memory Summit 2013, Santa Clara, CA 28 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Bit-to-Check Messages

1 0 0 1

1+y2+y3 1+y3+y4 y2+y3+y4

Flash Memory Summit 2013, Santa Clara, CA 29 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Bit-to-Check Messages

1 0 0 1

1+0+y3 1+y3+y4 0+y3+y4

Flash Memory Summit 2013, Santa Clara, CA 29 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check Processing

1 0 0 1

1+0+0=1 ?? 1+0+y4 0+0+y4

Flash Memory Summit 2013, Santa Clara, CA 30 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check Processing

1 0 0 1

1+0+0=1 ?? 1+0+1= 0 0+0+1= 1 ??

Flash Memory Summit 2013, Santa Clara, CA 30 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check-to-Bit Messages

1 0 0 1

1+0+0=1 ?? 1+0+1= 0 0+0+1= 1 ??

Flip, Flip, Flip,

Flash Memory Summit 2013, Santa Clara, CA 31 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check-to-Bit Messages

1 0 0 1

1+0+0=1 ?? 1+0+1= 0 0+0+1= 1 ??

Flip, Stay Flip, Stay, Flip, Stay,

Flash Memory Summit 2013, Santa Clara, CA 31 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check-to-Bit Messages

1 0 0 1

1+0+0=1 ?? 1+0+1= 0 0+0+1= 1 ??

Flip, Stay Flip, Flip Flip, Stay, Flip Stay, Flip

Flash Memory Summit 2013, Santa Clara, CA 31 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Bit Processing

1 0 0 1

1+0+0=1 ?? 1+0+1= 0 0+0+1= 1 ??

Flip, Stay Flip, Flip Flip, Stay, Flip Stay, Flip

Flash Memory Summit 2013, Santa Clara, CA 32 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Bit Processing

1 1 0 1

y1+y2+y3 y1+y3+y4 y2+y3+y4

Flash Memory Summit 2013, Santa Clara, CA 32 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Bit-to-Check Messages

1 1 0 1

1+y2+y3 1+y3+y4 y2+y3+y4

Flash Memory Summit 2013, Santa Clara, CA 33 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Bit-to-Check Messages

1 1 0 1

1+1+y3 1+y3+y4 1+y3+y4

Flash Memory Summit 2013, Santa Clara, CA 33 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Bit-to-Check Messages

1 1 0 1

1+1+0 = 0 1+0+y4 1+0+y4

Flash Memory Summit 2013, Santa Clara, CA 33 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check Processing

1 1 0 1

1+1+0 = 0 1+0+1 = 0 1+0+1 = 0

Flash Memory Summit 2013, Santa Clara, CA 34 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check-to-Bit Messages

1 1 0 1
Stay, Stay, Stay,

1+1+0 = 0 1+0+1 = 0 1+0+1 = 0

Flash Memory Summit 2013, Santa Clara, CA 35 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check-to-Bit Messages

1 1 0 1
Stay, Stay, Stay,

1+1+0 = 0 1+0+1 = 0 1+0+1 = 0

Flash Memory Summit 2013, Santa Clara, CA 35 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Check-to-Bit Messages

1 1 0 1
Stay, Stay Stay, Stay Stay, Stay, Stay Stay, Stay

1+1+0= 0 1+0+1= 0 1+0+1= 0

Flash Memory Summit 2013, Santa Clara, CA 36 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Bit Processing

1 1 0 1

1+1+0 = 0 1+0+1 = 0 1+0+1 = 0

Decoded Codeword

Flash Memory Summit 2013, Santa Clara, CA 37 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log P(xi=0|yi)

P(xi=1|yi) .

Sum-product algorithm (SPA) [1,2]

bit-to-check L(vi → cj) =�
j �∈N(i)\j L(c

�
j → vi) + Lint(vi)

check-to-bit L(cj → vi) =

Φ−1
��

i �∈N(j)\i Φ(|L(v �i → cj)|)
�

i �∈N(j)\i sgn(L(v
�
i → cj))

�

where Φ(x) = − log(tanh(x/2))

Min-sum algorithm (MSA) [3]

check-to-bit L(cj → vi) =
mini �∈N(j)\i |L(v �i → cj)|

�
i �∈N(j)\i sgn(L(v

�
i → cj))

[1] R. Gallager, MIT Press, 1963.
[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.
[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.

Flash Memory Summit 2013, Santa Clara, CA 38 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log P(xi=0|yi)

P(xi=1|yi) .

Sum-product algorithm (SPA) [1,2]
bit-to-check L(vi → cj) =�

j �∈N(i)\j L(c
�
j → vi) + Lint(vi)

check-to-bit L(cj → vi) =

Φ−1
��

i �∈N(j)\i Φ(|L(v �i → cj)|)
�

i �∈N(j)\i sgn(L(v
�
i → cj))

�

where Φ(x) = − log(tanh(x/2))
Min-sum algorithm (MSA) [3]

check-to-bit L(cj → vi) =
mini �∈N(j)\i |L(v �i → cj)|

�
i �∈N(j)\i sgn(L(v

�
i → cj))

[1] R. Gallager, MIT Press, 1963.
[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.
[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.

Flash Memory Summit 2013, Santa Clara, CA 38 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -­‐1 -­‐1 +1 -­‐1

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

Values from channel -­‐1.1 0.1 1.2 -­‐0.9

Values using BPSK -­‐1 -­‐1 +1 -­‐1

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

Beliefs -­‐2.2 0.2 2.4 -­‐1.8

Values from channel -­‐1.1 0.1 1.2 -­‐0.9

Values using BPSK -­‐1 -­‐1 +1 -­‐1

() =
1 2/2 2

+1 2/2 2 = 2
2

We assume = 1.

()

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

Beliefs -­‐2.2 0.2 2.4 -­‐1.8

Values from channel -­‐1.1 0.1 1.2 -­‐0.9

0.1666

Values using BPSK -­‐1 -­‐1 +1 -­‐1

0.2

2.4

= 2 tanh 1 tanh 12

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Decoding

Bit values 1 1 0 1

Beliefs -­‐2.2 0.2 2.4 -­‐1.8

Values from channel -­‐1.1 0.1 1.2 -­‐0.9

0.1666

-­‐1.3774

-­‐1.6119

-­‐1.3774

-­‐0.1599

1.3051

-­‐0.1430

-­‐1.6119

0.1666

Values using BPSK -­‐1 -­‐1 +1 -­‐1

= 2 tanh 1 tanh 12

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Decoding

Beliefs -­‐2.2 0.2 2.4 -­‐1.8

Values from channel -­‐1.1 0.1 1.2 -­‐0.9

-­‐3.4108 -­‐2.7893 3.5621 -­‐3.2453

Values using BPSK -­‐1 -­‐1 +1 -­‐1

Bit values 1 1 0 1

0.1666

-­‐1.3774

-­‐1.6119

-­‐1.3774

-­‐0.1599

1.3051

-­‐0.1430

-­‐1.6119

0.1666

= () +

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Soft Decoding

Beliefs -­‐2.2 0.2 2.4 -­‐1.8

Values from channel -­‐1.1 0.1 1.2 -­‐0.9

-­‐3.4108 -­‐2.7893 3.5621 -­‐3.2453

Values using BPSK -­‐1 -­‐1 +1 -­‐1

Bit values 1 1 0 1

0.1666

-­‐1.3774

-­‐1.6119

-­‐1.3774

-­‐0.1599

1.3051

-­‐0.1430

-­‐1.6119

0.1666

All variable nodes are decoded to correct bit value.

1 1 0 1

Flash Memory Summit 2013, Santa Clara, CA 39 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Performance evaluation

Figure: Bnary LDPC codes vs. BCH codes performance comparison for
AWGN channel. Code rate is 0.9, block length is 1000 bits. BCH code
corrects 13 errors.

3.5 4 4.5 5

1.0E−4

1.0E−3

1.0E−2

1.0E−1

1

SNR (dB)

FE
R

Binary LDPC
BCH

Flash Memory Summit 2013, Santa Clara, CA 40 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Extracting soft information in SLC Flash

In Flash, levels are represented by distributions

1 read compares against a single threshold

!!
! !! !

0 1
!!! ! !

0 1

! !

0 1

Flash Memory Summit 2013, Santa Clara, CA 41 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Extracting soft information in SLC Flash

Idea: multiple word line reads

2 reads compare against two thresholds

Maximize mutual information of the induced channel to
determine the best thresholds (here q and −q)

Flash Memory Summit 2013, Santa Clara, CA 42 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Extracting soft information in SLC Flash

Idea: multiple word line reads

2 reads compare against two thresholds

!!
! !! !

0 1
!!! ! !

0 1

! !

0 1

Maximize mutual information of the induced channel to
determine the best thresholds (here q and −q)

Flash Memory Summit 2013, Santa Clara, CA 42 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Extracting soft information in SLC Flash

Idea: multiple word line reads

2 reads compare against two thresholds

!!
! !! !

0 1
!!! ! !

0 1

! !

0 1

0 0

1 1

e

p1

p1

p2
p3

p2

p3

0

1

(a) Two reads

Fig. 3. Equivalent discrete memoryless channel models for SLC with (a) two reads and (b) three reads with distinct word-line

voltages.

A. PAM-Gaussian Model

This subsection describes how to select word-line voltages to achieve MMI in the context of

a simple model of the flash cell read channel as PAM transmission with Gaussian noise. MMI

word-line voltage selection is presented using three examples: SLC with two reads, SLC with

three reads, and 4-level MLC with six reads.

For SLC flash memory, each cell can store one bit of information. Fig. 2 shows the model of

the threshold voltage distribution as a mixture of two identically distributed Gaussian random

variables. When either a “0” or “1” is written to the cell, the threshold voltage is modeled as a

Gaussian random variable with variance N0/2 and either mean −
√
Es (for “1”) or mean +

√
Es

(for “0”).

For SLC with two reads using two different word line voltages, which should be symmetric

(shown as q and −q in Fig. 2), the threshold voltage is quantized according to three regions

shown in Fig. 2: the white region, the black region, and the union of the light and dark gray

regions (which essentially corresponds to an erasure). This quantization produces the effective

discrete memoryless channel (DMC) model as shown in Fig. 3 (a) with input X ∈ {0, 1} and

output Y ∈ {0, e, 1}.

Assuming X is equally likely to be 0 or 1, the MI I(X;Y) between the input X and output

Maximize mutual information of the induced channel to
determine the best thresholds (here q and −q)

Flash Memory Summit 2013, Santa Clara, CA 42 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Extracting soft information in SLC Flash

Idea: multiple word line reads

2 reads compare against two thresholds

!!
! !! !

0 1
!!! ! !

0 1

! !

0 1

0 0

1 1

e

p1

p1

p2
p3

p2

p3

0

1

(a) Two reads

Fig. 3. Equivalent discrete memoryless channel models for SLC with (a) two reads and (b) three reads with distinct word-line

voltages.

A. PAM-Gaussian Model

This subsection describes how to select word-line voltages to achieve MMI in the context of

a simple model of the flash cell read channel as PAM transmission with Gaussian noise. MMI

word-line voltage selection is presented using three examples: SLC with two reads, SLC with

three reads, and 4-level MLC with six reads.

For SLC flash memory, each cell can store one bit of information. Fig. 2 shows the model of

the threshold voltage distribution as a mixture of two identically distributed Gaussian random

variables. When either a “0” or “1” is written to the cell, the threshold voltage is modeled as a

Gaussian random variable with variance N0/2 and either mean −
√
Es (for “1”) or mean +

√
Es

(for “0”).

For SLC with two reads using two different word line voltages, which should be symmetric

(shown as q and −q in Fig. 2), the threshold voltage is quantized according to three regions

shown in Fig. 2: the white region, the black region, and the union of the light and dark gray

regions (which essentially corresponds to an erasure). This quantization produces the effective

discrete memoryless channel (DMC) model as shown in Fig. 3 (a) with input X ∈ {0, 1} and

output Y ∈ {0, e, 1}.

Assuming X is equally likely to be 0 or 1, the MI I(X;Y) between the input X and output

Maximize mutual information of the induced channel to
determine the best thresholds (here q and −q)

Flash Memory Summit 2013, Santa Clara, CA 42 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Extracting soft information in SLC Flash

Idea: multiple word line reads

3 reads compare against three thresholds

Maximize mutual information of the induced channel to
determine the best thresholds (here q1, −q1 and 0)

Flash Memory Summit 2013, Santa Clara, CA 43 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

Extracting soft information in SLC Flash

Idea: multiple word line reads

3 reads compare against three thresholds

!!
! !! !

0 1
!!! ! !

0 1

! !

0 1

0

1

e

00

10

p1

p1

p2
p3

p2

p3

01

11

p4

p4

0

1

(b) Three reads

Fig. 3. Equivalent discrete memoryless channel models for SLC with (a) two reads and (b) three reads with distinct word-line

voltages.

A. PAM-Gaussian Model

This subsection describes how to select word-line voltages to achieve MMI in the context of

a simple model of the flash cell read channel as PAM transmission with Gaussian noise. MMI

word-line voltage selection is presented using three examples: SLC with two reads, SLC with

three reads, and 4-level MLC with six reads.

For SLC flash memory, each cell can store one bit of information. Fig. 2 shows the model of

the threshold voltage distribution as a mixture of two identically distributed Gaussian random

variables. When either a “0” or “1” is written to the cell, the threshold voltage is modeled as a

Gaussian random variable with variance N0/2 and either mean −
√
Es (for “1”) or mean +

√
Es

(for “0”).

For SLC with two reads using two different word line voltages, which should be symmetric

(shown as q and −q in Fig. 2), the threshold voltage is quantized according to three regions

shown in Fig. 2: the white region, the black region, and the union of the light and dark gray

regions (which essentially corresponds to an erasure). This quantization produces the effective

discrete memoryless channel (DMC) model as shown in Fig. 3 (a) with input X ∈ {0, 1} and

output Y ∈ {0, e, 1}.

Assuming X is equally likely to be 0 or 1, the MI I(X;Y) between the input X and output

Maximize mutual information of the induced channel to
determine the best thresholds (here q1, −q1 and 0)

Flash Memory Summit 2013, Santa Clara, CA 43 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

LDPC vs. BCH code performance

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of
length n = 9100.

10−2 10−1
10−6

10−5

10−4

10−3

10−2

10−1

100
Frame Error Rate vs. Raw Bit Error Rate (BPSK)

Channel Bit Error Probability

Fr
am

e
Er

ro
r R

at
e

BCH theory
LDPC soft
LDPC 2−bit (3 reads)
LDPC 1.6−bit (2 reads)
LDPC 1−bit (1 read)
Capacity soft
Capacity 2−bit
Capacity 1.6−bit
Capacity 1−bit

Fig. 10: Simulation results for SLC.

10−2 10−1
10−6

10−5

10−4

10−3

10−2

10−1

100
Frame Error Rate vs. Raw Bit Error Rate (4PAM)

Channel Bit Error Probability

Fr
am

e
Er

ro
r R

at
e

BCH theory
LDPC soft
LDPC 2.8−bit (6 reads)
LDPC 2−bit (3 reads)
Capacity soft
Capacity 2.8−bit
Capacity 2−bit

Fig. 11: Simulation results for 4-level MLC.

signal-to-noise ratio Es/N0 in Figure 12 for SLC, where
each Es/N0 corresponds to an equivalent raw bit error rate
in Figure 10.
Of course the BCH code will also benefit from the use

of soft information. However, we were unable to perform
simulations of a BCH decoder utilizing soft information (such
as erasures) for inclusion in this paper.

2 3 4 5 6 7 8
10−6

10−5

10−4

10−3

10−2

10−1

100
Frame Error Rate vs. SNR (BPSK)

Es/N0 (dB)

Fr
am

e
Er

ro
r R

at
e

BCH theory
LDPC soft
LDPC 2−bit (3 reads)
LDPC 1.6−bit (2 reads)
LDPC 1−bit (1 read)
Capacity soft
Capacity 2−bit
Capacity 1.6−bit
Capacity 1−bit

Fig. 12: Simulation results for SLC.

V. CONCLUSION

This paper explores the benefit of using soft information in
an LDPC decoder for flash memory. Using a small amount
of soft information improves the performance of LDPC codes
significantly and demonstrates a clear performance advantage
over conventional BCH codes. In order to maximize the
performance benefit of the soft information, we develop a
word-line-voltages-selection method that maximizes the mu-
tual information between the input and output of the equivalent
read channel. Possible directions for future research include
extending these results to more precise channel models, the
design of better high-rate LDPC codes for flash memory, and
the analysis of the corresponding error-floor properties.

REFERENCES

[1] Y. Li, S. Lee, and et al. A 16 Gb 3b/cell NAND Flash Memory in 56nm
With 8MB/s Write Rate. In Proc. of ISSCC, pages 506–632, Feb. 2008.

[2] C. Trinh, N. Shibata, and et al. A 5.6MB/s 64 Gb 4b/Cell NAND Flash
Memory in 43nm CMOS. In Proc. of ISSCC, page 246, Feb. 2009.

[3] J.-D. Lee, S.-H. Hur, and J.-D. Choi. Effects of floating-gate interference
on NAND flash memory cell operation. IEEE Electron Device Letters,
23(5):264–266, May 2002.

[4] T. Richardson, M. Shokrollahi, and R. Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. IEEE Trans.
Inform. Theory, 47(2):616–637, Feb. 2001.

[5] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to
Flash Memory. Proc. IEEE, 91(4), April 2003.

[6] Y. Maeda and K. Haruhiko. Error Control Coding for Multilevel Cell
Flash Memories Using Nonbinary Low-Density Parity-Check Codes. In
24th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems,
Chicago, IL, Oct. 2009.

[7] S. Li and T. Zhang. Improving Multi-Level NAND Flash Memory
Storage Reliability Using Concatenated BCH-TCM Coding. IEEE Trans.
VLSI Systems, 18(10):1412–1420, Oct. 2010.

[8] G. Dong, N. Xie, and T. Zhang. On the Use of Soft-Decision Error-
Correcting Codes in NAND Flash Memory. IEEE Trans. Circ. and Sys.,
58(2):429–439, Feb. 2011.

[9] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel. Selective Avoidance
of Cycles in Irregular LDPC Code Construction. IEEE Trans. Comm.,
52(8):1242–1247, Aug. 2004.

[10] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold. Progressive edge-growth
Tanner graphs. In Proc. IEEE GLOBECOM, San Antonio, TX, Feb.
2001.

[11] T. Richardson. Error-floors of LDPC codes. In Proc. 41st Annual
Allerton Conf., Monticello, IL, Oct. 2003.

[12] J. Wang, L. Dolecek, and R.D. Wesel. Controlling LDPC Absorbing Sets
via the Null Space of the Cycle Consistency Matrix. In Proc. IEEE Int.
Conf. on Comm. (ICC), Kyoto, Japan, June. 2011.

[13] J. Wang, L. Dolecek, and R. D Wesel. LDPC Absorbing Sets, the Null
Space of the Cycle Consistency Matrix, and Tanner’s Constructions. In
Proc. Info. Theory and Appl. Workshop, San Diego, CA, Feb. 2011.

[14] M. Ivkovic, S. K. Chilappagari, and B. Vasic. Eliminating trapping sets
in low-density parity-check codes by using Tanner graph covers. IEEE
Trans. Inform. Theory, 54(8):3763–3768, Aug. 2008.

[15] D. V. Nguyen, B. Vasic, and M. Marcellin. Structured LDPC Codes
from Permutation Matrices Free of Small Trapping Sets. In Proc. IEEE
Info. Theory Workshop (ITW), Dublin, Ireland, Sept. 2010.

[16] Q. Huang, Q. Diao, S. Lin, and K. Abdel-Ghaffar. Cyclic and quasi-
cyclic LDPC codes: new developments. In Proc. Info. Theory and Appl.
Workshop, San Diego, CA, Feb. 2011.

[17] A. Ramamoorthy and R. D. Wesel. Construction of Short Block Length
Irregular LDPC Codes. In Proc. IEEE Int. Conf. on Comm. (ICC), Paris,
France, June. 2004.

Caution: AWGN-optimized LDPC codes may not be the best
for the quantized Flash channel !

Flash Memory Summit 2013, Santa Clara, CA 44 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

LDPC code construction
Iterative Decoding
LDPC codes for Flash

LDPC vs. BCH code performance

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of
length n = 9100.

10−2 10−1
10−6

10−5

10−4

10−3

10−2

10−1

100
Frame Error Rate vs. Raw Bit Error Rate (BPSK)

Channel Bit Error Probability

Fr
am

e
Er

ro
r R

at
e

BCH theory
LDPC soft
LDPC 2−bit (3 reads)
LDPC 1.6−bit (2 reads)
LDPC 1−bit (1 read)
Capacity soft
Capacity 2−bit
Capacity 1.6−bit
Capacity 1−bit

Fig. 10: Simulation results for SLC.

10−2 10−1
10−6

10−5

10−4

10−3

10−2

10−1

100
Frame Error Rate vs. Raw Bit Error Rate (4PAM)

Channel Bit Error Probability

Fr
am

e
Er

ro
r R

at
e

BCH theory
LDPC soft
LDPC 2.8−bit (6 reads)
LDPC 2−bit (3 reads)
Capacity soft
Capacity 2.8−bit
Capacity 2−bit

Fig. 11: Simulation results for 4-level MLC.

signal-to-noise ratio Es/N0 in Figure 12 for SLC, where
each Es/N0 corresponds to an equivalent raw bit error rate
in Figure 10.
Of course the BCH code will also benefit from the use

of soft information. However, we were unable to perform
simulations of a BCH decoder utilizing soft information (such
as erasures) for inclusion in this paper.

2 3 4 5 6 7 8
10−6

10−5

10−4

10−3

10−2

10−1

100
Frame Error Rate vs. SNR (BPSK)

Es/N0 (dB)

Fr
am

e
Er

ro
r R

at
e

BCH theory
LDPC soft
LDPC 2−bit (3 reads)
LDPC 1.6−bit (2 reads)
LDPC 1−bit (1 read)
Capacity soft
Capacity 2−bit
Capacity 1.6−bit
Capacity 1−bit

Fig. 12: Simulation results for SLC.

V. CONCLUSION

This paper explores the benefit of using soft information in
an LDPC decoder for flash memory. Using a small amount
of soft information improves the performance of LDPC codes
significantly and demonstrates a clear performance advantage
over conventional BCH codes. In order to maximize the
performance benefit of the soft information, we develop a
word-line-voltages-selection method that maximizes the mu-
tual information between the input and output of the equivalent
read channel. Possible directions for future research include
extending these results to more precise channel models, the
design of better high-rate LDPC codes for flash memory, and
the analysis of the corresponding error-floor properties.

REFERENCES

[1] Y. Li, S. Lee, and et al. A 16 Gb 3b/cell NAND Flash Memory in 56nm
With 8MB/s Write Rate. In Proc. of ISSCC, pages 506–632, Feb. 2008.

[2] C. Trinh, N. Shibata, and et al. A 5.6MB/s 64 Gb 4b/Cell NAND Flash
Memory in 43nm CMOS. In Proc. of ISSCC, page 246, Feb. 2009.

[3] J.-D. Lee, S.-H. Hur, and J.-D. Choi. Effects of floating-gate interference
on NAND flash memory cell operation. IEEE Electron Device Letters,
23(5):264–266, May 2002.

[4] T. Richardson, M. Shokrollahi, and R. Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. IEEE Trans.
Inform. Theory, 47(2):616–637, Feb. 2001.

[5] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to
Flash Memory. Proc. IEEE, 91(4), April 2003.

[6] Y. Maeda and K. Haruhiko. Error Control Coding for Multilevel Cell
Flash Memories Using Nonbinary Low-Density Parity-Check Codes. In
24th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems,
Chicago, IL, Oct. 2009.

[7] S. Li and T. Zhang. Improving Multi-Level NAND Flash Memory
Storage Reliability Using Concatenated BCH-TCM Coding. IEEE Trans.
VLSI Systems, 18(10):1412–1420, Oct. 2010.

[8] G. Dong, N. Xie, and T. Zhang. On the Use of Soft-Decision Error-
Correcting Codes in NAND Flash Memory. IEEE Trans. Circ. and Sys.,
58(2):429–439, Feb. 2011.

[9] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel. Selective Avoidance
of Cycles in Irregular LDPC Code Construction. IEEE Trans. Comm.,
52(8):1242–1247, Aug. 2004.

[10] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold. Progressive edge-growth
Tanner graphs. In Proc. IEEE GLOBECOM, San Antonio, TX, Feb.
2001.

[11] T. Richardson. Error-floors of LDPC codes. In Proc. 41st Annual
Allerton Conf., Monticello, IL, Oct. 2003.

[12] J. Wang, L. Dolecek, and R.D. Wesel. Controlling LDPC Absorbing Sets
via the Null Space of the Cycle Consistency Matrix. In Proc. IEEE Int.
Conf. on Comm. (ICC), Kyoto, Japan, June. 2011.

[13] J. Wang, L. Dolecek, and R. D Wesel. LDPC Absorbing Sets, the Null
Space of the Cycle Consistency Matrix, and Tanner’s Constructions. In
Proc. Info. Theory and Appl. Workshop, San Diego, CA, Feb. 2011.

[14] M. Ivkovic, S. K. Chilappagari, and B. Vasic. Eliminating trapping sets
in low-density parity-check codes by using Tanner graph covers. IEEE
Trans. Inform. Theory, 54(8):3763–3768, Aug. 2008.

[15] D. V. Nguyen, B. Vasic, and M. Marcellin. Structured LDPC Codes
from Permutation Matrices Free of Small Trapping Sets. In Proc. IEEE
Info. Theory Workshop (ITW), Dublin, Ireland, Sept. 2010.

[16] Q. Huang, Q. Diao, S. Lin, and K. Abdel-Ghaffar. Cyclic and quasi-
cyclic LDPC codes: new developments. In Proc. Info. Theory and Appl.
Workshop, San Diego, CA, Feb. 2011.

[17] A. Ramamoorthy and R. D. Wesel. Construction of Short Block Length
Irregular LDPC Codes. In Proc. IEEE Int. Conf. on Comm. (ICC), Paris,
France, June. 2004.Caution: AWGN-optimized LDPC codes may not be the best

for the quantized Flash channel !

Flash Memory Summit 2013, Santa Clara, CA 44 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Advanced Coding Approaches

Flash Memory Summit 2013, Santa Clara, CA 45 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Graded algebraic codes

Motivation: Raw error rate for TLC flash

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−5

10−4

10−3

10−2

P/E Cycles

Er
ro

r R
at

e

Error Rates for TLC Flash

LSB
CSB
MSB
Symbol Error Rate

Student Version of MATLAB

LSB: least significant bit
CSB: center significant bit
MSB: most significant bit

Table: Mapping between Voltage
Levels and Triple-bit Words

Voltage Level Triple-bit Word
0 111
1 110
2 100
3 101
4 001
5 000
6 010
7 011

Flash Memory Summit 2013, Santa Clara, CA 46 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors
1 0.9617
2 0.0314
3 0.0069

Standard error-correction codes are designed to correct all
symbol–to–symbol errors and do not differentiate among these
errors.

Usage of standard codes: overkill in terms of redundancy, as
certain symbol–to–symbol errors are not as important.

Flash Memory Summit 2013, Santa Clara, CA 47 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors
1 0.9617
2 0.0314
3 0.0069

Standard error-correction codes are designed to correct all
symbol–to–symbol errors and do not differentiate among these
errors.

Usage of standard codes: overkill in terms of redundancy, as
certain symbol–to–symbol errors are not as important.

Flash Memory Summit 2013, Santa Clara, CA 47 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Graded algebraic codes

Idea: Design codes for the observed intracell error patterns

Approach: Algebraic codes that simultaneously control the
number of symbols in error and the number of bits in error
per erroneous symbol

Construction: Tensor-product operations

Flash Memory Summit 2013, Santa Clara, CA 48 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Performance evaluation

2800 3000 3200 3400 3600 3800 4000 4200 4400

10
4

10
3

10
2

10
1

P/E Cycles

P
a
g
e
 E

rr
o
r

R
a
te

Error Rates of Codes Applied to TLC Flash

Non binary BCH [4095,3534,80]
8

Binary BCH [4095,3531,47]
2

TPC [81,7;1,3]
8

Binary BCH [4096 , 3351, 62]
2
 (LSB), [4096 , 3339, 63]

2
 (MSB), [4096, 3915, 15]

2
 (CSB)

All codes are of rate 0.86 and length 4000 bits.

Flash Memory Summit 2013, Santa Clara, CA 49 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Performance evaluation

2800 3000 3200 3400 3600 3800 4000 4200 4400

10
4

10
3

10
2

10
1

P/E Cycles

P
a
g
e
 E

rr
o
r

R
a
te

Error Rates of Codes Applied to TLC Flash

Non binary BCH [4095,3534,80]
8

Binary BCH [4095,3531,47]
2

TPC [81,7;1,3]
8

Binary BCH [4096 , 3351, 62]
2
 (LSB), [4096 , 3339, 63]

2
 (MSB), [4096, 3915, 15]

2
 (CSB)

40 % lifetime improvement

20 % lifetime improvement

All codes are of rate 0.86 and length 4000 bits.

Flash Memory Summit 2013, Santa Clara, CA 49 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Non-binary LDPC codes

Entries in the parity check matrix H are taken from GF (q).
Example: GF (8) = 0, 1, 2, ..., 7. (with αk → k + 1 for 0 ≤ k ≤ 6)

H =





1 0 0 3 0 0 5 0 0
0 2 0 0 6 0 0 2 0
0 0 3 0 0 1 0 0 1
1 0 0 0 0 5 0 7 0
0 3 0 2 0 0 0 0 4
0 0 6 0 7 0 1 0 0





c1
c2
c3
c4
c5
c6

v1 v2 v3 v4 v5 v6 v7 v8 v9

Parity check c3: 3v3 + v6 + v9 ≡ 0 mod 8.

Flash Memory Summit 2013, Santa Clara, CA 50 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Non-binary LDPC codes

Decoding is more complex than in the binary case. Keep track
of q − 1 likelihoods on each edge.

Popular approaches:

Direct implementation has complexity on the order of O(q2)
FFT-based SPA has complexity on the order of O(q log q)
Min-sum and its variants can further reduce the complexity

Flash Memory Summit 2013, Santa Clara, CA 51 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Graded algebraic codes
Non-binary LDPC codes

Performance evaluation

Figure: Non-binary LDPC codes vs. BCH codes performance comparison
for AWGN channel. Code rate is 0.9, block length is 1000 bits. BCH
code corrects 13 errors.

3.5 4 4.5 5

1.0E−8

1.0E−6

1.0E−4

1.0E−2

1

SNR (dB)

FE
R

GF(2)
GF(4)
GF(8)
GF(16)
BCH

Flash Memory Summit 2013, Santa Clara, CA 52 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Algebraic codes (BCH)

– Performance is acceptable

+ Guaranteed error correction
capability

+ Structure allows for efficient
decoder implementation

– Not amenable for soft decoding

Graph-based codes (LDPC)

+ Performance is excellent

– No guaranteed error correction
capability (but we have ideas)

– Decoder complexity is acceptable
but now low

+ Amenable for soft decoding

With the move to MLC/TLC technologies, advanced coding
schemes will need to be considered!

Flash Memory Summit 2013, Santa Clara, CA 53 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Further information, papers, references etc. available at
http://loris.ee.ucla.edu

Selected list:

R. Gabrys, E. Yaakobi and L. Dolecek, ”Graded bit error correcting codes with applications to Flash

memory,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2315 – 2327, Apr. 2013.

J. Wang, L. Dolecek and R. Wesel, ”The Cycle Consistency Matrix Approach to Absorbing Sets in

Separable Circulant-Based LDPC Codes,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2293 –
2314, Apr. 2013.

B. Amiri, J. Kliewer, and L. Dolecek, ”Analysis and Enumeration of Absorbing Sets for Non-Binary

Graph-Based Codes,” submitted to IEEE Transactions on Communications, 2013. (Conference version in
ISIT 2013.)

Flash Memory Summit 2013, Santa Clara, CA 54 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

UCLA Coding talks and posters at 2013 Flash Summit

R. Gabrys, “Coding for Unreliable Flash Memory Cells,”
Session 301-A: Flash Controller Design Options - from 8:30 to
9:40 am on Thursday, August 15.

B. Amiri, “Low Error Floor LDPC Codes and Their Practical
Decoders for Flash Memory Applications,” Hall B, booths
916-920 – Exhibit Hours

K. Vakilinia, “Non-Binary LDPC Code Design from
Inter-Connected Cycles,” Hall B, booths 916-920 – Exhibit
Hours

Flash Memory Summit 2013, Santa Clara, CA 55 / 56

Outline
Preliminaries

Algebraic codes
Graph-based codes

Advanced Coding Approaches
Summary and Outlook

Announcement

New center on Coding for Storage at UCLA:
http://www.loris.ee.ucla.edu/codess

Kick-off day on Thursday 9/19/2013!

Registration is free. Register early, space is limited.

Flash Memory Summit 2013, Santa Clara, CA 56 / 56

	Preliminaries
	Algebraic codes
	Algebra review
	BCH codes
	Algebraic codes for Flash

	Graph-based codes
	LDPC code construction
	Iterative Decoding
	LDPC codes for Flash

	Advanced Coding Approaches
	Graded algebraic codes
	Non-binary LDPC codes

	Summary and Outlook

