
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012 1549

On the Capacity and Programming of Flash Memories
Anxiao (Andrew) Jiang, Member, IEEE, Hao Li, and Jehoshua Bruck, Fellow, IEEE

Abstract—Flash memories are currently the most widely
used type of nonvolatile memories. A flash memory consists of
floating-gate cells as its storage elements, where the charge level
stored in a cell is used to represent data. Compared to magnetic
recording and optical recording, flash memories have the unique
property that the cells are programmed using an iterative pro-
cedure that monotonically shifts each cell’s charge level upward
toward its target value. In this paper, we model the cell as a
monotonic storage channel, and explore its capacity and optimal
programming. We present two optimal programming algorithms
based on a few different noise models and optimization objectives.

Index Terms—Capacity, data storage, flash memory.

I. INTRODUCTION

T HERE are two unique properties that distinguish flash
memories from traditional communication and storage

channels: iterative programming and monotonic change of cell
state. To write data into a flash memory cell, which is its basic
storage element, the cell is programmed iteratively via multiple
rounds of programming, until its state reaches the target value.
That is different from communication channels, where the
transmitted signals are no longer refined. It is also different
from magnetic or optical recording, where data are typically
written into the magnetic or optical disk in just one round of
programming. The more the rounds of programming are used,
the better the flash memory cell state can be controlled. On
the other side, when a flash memory cell is programmed, its
state—which corresponds to the amount of charge stored in
the cell—can only change monotonically toward higher charge
levels. These two properties make flash memories a special
storage channel. It is interesting to study the capacity of the
channel, and see how to program it for optimal performance.

We briefly review the flash memory technology for better
understanding of its properties. Flash memories are currently

Manuscript received November 15, 2009; revised October 16, 2011; accepted
October 18, 2011. Date of current version February 29, 2012. The material in
this paper was presented in part at the International Symposium on Information
Theory and Its Applications, Auckland, New Zealand, December 2008, and at
the IEEE Pacific Rim Conference on Communications, Computers, and Signal
Processing, Victoria, BC, Canada, August 2009. This work was supported in
part by NSF CAREER Award CCF-0747415 and in part by NSF Grant ECCS-
0802107.

A. (A.) Jiang is with the Department of Computer Science and Engineering,
Texas A&M University, College Station, TX 77843-3112 USA (e-mail:
ajiang@cse.tamu.edu).

H. Li was with the Department of Computer Science and Engineering,
Texas A&M University, College Station, TX 77843-3112 USA. He is now with
Google, Inc., Kirkland, WA 98033 USA (e-mail: haoli@google.com).

J. Bruck is with the Department of Electrical Engineering, California Institute
of Technology, Pasadena, CA 91125 USA (e-mail: bruck@caltech.edu).

Communicated by U. Mitra, Associate Editor At Large.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2011.2177755

the most widely used type of nonvolatile electronic memories
(NVMs) due to their physical endurance and high performance
[3]. In a flash memory, floating-gate cells are organized as
blocks, usually with to cells per block. The memory
stores data in the cells by appropriately setting the cells’ levels,
where a cell’s level can be increased or decreased by injecting
charge (e.g., electrons) into the cell or removing charge from the
cell. In current flash memories, discrete cell levels are chosen
to represent data. Therefore, a cell with levels can store
bits. In current products, both single-level cells (SLCs), where

, and multilevel cells (MLCs), where (e.g.,
or 8), are used. To increase the storage capacity, MLCs with
more levels are being actively developed.

Flash memories have a prominent feature for their cell pro-
gramming. Although a cell’s level can be efficiently increased
via charge injection, to decrease it, the whole block must be
erased (i.e., all cell levels must be lowered to the minimum
value) and then reprogrammed. On the other hand, the precision
of charge injection is limited, which means that the actual incre-
ment in the cell level usually differs from the targeted increment.
So, the overinjection of charge into cells is a major concern for
programming, because the only way to correct overinjection is
to erase the block and reprogram it. The cost of block erasure/re-
programming is prohibitively high [8], since it is not only very
time consuming and energy consuming, but also decreases the
lifetime of flash memories. (A flash memory block can only en-
dure to erasures.) So in the current technology, a cell
is programmed using a conservative approach: the memory cir-
cuit iteratively injects charge into the cell and then measures the
level [1], [7], [16]. Initially, the cell is at the base level. Then in
each round, some charge is injected into the cell, and the new
cell level is measured. The injection is small enough so that the
risk of overshooting is sufficiently small. The cell level shifts
upward monotonically with each round, until it becomes close
enough to the target value. An illustration of the cell-program-
ming process is shown in Fig. 1.

The flash memory cell presents an interesting and new
channel model, which we shall call monotonic storage channel.
The model has several important elements. As a storage
channel, the cell can be repeatedly programmed to make its
level approach a target value. However, its level can only
increase, which makes an overshooting error uncorrectable. In
each round of programming, the actual increment of the cell
level often differs from the targeted increment due to the noisy
programming process. Since the cell level can be measured after
every round of programming, which is feedback information,
the programming algorithm should be adaptive. That is, how
to set the targeted increment for the cell level in the th
round should depend on the cell level measured after the th
round. Every round of programming has a cost, which, for flash
memories, is the time delay used to program a cell and measure

0018-9448/$31.00 © 2012 IEEE

1550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

Fig. 1. Programming a cell using multiple rounds of charge injection and cell-level measurement.

its level. The programming procedure ends when either the
number of rounds reaches its maximum allowed value, or when
the cell level reaches the target level. The fundamental problem
for monotonic storage channels is to find the optimal tradeoff
between the programming precision—namely, the difference
between the final cell level and the target level—and the total
programming cost.

In flash memories, the time delay for writing is usually
bounded to ensure high write speed. In this paper, we assume
the number of rounds of charge injection to be given, and
optimize the programming precision. The key is to find an
algorithm that achieves the best performance by adaptively
selecting programming actions based on the changing cell
level. We present two optimal programming algorithms based
on a few different programming noise models and different
measures of the programming precision. The optimal program-
ming precision is closely related to the storage capacity of the
flash memory cells.

The rest of this paper is organized as follows. In Section II, we
give an overview of related work. In Section III, we study the
zero-error capacity, and present an optimal cell-programming
algorithm that achieves it. In Section IV, we present a cell-pro-
gramming algorithm that optimizes the expected programming
precision. In Section V, we show the conclusions.

II. OVERVIEW OF RELATED WORK

The monotonic property of flash memories is caused by the
high cost of block erasures [3]. It has motivated the study of
rewriting codes for flash memories, where data can be modi-
fied by only increasing cell levels. A rewriting code builds a
one-to-many mapping from the data to the cells’ states, so that
the data can be changed repeatedly without a block erasure. The
rewriting codes include write-once-memory (WOM) codes for
storing individual variables [4], [6], [17], floating codes for the
joint coding of multiple variables [5], [8], [9], [21], buffer codes
for buffering recent values in a data stream [2], and the rewriting
codes in [11] that generalize the aforementioned data models.
In these rewriting codes, every cell has discrete levels, and the
cell levels can only increase. It is assumed error free to change
a cell from a lower discrete level to a higher discrete level. This
is different from the monotonic storage channel model here, be-
cause here we focus on the programming noise, and study the
programming algorithms that can minimize the impact of the
programming noise.

A data representation scheme called rank modulation has
been proposed in [13] and [14]. It assumes that the cell levels

can only monotonically increase, and it uses the relative order
of cell levels—instead of their absolute values—to represent
data. This way, the danger of charge overinjection associated
with fixed discrete cell levels can be reduced. Rewriting codes
were also studied for the rank modulation scheme [13].

In addition to flash memories [10], the cell-programming
problem for phase-change memories has also been studied in
recent years [15]. Similar to flash memories, the phase-change
memory cells can also be programmed multiple times to achieve
higher accuracy. Thus, in [15], the authors appropriately named
them rewritable storage channels. However, unlike flash mem-
ories, phase-change memories can change cell levels in both
directions, and do not have block erasures. So, the channel
does not have the monotonic property, and the programming
algorithm can assume that the cell always starts with the same
initial state in each round [15]. In comparison, in this study, we
focus on the monotonic storage channel, where the cell level
changes monotonically and requires an adaptive programming
method.

The Z-channel is a well-known asymmetric channel, where
the noise changes symbols in a monotonic direction [18], [19].
Error-correcting codes for correcting such asymmetric errors
have been studied [20]. Compared to the Z-channel, the noise
in the monotonic storage channel model appears during the cell-
programming process instead of after it (i.e., after the data are
written).

III. ZERO-ERROR CAPACITY AND OPTIMAL PROGRAMMING

In this section, we study the zero-error capacity of flash
memory cells, and present an optimal programming algorithm.

A. Cell-Programming Model

The values that a flash memory cell’s level can take can be
seen as a continuous range , where the maximum cell level

is determined by the physics of flash memories [3]. Normally,
this range is divided into regions:

where the cell levels in each region represent a data symbol.1

Let and . A cell with regions can represent a
symbol from an alphabet , and therefore can store
up to bits.

1The inclusion and exclusion of the two boundary values of a region are
chosen for mathematical convenience, and are easy to deal with in practice. The
same holds for the inclusion and exclusion of boundary values for other nota-
tions in the paper.

JIANG et al.: ON THE CAPACITY AND PROGRAMMING OF FLASH MEMORIES 1551

We assume that the initial level of a cell is 0. To write a symbol
into a cell, multiple rounds of charge injection

will be used to shift the cell level from 0 monotonically into
the region . In this section, we measure the cost of
programming by the number of rounds of charge injection that
are used. That is, every round of charge injection has cost one,
which in practice represents the average time delay associated
with the charge injection and the following measurement of the
actual cell level [3]. We assume that at most rounds of charge
injection can be used to program a cell, and are interested in the
storage capacity given this cost constraint.

In this section, we focus on zero-error programming: given
that a cell can be programmed using at most rounds of charge
injection, we want to make sure that for ,
the symbol can be written into the cell with guaran-
teed success. Since charge injection is a noisy process,
this implies that must be a finite number, and the re-
gions— —must
also be appropriately chosen. Given this zero-error program-
ming requirement, we call the maximum value of that
can be achieved the zero-error capacity of the flash memory
cells.

We assume that the flash memory circuit has a programming
resolution . In each round of charge injection, the circuit aims
to increase a cell’s level by , for some integer . This targeted
cell-level increment is controlled by the discrete adjustment
of the programming voltage or current [3]. Due to the program-
ming noise, the actual increment of the cell level will be close
to, but different from, .

It is not easy to accurately model the programming noise. The
distribution of the noise varies among cells [3]. In this paper, we
assume that when the targeted cell-level increment is , the
actual increment of the cell level is randomly distributed in the
range

for some parameters and . This model has
the property that the actual increment of the cell level is always
positive, and the higher the targeted cell-level increment, the
larger the noise. By setting and sufficiently large, we can
make sure that the actual noise is contained in the region

. The model can be refined if more knowledge of
the programming noise is known.

To find the zero-error capacity, we need to solve the fol-
lowing optimization problem. Its input parameters are: 1) ,
the maximum cell level; 2) , the maximum number of rounds
of programming; 3) , the programming resolution; 4) and
, the noise parameters. The output includes: 1) the maximum

value that can take for zero-error programming; 2) how to
optimally divide the cell-level range into the intervals

so that zero-error
programming can be realized.

For , let denote the targeted cell-level
increment of the th round of programming, where

. To obtain the optimal cell-programming al-
gorithm, we need to know how to choose
adaptively. The general problem is as follows. Suppose the

Fig. 2. Storage in a flash memory cell with � � ��, � � ���, � � ���,
� � ���, and � � �. (a) Mapping cell-level intervals to information symbols.
(b) Programming algorithm.

target cell-level interval is . (For example, to write the
symbol , we have .)
And suppose the cell has been programmed for
rounds—which means that there are still rounds of program-
ming left—and its current level is . We need to find an integer

such that when we set the targeted
cell-level increment of the next round to be ,
no matter what the actual cell-level increment will be inside
the range ,
there will still be a way to program the cell with the remaining

rounds such that the final cell level will enter the target
interval . (It can be seen that the programming noise here
can be considered as an adversary for the cell-programming
algorithm.)

Let us show how to implement the cell-programming
algorithm efficiently in flash memories. Instead of having
the memory, compute (for ,

and) during the write opera-
tion—which will slow down the write speed—and it will be
better to store the values of in a table for quick
lookups. More specifically, the table should be small, which
means that we should partition the range into a small
number of subranges for , so that when is in a subrange,
regardless of its specific value, the value of
will be the same. This way, the cell-programming algorithm
can be carried out at high speed. We illustrate it in the following
example, where the data are computed based on the optimal
cell-programming algorithm we will present. And our results
will show that this approach is always feasible.

Example 1: Let , , , , and
. A storage scheme is shown in Fig. 2(a) that divides

into cell-level intervals. As an illustration, when
the information symbol to store is 7 (namely, the target cell-
level interval is), the cell-programming algorithm is
shown in Fig. 2(b). For example, if the current cell level is in the
region , the targeted cell-level increment in the next
round of programming is . (The cell-level region is
not shown in Fig. 2(b) because the cell level will not enter it.) It
is noticeable that this programming algorithm does not depend
on the number of programming rounds that remain. (This is due
to the result that the optimal algorithm can take a greedy cell-
programming strategy, which will be shown in Section III-C.)
Both the storage scheme and the programming algorithm are

1552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

derived based on the results to be presented next and, in fact,
optimize the storage capacity.

B. Optimal Setting of Cell-Level Intervals

Consider how to set the cell-level intervals
, so that

can be maximized. Clearly, we can let and set
the first interval as , because once a cell
is programmed, its level will be at least . Then, the
optimal approach is to determine the values
sequentially. Specifically, suppose that the value of has been
determined. To determine , we make it as small as possible
as long as there is a guarantee that a cell can be changed from
level 0 to the interval with at most rounds of
charge injection. This way, the size of the interval is
minimized. The value of can be determined this way: if the
value of found with the aforementioned approach is no
less than , then we let and let .

The following notation, , is useful based on the
aforementioned analysis.

Definition 2: Let and be two cell levels,
and let be a positive integer. Let denote the minimum
real number that satisfies the following constraint: there exists
a programming strategy that can guarantee to shift the cell level
from into the range

using at most rounds of charge injection.
is a monotonic function of :

To maximize the storage capacity, which is equivalent to maxi-
mizing , the cell-level intervals should be set as follows:

As the minimum targeted increment of the cell level is , it is
easy to see that the interval .

Example 3: Let —namely, only one round of charge
injection can be used to program a cell—and consider how to
set the cell-level intervals. Consider the th cell-level interval

where . To shift the cell level from 0 into
the range with just one round of charge
injection, the targeted increment of the cell level should sat-
isfy the two conditions

The minimum value for is . So, we get

Define as

Then, the cell-level intervals that maximize the storage capacity
are

For convenience, in the rest of this paper, for any positive
integer , let us define .

C. Properties of the Function

We have shown that to compute the zero-error capacity, the
key is to compute the function . In this section, we will
present a recursive function useful for computing . It
is necessary to find properties of the function that can
make the computation efficient. We will show that has
three special properties.

1) It is piecewise continuous and nondecreasing in . And the
maximum value that attains in such a piece is
also greater than or equal to its value in all the subsequent
pieces.

2) For two cell levels and with , if it is possible
to shift the cell level from to through charge injec-
tion, then . Namely, the value of

decreases for a chain of cell levels as they get
closer to the threshold , if it is possible to obtain the chain
of cell levels through a sequence of charge injection.

3) For an optimal cell-programming algorithm, the targeted
cell-level increment for each round of charge injection can
be set in a greedy way by making the charge injection as
large as possible, as long as it is guaranteed that the cell
level after the charge injection will not exceed the target
cell-level interval.

Those three properties will be used to derive the zero-error ca-
pacity and the optimal cell-programming algorithm.

We first derive the recursion for . It is easy to see
that when , .

When , we get

JIANG et al.: ON THE CAPACITY AND PROGRAMMING OF FLASH MEMORIES 1553

because to shift the cell level from to some value above with
just one round of charge injection, the targeted increment of the
cell level should be at least .

When and , we have the following recursion:

This recursion holds because to change the cell level from
to some value above , the targeted cell-level increment of the
next round can be set as with ; after the
next round, the actual cell level (which is denoted by in the
recursion) can be any value in ,
and more rounds can be used to program the cell.

The aforementioned recursive formula, however, cannot be
directly used to compute effectively, because here
can take infinitely many different values. Therefore, more prop-
erties of need to be learned. It is not hard to show that

is neither a monotonic nor a continuous function in
. However, it is piecewise monotonic and continuous in , as

Lemma 5 shows.
Let us first divide the range of cell levels into pieces of length

, and use , for , to denote the boundary values
of those pieces.

Definition 4: For every , define as

(Note that, here, we consider as a given constant.)

For any , if , we will say “ is above .” We
now present the piecewise property of .

Lemma 5: Let be a nonnegative integer. Then, we have the
following.

1) , the function is continuous
and nondecreasing in ;

2) ,

Proof: First, consider the case . For any
, we have

, which is continuous and nondecreasing
in . For any , without loss of generality, we can
assume for some . Then, we have

So, both properties are true when .
In the following, let us assume .
The proof is by induction on . When and ,

, so Property (1) is true. When
and , we have

So Property (2) is also true. This serves as the base case of the
induction. Now consider the inductive step.

We first consider Property (1). To shift the cell level from
to some value above , the targeted increment of the cell level
in the next round will be for some

Define as

and define as

Clearly

The range can be split into three subregions

such that:
1) when , we have

2) when , we have and

3) when , we have , but

The first or the third subregion above might be empty. Then,
when , by the induction assumption

1554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

is continuous and nondecreasing in . When , by
the induction assumption,

remains constant as increases.
When ,

is continuous and nondecreasing in . So, it is not
hard to see that is continuous and nondecreasing in for

.
Since is the lower closure of

continuous and nondecreasing functions of , is con-
tinuous and nondecreasing in . So, Property (1) is proved.

We now consider Property (2). Let (here) denote the
integer such that

We get

By the induction assumption, is nondecreasing for
, and for

. So, for

So, Property (2) is proved.
The next lemma shows that for a sequence of cell levels that

can be sequentially obtained through charge injection, the value
of the function keeps decreasing. (In the lemma, and

denote two such cell levels in the sequence.)

Lemma 6: Suppose , and suppose there exists an
integer such that

Then, it holds that

Furthermore, if , then

Proof: Let denote a programming algorithm that guaran-
tees to shift the cell level from into the range by
using at most rounds of charge injection. With the algorithm ,
if is one of the possible values of the cell level after rounds
of charge injection for some integer , it is easy to see that the
conclusions in this lemma are true. In the following, we assume
that the cell level cannot be after any number of rounds of
charge injection with the algorithm .

Let be the number satisfying the following three
properties.

1) With the algorithm , is one of the possible values of the
cell level after rounds, for some .

2) For some integer ,

3) Among all the numbers that satisfy the previous two prop-
erties, is the greatest. (Note that must exist because
itself satisfies the first two properties.)

Let be the integer such that if the cell level is after rounds
of charge injection, the algorithm will set the targeted incre-
ment of the cell level to be in the next round. It is easy to see
that , because of the definition of and the assumption that
the cell level cannot be changed from to after any number
of rounds of charge injection with the algorithm . So, we get

If , then (which means that).
This is because if , since here, it is possible
for the cell level to be greater than or equal to after
the first round of charge injection, which is a clear contradiction
to the definition of algorithm . Then by having in the
aforementioned analysis, we get .

We now show that once it is known how to compute the func-
tion , the cell-programming problem can be simpli-
fied substantially. Let us call a cell-programming algorithm op-
timal if when it is used to change a cell level from to any
value above with rounds of charge injection, the algorithm
guarantees that the final cell level—the cell level after the
rounds of charge injection—will be less than . The fol-
lowing theorem shows that if the value of is known,
an optimal cell-programming algorithm can use a greedy ap-
proach: in each round of charge injection, it can make the tar-
geted cell-level increment as large as possible, as long as it is
guaranteed that the cell level after the charge injection will not
exceed .

Theorem 7: Suppose that our goal is to shift the cell level
from to any value above with rounds of charge injec-
tion. Then, a cell-programming algorithm that takes the fol-
lowing greedy approach will be optimal: in each round of charge
injection, if the cell level before this charge injection—which
we denote by —is less than (so we have), the
algorithm sets the targeted cell-level increment for this round to
be

Proof: Let be an integer such that it is possible for the cell
level to change from to after rounds of charge injection
using an optimal programming algorithm. Then

JIANG et al.: ON THE CAPACITY AND PROGRAMMING OF FLASH MEMORIES 1555

Let

Let

, if , by Lemma 6

if ,

So

So, it is optimal to choose as the targeted cell-level increment
in the next round.

D. Zero-Error Capacity of Flash Memory Cells

In this section, we will show how to compute the zero-error
capacity of flash memory cells. First, let us show how to com-
pute the value of .

Let be a fixed number. Let denote the nonnegative
integer such that

(Remember that by Lemma 5, the function is contin-
uous and nondecreasing in when is in the range .)
In the following, we will present a polynomial-time algorithm
that computes the value of . We first show how to com-
pute , for . The algo-
rithm is recursive. Its time complexity is .

Algorithm 8: Compute by using the
following two functions. (Here .) First,

Second, if , then

Theorem 9: Algorithm 8 correctly computes

Proof: Consider the case . Our goal is to shift the cell
level from to any value above . The targeted
cell-level increment in the first round of charge injection can
be . (There is no need to make the targeted cell-
level increment be in an optimal algorithm.) When the

targeted cell-level increment is , after the first round, the cell
level falls in the range

By Lemma 5, we see that

Since

the lemma holds.

We now show how to compute , with and
. Given the values of , the

following algorithm has the time complexity .
Algorithm 10: Compute in the following way.

(Here, and .)
1) Let . If , then

2) Let denote the smallest integer such that

If , then

otherwise, go to the next step.
3) For , let be the greatest integer such

that

Let

Then, .

Theorem 11: Algorithm 10 correctly computes .
Proof: Consider the programming algorithm that shifts the

cell level from to any value above . Let denote the tar-
geted cell-level increment in the first round of charge injection
using an optimal programming algorithm. By Theorem 7, can
be

in which case we will have

1556 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

Fig. 3. Horizontal axis is �, and the vertical axis is ���� �� ��. Here, � � �, � � �, � � �, � � ��	, � �
�
.

Fig. 4. �-axis is �, the �-axis is �, and the 	-axis is the maximum value of
 for zero-error programming. Here, the parameters are � �
�, � � ��	, and the
maximum number of rounds of charge injection is � � 	.

(Otherwise, the cell level would be at most

after the first round. Then, at least one more round of program-
ming would be needed to shift the cell level above , and it
would be possible for the cell level to be above after
the second round, which would make the programming algo-
rithm invalid.) So, if at least two rounds of charge injection are

used, ; if only one round is used, .
The rest of the proof is similar to that of Theorem 9.

An example of the function is shown in Fig. 3. We
can see that it has the properties presented in Lemmas 5 and 6 .

Having shown how to compute the function , we can
use the method presented in Section III-B to find the maximum
value such that the cell-level range can be partitioned
into intervals and mapped to information symbols. This gives
us the zero-error capacity of flash memory cells. An example is
illustrated in Fig. 4.

The following theorem considers the storage capacity when
arbitrarily many rounds of charge injection can be used.

JIANG et al.: ON THE CAPACITY AND PROGRAMMING OF FLASH MEMORIES 1557

Theorem 12: When is sufficiently large, .
Proof: Suppose is sufficiently large. To shift the cell level

from 0 to above a positive number , we can set as the tar-
geted cell-level increment in every round of charge injection.
This way, the final cell level will be smaller than .
With this programming method, the width of each cell-level in-
terval mapped to a symbol is less than . In addition,

. So .

E. Optimal Cell-Programming Algorithm

In this section, we present an algorithm that optimally pro-
grams a cell, given the optimal set of cell-level intervals

Here, for , .
Algorithm 13: For any given , the following algorithm

shifts the cell level from 0 into the interval using at
most rounds of charge injection.

1) If , since the initial cell level—zero—is in , no
charge injection is necessary.

2) If , keep programming the cell with
the following approach until the cell level is in the interval

: given the current cell level ,
set the targeted cell-level increment in the next round of
charge injection as

3) If , use one round of charge injection to shift the cell
level from 0 into the interval , where the targeted
cell-level increment of this round is .

Based on the previous analysis, it is easy to verify the correct-
ness of the aforementioned programming algorithm.

IV. PROGRAMMING FOR OPTIMAL EXPECTED PRECISION

In this section, we study cell programming with optimal ex-
pected precision. The motivation is that to study the capacity
of cell ensembles, which depends on the statistical precision of
programming, it is necessary to understand how accurately the
cells can be programmed. In contrast to the study in the previous
section, here we need to consider the probability distribution of
the programming noise.

We continue to use the programming model of the pre-
vious section. That is, when the targeted cell-level incre-
ment is during a round of charge injection, the actual
cell-level increment will be randomly distributed in the range

. For simplicity, in this section, we as-
sume that the actual cell-level increment has a uniform random
distribution in this range. More practical programming-noise
models can be studied in the future. And as before, denotes
the maximum cell level, denotes the maximum number of
rounds of charge injection that can be used to program a cell,
and the initial level of the cell is zero.

Our objective is to program a cell to a target level ,
using at most rounds of charge injection. Due to the program-

ming noise, the final cell level will deviate from . There is a
cost associated with the final cell level , whose value
clearly should increase when deviates further away from . In
this paper, we consider two families of cost functions.

Definition 14 (Cost function for MLC and Rank Mod-
ulation): In the MLC technology, the final cell level should be
close to one of a set of discrete levels. It is appropriate to define

as

for some positive integer .
In the rank modulation technology [12]–[14], the objective of

programming a cell is to shift the cell level above a certain value
. It is appropriate to define as

, if
, if

for some positive integer .

Let denote the targeted cell-level
increments in the rounds of charge injection, and let

denote the actual cell level after each round. For
, after the th round of charge injection,

the flash memory can measure , and adaptively choose the
targeted cell-level increment for the next round. The ob-
jective of the cell-programming problem is to find the adaptive
strategy of selecting , such that the expected cost
of the final cell level

is minimized. (Here, is the expectation of the random vari-
able .) In the following, we present an optimal programming
algorithm.

A. Optimal Strategy for Adaptive Cell Programming

The cell-programming algorithm requires an adaptive
strategy for selecting the targeted cell-level increments

for the rounds of charge injection.
To characterize the adaptive strategy, let us define two functions

and .
Definition 15 (Functions and):
Let be a real number, and let be integers.

is defined to be the minimum achievable value of the
expected cost of the final cell level, given the following.

1) The current cell level is .
2) We can program the cell with more rounds of charge

injection.
is defined to be the minimum achievable value of

the expected cost of the final cell level, given the following.
1) The current cell level is .
2) We can program the cell with more rounds of charge

injection.
3) In the first round of the remaining rounds of charge injec-

tion, we will choose the targeted cell-level increment to be
.

1558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

It is simple to see that

For the cell-programming problem, since the initial cell level
is and rounds of charge injection can be used,
the objective is to find a strategy that makes the final cell level’s
expected cost reach its minimum value

During the programming process, given that the cell level is
after rounds of charge injection, the flash memory should
adaptively choose as the targeted cell-level increment
of the th round, such that minimizes the value of

.

B. Computing the Initial Value of

The cost function we consider is for MLC or rank modula-
tion, which is shown in Definition 14. As we have seen, to find
the optimal cell-programming algorithm, it is helpful to know
how to compute and . In this section, we first
compute the initial values of —in particular, the values
of —corresponding to the two cost functions.

1) When the Cost Function Is for MLC: The cost function
for MLC is . For simplicity, we show how to
compute when . The other values of can be dealt
with similarly. Note that when there is just one round of charge
injection, the only decision to make is to choose the targeted
cell-level increment of that round, which we denote by in
the following equations.

When , the minimum expected cost of the final cell
level is

To see which value of minimizes the aforementioned equa-
tion, define

Since and , we have

So, is convex. By setting , we find that is
minimized when

(assuming that does not have to be an integer). We can see
that the aforementioned value for is positive if and only if is
negative. Since actually needs to be a nonnegative integer, we
find that to minimize , should take the following value of

:

, if
, if

We can now compute the value of as follows. Let
. Then, when , .

So, for , when

we have and

Similarly, when , we have and

When , we have
and

When , we have and

Therefore, we can partition the domain of , , into
regions, while in each region is a degree-2 polyno-

mial. So, is piecewise polynomial.
It is not hard to see that when , is also piecewise

polynomial. For simplicity, we skip the details.
2) When the Cost Function Is for Rank Modulation: The

cost function for rank modulation is if and
if . For simplicity, we show how to

compute when . The other values of can be
dealt with similarly.

We have . The value of
that minimizes is the minimum integer that satisfies
the constraint , which is .
So, if , we have

JIANG et al.: ON THE CAPACITY AND PROGRAMMING OF FLASH MEMORIES 1559

If , clearly .
So, for , when

, we get

When , we get

When , we get

So, we can partition the domain of , , into
regions, while in each region, is a linear function. So,

is piecewise polynomial.
It is not hard to see that when , is also piecewise

polynomial. For simplicity, we skip the details.

C. Computing the Functions and

In this section, we show how to compute the functions
and , where . We first present a recursive relation
for the two functions, which is useful for their computation. To
make the computation efficient, we will use the property that
both and are piecewise polynomial in , for
any positive integer . The results will be used to derive the op-
timal cell-programming algorithm later.

When , we have the equation

And since the programming noise is assumed to be uniformly
distributed over a range of size when the targeted
cell-level increment of the next round of charge injection is ,
we have the recursion

for . (By default, we have .)
To use the aforementioned recursion to effectively compute

the values of and , we need to know more prop-
erties of the two functions. In this section, we use the property
that they are both piecewise polynomial. (Note that this property
of being piecewise polynomial has been proved for . It
will be shown that it holds for and with ,
too.)

For convenience of expression, let us first define some no-
tations. Given integers , let be the integer such that the
function is a polynomial in in each of sub-
domains of . And let

denote the boundary values of those subdo-
mains. More specifically, given integers , let and

be the numbers with the
following properties.

1) .
2) , , .
3) for , the function is a polyno-

mial in when .
We define similar notations for . Given an integer

, let be the integer such that the function is a poly-
nomial in in each of subdomains of . And let

denote the boundary values of those subdomains.
More specifically, given an integer , let and

be the numbers with the
following properties.

1) .
2) , , .
3) For , the function is a polynomial

in when .
In the following, we show how to compute and

with , respectively.
1) Computing With : We first show how to

compute with .
Given a real number and an integer , we

call the unique integer such that

the “ -index of ”, and denote it by

The -index of states which “polynomial piece” of the func-
tion the input variable is in. Note that de-
creases as increases. Let us use to denote the set of

-indices of the real numbers in the interval

We get

The last element in the aforementioned set is a limit because the
interval does not contain the
boundary value .

Let us define the set (for) as

The next lemma shows that the numbers in —which are
cell levels—partition the domain of into subdomains that have

1560 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

the following property: for two cells of two arbitrary cell levels
in the same subdomain, if we program both of them with

the same targeted cell-level increment , the two sets of pos-
sible levels of the two cells after the charge injection will have
the same set of -indices.

Lemma 16: We denote the numbers in the set by

such that . Also, let and
. Then, for , for any two

numbers in the interval ,

.
Proof: Without loss of generality, assume that .

We just need to prove that (1)

and (2)

Let us prove condition (1) by contradiction. Assume that
.

Then, there must be some such that

So

Since

and cannot be in the same interval . That is a
contradiction. So

.
Condition (2) can be proved similarly. For simplicity, we skip

the details.
The following theorem shows that the numbers in parti-

tion the domain of the cell level into subdomains, such that in
every subdomain, the function is a polynomial in .
Furthermore, it shows how to compute the algebraic expression
of the function efficiently.

Theorem 17: We denote the numbers in the set by

such that . Also, let and
. Then, for , the function

is a polynomial in for . Furthermore,
it can be computed as follows. Let

and let

Then

Proof: We know that

Since , by Lemma 16, we have

and

So in the aforementioned integration, we can partition the do-
main of into smaller intervals, in each of which the func-
tion is a polynomial in . So, the way to compute

in this theorem is correct.
is a polynomial in for

and for
.

Also note that the value of
is independent of . Since polynomials are closed
under integration and summation, we get that is a
polynomial in for .

The aforementioned theorem shows that is an in-
tegration of . It is easy to see that if is
a piecewise polynomial function of degree , then is
a piecewise polynomial function of degree at most . As
we will see, is also a piecewise polynomial of degree at
most .

The following corollary is a refinement of Theorem 17. It
shows that the piecewise-polynomial property of the function

can be extended to include all the boundary values of
the subdomains of .

Corollary 18: We denote the numbers in the set
by such that . Also,
let , and . Then, for

, the function is a polynomial in
for .

Proof: Since the integration of a finite function is a con-
tinuous function, we get .
With Theorem 17, it is not hard to see that the conclusion holds.

JIANG et al.: ON THE CAPACITY AND PROGRAMMING OF FLASH MEMORIES 1561

With the algorithm in Theorem 17, we can partition the do-
main of , , into the subdomains

and compute the polynomial for each subdomain. (We
comment that two polynomials in adjacent sub-domains may
have the same algebraic expression. When that happens, we
will merge the two adjacent subdomains into one. This way, the
overall algebraic expression of can be simplified; and
when we use it to compute , the computation can be sig-
nificantly more efficient in practice.)

2) Computing With : In the previous section,
we have shown how to compute . We now show how to
compute for .

It is easy to see that when , we have

because setting the targeted cell-level increment too high will
only increase the expected cost of the final cell level. So when

, we have

We first use the algorithm in Theorem 17 to compute the
functions

(Note that when , .) Let the
set be as defined before. And denote the numbers in
the set by

such that . We have shown
that the function is a polynomial in for in each of
the following subdomains

Given the integer , let us define the set as

Let us alternatively denote the elements in by

such that

Also let , and . Then, we get the
next lemma, which naturally follows from Corollary 18.

Lemma 19: For , the function
is a polynomial in for . (Here,

and .)

With the aforementioned observation, we can easily com-
pute the function for in each subdomain ,
where . That is because by the equation

, is the minimum of at
most known polynomials. The method of compu-
tation should be clear, so we skip its details. The only thing to
note is that if the curves defined by these polynomials intersect,
the subdomain may need to be partitioned into more
smaller intervals, such that in each smaller interval, is
still a polynomial in .

As mentioned before, after the aforementioned computation,
if the polynomials for in adjacent subdomains happen
to have the same algebraic expression, we merge the two sub-
domains into one for a more succinct representation.

D. Optimal Cell Programming Algorithm

In this section, we describe the cell-programming strategy
that minimizes the expected cost of the final cell level. Re-
call that at most rounds of charge injection can be used
for programming a cell. We use the algorithm described be-
fore to compute the functions for ,
and compute the functions for and

. These functions are then stored in
the memory storage system, to be looked up during the actual
cell-programming process.2

We now present the cell-programming algorithm. Recall that
is the target cell level, and rounds of charge injection can be

used to move the cell level from 0 to close to . The task is to
adaptively choose the targeted cell-level increment for each of
the rounds.

For , let denote the actual cell level after
the th round of charge injection. Let denote the initial
cell level. The objective of cell programming is to minimize the
expectation of . The optimal cell-programming algorithm
is as follows.

For , set the targeted cell-level increment
in the th round of charge injection to be such that

That is, in each round, the algorithm always chooses the tar-
geted cell-level increment to be the one that, given the cur-
rent cell level, minimizes the expected cost of the final cell
level. Note again that the randomness in programming is due to
the programming noise, and the programming strategy in each
round is chosen adaptively based on that. We can see that the al-
gorithm also minimizes the expectation of the overall cost (i.e.,
the cost of the rounds in total), , due to the linearity of
expectation for random variables (i.e., the programming noise
in the rounds). So, it is optimal.

It should be noted that once the functions and
are stored, it is very efficient to look them up for the

actual programming of cells (specifically, to find the value
in the aforementioned programming algorithm). Let us now
analyze the time complexity of computing these functions

and , which are computed only once. For

2Since � � �, in the aforementioned computation, we let � � �. Functions
���� �� and ���� �� �� computed this way can be used for any � � �.

1562 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

Fig. 5. Functions ���� ��, ���� ��,���� ��,���� ��, and ���� ��. Here, the cost function is for MLC, and 	
 �, �
 ���, �
 ���. Note that the value of
���� �� decreases with �.

simplicity, we use the cost function for the
MLC technology as an example, but the results can be easily
extended for both general cost functions in Definition 14.

When , the function is a degree-2
polynomial of in intervals. By induction (for sim-
plicity, we only present the conclusion and skip the detailed
analysis), for and ,
the function is a degree- polynomial of

in intervals; for
, the function is a degree-

polynomial in in-
tervals. So, the overall time complexity of computing all the
functions is . So, when the number
of rounds of charge injection is a constant (in practice is
small), is not arbitrarily small, and is not arbitrarily close
to 1, the complexity is upper bounded by a polynomial function
of the parameters. We note that the aforementioned complexity
is derived based on a very pessimistic analysis. The actual
complexity is usually (significantly) lower.

E. Numerical Computation

We demonstrate the numerical computation of the functions
and . We consider two cases for the cost func-

tion: for MLC and for rank modulation (see Definition 14).
1) Multilevel Cells: For MLC, we set the cost function as

and set the parameters as .
The function is shown in Fig. 5, for and

. We can see that is piecewise polyno-
mial, and it monotonically decreases when increases (because
more rounds of charge injection leads to more accurate pro-
gramming). We can also see that converges quickly as
increases.

Fig. 6. Function ���� �� for MLC.

Fig. 7. Function ���� �� �� for MLC.

As an example, we show the numerical functions of
and in Figs. 6 and 7, respectively, for .
The left column of the table shows the domain for , and the
right column shows the polynomial (or) in
this domain.

JIANG et al.: ON THE CAPACITY AND PROGRAMMING OF FLASH MEMORIES 1563

Fig. 8. Functions���� ��,���� ��,���� ��,���� ��� and���� ��. Here, the cost function is for rank modulation, and 	
 �, �
 ���, �
 ���. Note that the
value of ���� �� decreases with �.

Fig. 9. Function ���� �� for rank modulation.

2) Rank Modulation: For rank modulation, we set the cost
function as

, if
, if

and set the parameters as .
The function is shown in Fig. 8, for and

. Again, we see that is piecewise polyno-
mial, it monotonically decreases with , and it converges quickly
with . For illustration, we also show the numerical functions
of and in Figs. 9 and 10, respectively, for

.

Fig. 10. Function ���� �� �� for rank modulation.

V. CONCLUSION

This paper studies the capacity and programming of flash
memories. The cell programming is an iterative process that
monotonically increases the charge level in the cell. This makes
the flash memory cells a unique kind of storage media, which can
be modeled, and generalized, by the monotonic storage channel.
This paper presents an optimal programming algorithm that
achieves the zero-error capacity. It also presents a programming
algorithm that optimizes the expected cell-programming pre-
cision, under the MLC model and the rank modulation model,
respectively. The results in this paper can be extended in sev-
eral significant ways. First, more accurate programming noise
models can be considered, which may depend on the physical
quality of the flash memory cell, the interference introduced by
parallel programming of cells, and the current level of the cell.
Second, reliability requirements can be introduced so that after
data are written, they can be reliably stored and retrieved despite
the read disturbs, write disturbs, and other noise sources. A
typical approach is to introduce sufficiently large gaps between
adjacent cell levels and to use appropriate error-correcting
codes. Third, the capacity of cell ensembles and its relationship
with the programming cost is an interesting topic to study.

1564 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

REFERENCES

[1] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades
using a predictive method,” in Proc. IEEE Int. Symp. Circuits Syst.,
Kobe, Japan, May 23–26, 2005, pp. 2148–2151.

[2] V. Bohossian, A. Jiang, and J. Bruck, “Buffer codes for asymmetric
multi-level memory,” in Proc. IEEE Int. Symp. Inf. Theory, Nice,
France, Jun. 24–29, 2007, pp. 1186–1190.

[3] , P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Eds., Flash Memo-
ries, 1st ed. Norwell, MA: Kluwer, 1999.

[4] A. Fiat and A. Shamir, “Generalized “write-once” memories,” IEEE
Trans. Inf. Theory, vol. IT-30, no. 3, pp. 470–480, May 1984.

[5] H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing floating
codes for expected performance,” in Proc. 46th Annu. Allerton Conf.
Commun., Control Comput., Monticello, IL, Sep. 23–26, 2008, pp.
1389–1396.

[6] F. Fu and A. J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 308–313, Jan. 1999.

[7] M. Grossi, M. Lanzoni, and B. Ricco, “Program schemes for multilevel
flash memories,” Proc. IEEE, vol. 91, no. 4, pp. 594–601, Apr. 2003.

[8] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memories,” in Proc. IEEE Int. Symp.
Inf. Theory, Nice, France, Jun. 24–29, 2007, pp. 1166–1170.

[9] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” in Proc.
IEEE Int. Symp. Inf. Theory, Toronto, ON, Canada, Jul. 6–11, 2008, pp.
1741–1745.

[10] A. Jiang and J. Bruck, “On the capacity of flash memories,” in Proc.
Int. Symp. Inf. Theory Appl., Dec. 2008, pp. 94–99.

[11] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal
rewriting in constrained memories,” in Proc. IEEE Int. Symp. Inf.
Theory, Seoul, Korea, Jun./Jul. 2009, pp. 1219–1223.

[12] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” in Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON,
Canada, Jul. 6–11, 2008, pp. 1731–1735.

[13] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modula-
tion for flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[14] A. Jiang, M. Schwartz, and J. Bruck, “Error-correcting codes for
rank modulation,” in Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON,
Canada, Jul. 6–11, 2008, pp. 1736–1740.

[15] L. A. Lastras-Montano, M. Franceschini, T. Mittelholzer, and M.
Sharma, “Rewritable storage channels,” in Proc. Int. Symp. Inf. Theory
Appl., Auckland, New Zealand, Dec. 7–10, 2008, pp. 106–111.

[16] H. Nobukata, S. Takagi, K. Hiraga, T. Ohgishi, M. Miyashita, K.
Kamimura, S. Hiramatsu, K. Sakai, T. Ishida, H. Arakawa, M. Itoh,
I. Naiki, and M. Noda, “A 144-Mb, eight-level NAND flash memory
with optimized pulsewidth programming,” IEEE J. Solid-State Cir-
cuits, vol. 35, no. 5, pp. 682–690, May 2000.

[17] R. L. Rivest and A. Shamir, “How to reuse a “write-once” memory,”
Inf. Control, vol. 55, pp. 1–19, 1982.

[18] L. A. Silverman, “On binary channels and their cascades,” IRE Trans.
Inf. Theory, vol. IT-1, pp. 19–27, Dec. 1955.

[19] L. G. Tallini, S. Al-Bassam, and B. Bose, “Feedback codes achieving
the capacity of the Z-channel,” IEEE Trans. Inf. Theory, vol. 54, no. 3,
pp. 1357–1363, Mar. 2008.

[20] R. R. Varshamov, “Estimates of the number of signals in codes with
correction of nonsymmetric errors,” (in Russian) Transl.:Translation:
Automation and Remote Control, vol. 25, pp. 1468–1469, 1965 Av-
tomatika i Telemekhanika, vol. 25, no. 11, pp. 1628–1629, 1964.

[21] E. Yaakobi, A. Vardy, P. H. Siegel, and J. Wolf, “Multidimensional
flash codes,” in Proc. 46th Annu. Allerton Conf. Commun., Control
Comput., Monticello, IL, Sep. 23–26, 2008, pp. 392–399.

Anxiao (Andrew) Jiang (S’00–M’05) received the B.S. degree in electronic en-
gineering from Tsinghua University, Beijing, China in 1999, and the M.S. and
Ph.D. degrees in electrical engineering from the California Institute of Tech-
nology, Pasadena, in 2000 and 2004, respectively.

He is currently an Associate Professor in the Computer Science and Engi-
neering Department at Texas A&M University in College Station, Texas. His
research interests include information theory, data storage, networks, and algo-
rithm design.

Dr. Jiang is a recipient of the NSF CAREER Award in 2008 for his research
on information theory for flash memories and a recipient of the 2009 IEEE Com-
munications Society Best Paper Award in Signal Processing and Coding for Data
Storage.

Hao Li received the B.S. degree in computer science from Tsinghua University,
Beijing, China in 1998, the M.S. degree in computer science from Institute of
Software, Chinese Academy of Sciences, Beijing, in 2001, and the Ph.D. degree
in computer engineering from Texas A&M University, College Station, Texas
in 2010. He is currently a software engineer at Google Inc. in Kirkland.

Jehoshua Bruck (S’86–M’89–SM’93–F’01) received the B.Sc. and M.Sc.
degrees in Electrical Engineering from the Technion, Israel Institute of Tech-
nology, in 1982 and 1985, respectively and the Ph.D. degree in Electrical
Engineering from Stanford University in 1989.

He is the Gordon and Betty Moore Professor of Computation and Neural Sys-
tems and Electrical Engineering at the California Institute of Technology. His
research focuses on information theory and systems and the theory computation
in biological networks. His extensive industrial experience includes working for
IBM Research as well as cofounding and serving as a chairman of Rainfinity
(acquired in 2005 by EMC) and XtremIO.

Dr. Bruck is a recipient of the Feynman Prize for Excellence in Teaching, a
Sloan Research Fellowship, a National Science Foundation Young Investigator
Award, an IBM Outstanding Innovation Award, and an IBM Outstanding Tech-
nical Achievement Award.

His papers were recognized in journals and conferences, including winning
the 2009 IEEE Communications Society best paper award in Signal Processing
and Coding for Data Storage for his paper on rank modulation for flash mem-
ories; the 2005 A. Schelkunoff Transactions prize paper award from the IEEE
Antennas and Propagation society for his paper on signal propagation in wire-
less networks; and the 2003 best paper award in the 2003 Design Automation
Conference for his paper on cyclic combinational circuits.

