
Network File Storage With Graceful
Performance Degradation

ANXIAO (ANDREW) JIANG and JEHOSHUA BRUCK
California Institute of Technology

A file storage scheme is proposed for networks containing heterogeneous clients. In the scheme,
the performance measured by file-retrieval delays degrades gracefully under increasingly serious
faulty circumstances. The scheme combines coding with storage for better performance. The prob-
lem is NP-hard for general networks; and this article focuses on tree networks with asymmetric
edges between adjacent nodes. A polynomial-time memory-allocation algorithm is presented, which
determines how much data to store on each node, with the objective of minimizing the total amount
of data stored in the network. Then a polynomial-time data-interleaving algorithm is used to de-
termine which data to store on each node for satisfying the quality-of-service requirements in the
scheme. By combining the memory-allocation algorithm with the data-interleaving algorithm, an
optimal solution to realize the file storage scheme in tree networks is established.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; Distributed databases; C.4 [Performance of Systems]:
Reliability, availability, and serviceability; E.4 [Coding and Information Theory]: Error control
codes; E.5 [Files]: Backup/recovery; F.2.2 [Analysis of Algorithms and Problem-Complexity]:
Nonnumerical-Algorithms and Problems—Computations on discrete structures; Routing and lay-
out; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms; Network problems; Trees;
H.3.2 [Information Storage and Retrieval]: Information Storage—File organization; H.3.3 [In-
formation Storage and Retrieval]: Information Search and Retrieval—Retrieval models

General Terms: Algorithms, Performance, Reliability, Theory

Additional Key Words and Phrases: Domination, file assignment, interleaving, memory allocation,
fault tolerance

1. INTRODUCTION

A file shared by many distributed clients can be replicated in the network
to improve performance, and the file can be stored in the form of an error-
correcting code. Let’s use (N , ε) code to denote an error-correcting code that
consists of N symbols and can correct ε erasures—in other words, any N − ε

This work was supported in part by the Lee Center for Advanced Networking at the California
Institute of Technology, and by NSF grant CCR-TC-0208975.
Authors’ address: Electrical Engineering Department, California Institute of Technology, MS
136-93, Pasadena, CA 91125; email: {jax,bruck}@paradise.caltech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1553-3077/05/0500-0171 $5.00

ACM Transactions on Storage, Vol. 1, No. 2, May 2005, Pages 171–189.



172 • A. Jiang and J. Bruck

symbols can be used for decoding the codeword. Given a file, we can encode it
with an (N , ε) code, and distributively store replicas of the N symbols of the
codeword in the network. Then each client can recover the file by retrieving any
N − ε different symbols.

The most common practice of file storage, where every node of the network ei-
ther stores the entire file in its original form or none of it, is a topic that has been
studied in depth [Dowdy and Foster 1982]. It includes median or center types
of schemes that minimize the average or maximum file-access cost [Hochbaum
and Shmoys 1985; Kalpakis et al. 2001], dynamic replication schemes based on
estimated temporal data-access statistics (e.g., caching [Wang 1999]), on-line
algorithms that optimize the file-access performance against the worst future
events [Borodin and El-Yaniv 1998], etc. In those schemes, the file can be seen
as encoded with a (1, 0) code, so they are a special case of the more general file-
storage model where files are stored in the form of error-correcting codes. There
also exist schemes using file segmentation [Mahmoud and Riordan 1976], where
a file is split into chunks and the chunks are stored distributively, which can
be seen as using a (k, 0) code (for some integer k). Error-correcting codes have
played a more important role in disk-storage systems and server clusters—such
as RAID [Patterson et al. 1988] and DPSS [Malluhi and Johnston 1998]—where
files are stored using nontrivial error-correcting codes, but there the concept of
network is not significant. Works that study the general problem of combining
network file storage with error-correcting codes include the important article by
Naor and Roth [1995]—which studied how to store a file using error-correcting
codes in a network such that every node can recover the file by accessing only
the codeword symbols on itself and its neighbors, with the objective of minimiz-
ing the total amount of data stored—and a few other results [Jiang and Bruck
2003b, 2005; Jiang et al. 2004]; however, other than those, research in this field
has been very limited.

Error-correcting code is a more general way to express a file than the file
itself. Therefore, it brings us the flexibility of finding file-storage solutions with
better performance.

In this article, we study file storage in networks containing heterogeneous
clients—clients that have different quality-of-service requirements on file re-
trieval. We model a network as a directed graph G = (V , E), and use (u, v) to
denote a directed edge from vertex u to vertex v. Each edge (u, v) ∈ E has a posi-
tive length l (u, v). We use d (u → v) to denote the length of the shortest directed
path from u ∈ V to v ∈ V , and call it the distance from u to v. For a vertex v ∈ V
and a real number r, we define N (v, r) as the set of vertices whose distance
to v is less than or equal to r, namely, N (v, r) = {u|u ∈ V , d (u → v) ≤ r}. We
encode a file with an (N , ε) code, and store replicas of the N codeword symbols
on the vertices of the graph. Every vertex is a client that requests the file; at the
same time, it can be used to store some codeword symbols. We use Wmax(v) to
denote the maximum number of codeword symbols that can be stored on vertex
v ∈ V , and call it the memory capacity of v. If a vertex v retrieves codeword
symbols from a set S ⊆ V of vertices, then we call maxu∈S d (u → v) the file-
retrieval delay of v. (So here the length of a path is interpreted as the delay of
transmitting data over that path.)

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 173

We allow every vertex to specify a delay that it can tolerate for retrieving
N − ε different codeword symbols for its file reconstruction. If some of the stored
data becomes inaccessible (e.g., because of data loss or processors’ being busy),
then a vertex needs to retrieve codeword symbols from a larger area. It is de-
sirable that the number of distinct codeword symbols within a distance from a
vertex grows steadily when that distance increases—so that the file-retrieval
delay will degrade gracefully when more and more symbols become inaccessible.
We let each vertex specify the number of distinct codeword symbols that should
exist within each specified distance, and we allow different vertices to have dif-
ferent such requirements. As a result, we get a file-storage scheme accommo-
dating the varied quality-of-service requirements of clients, which has graceful
performance degradation under increasingly serious faulty circumstances.

The problem studied in this article is formally defined as follows.

Definition 1.1. The File Storage Problem

Instance: A directed graph G = (V , E), and a codeword of N symbols. Every
edge (u, v) ∈ E has a positive length l (u, v). (l (u, v) is a real number.) Every
vertex v ∈ V is associated with a set R(v) = {(ri(v), ki(v))|1 ≤ i ≤ nv}, which
is called the requirement set of v. Each vertex v ∈ V is also associated with a
nonnegative integer Wmax(v), which is called the memory capacity of v.

Question: How to assign w(v) codeword symbols to each vertex v ∈ V , such
that for every vertex u ∈ V and for 1 ≤ i ≤ nu, the vertices in the set N (u, ri(u))
together have at least ki(u) distinct codeword symbols? Here w(v) ≤ Wmax(v)
for all v ∈ V . w(v) is called the memory size of v. A feasible solution to this
problem that minimizes the total number of codeword symbols stored in the
graph,

∑
v∈V w(v), is called an optimal solution.

Comments: Each element in a requirement set R(v) is a pair of numbers,
written in the form (r, k). ri(v) is a nonnegative real number. ki(v), nv, Wmax(v),
and w(v) are all nonnegative integers. nv denotes the number of requirements
that v has.

The file storage problem defined above is NP-hard for general graphs, be-
cause the NP-complete dominating set problem [Garey and Johnson 1979] can
be reduced to it. In this article, we study the case where the graph G = (V , E)
is a tree. We assume G has asymmetric edges, which means that, for any two
adjacent vertices, the two directed edges of opposite directions between them
do not necessarily have the same length. Below is an example of such a file
storage problem.

Example 1.1. A tree G with asymmetric edges is shown in Figure 1, where
the number beside each edge is its length. The parameters N , R(v), and Wmax(v)
(for every vertex v) are as shown. (So here nv1 = 2, nv2 = nv3 = · · · = nv6 = 1.)

Let’s use integers 1, 2, . . . , 12 to denote the 12 codeword symbols. Then one
feasible solution is as follows: assign w(v1) = 3 symbols—{1, 2, 3}—to v1, as-
sign w(v2) = 3 symbols—{9, 10, 11}—to v2, assign w(v3) = 0 symbol to v3,
assign w(v4) = 5 symbols—{4, 5, 6, 7, 8}—to v4, assign w(v5) = 7 symbols—
{1, 2, 3, 9, 10, 11, 12}—to v5, assign w(v6) = 0 symbol to v6. We claim without

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



174 • A. Jiang and J. Bruck

Fig. 1. An example of the file storage problem.

proof that that solution is optimal, because it minimizes the value
∑

v∈V w(v);
readers can verify that the claim is true.

The example here is a simple one. In general, a vertex can have much more
than one or two requirements.

Trees are often used as embedded networks or backbone networks in real
systems. In those networks, the cost (such as delay) of transmitting data from
one node to another is often not the same as the cost of transmitting data in
the opposite direction. Trees with asymmetric edges take that fact into consid-
eration. They include undirected trees as a special case.

Finding a solution to the file storage problem has two steps: deciding how
many codeword symbols to assign to each vertex, which we call memory alloca-
tion, and deciding which codeword symbol to assign to each vertex, which we
call data interleaving. If G is a general graph, these two steps usually depend
on each other. However, we will show that when G is a tree, memory allocation
and data interleaving can be solved separately.

The rest of the article is organized as follows. Sections 2 and 3, respectively,
present a memory-allocation algorithm (Algorithm 2.1) and a data-interleaving
algorithm (Algorithm 3.1), both of polynomial time complexity. The combination
of those two algorithms yields an optimal solution to the file storage problem,
and that result is shown in Section 4. Section 5 presents concluding remarks.
Appendix A presents the pseudocode of Algorithm 2.1, Appendix B presents
the proof of and complexity analysis for Algorithm 2.1, Appendix C presents
the algorithm for the memory-allocation problem without an upper bound for
memory sizes (Algorithm C.1), and Appendix D discusses the complexity of the
data-interleaving algorithm (Algorithm 3.1).

2. MEMORY ALLOCATION

2.1 Definition of the Problem

We define the memory-allocation problem as follows.

Definition 2.1. The Memory-Allocation Problem.

Instance: A tree G = (V , E) with asymmetric edges, and a positive integer
N . Every edge (u, v) ∈ E has a positive length l (u, v). Every vertex v ∈ V
is associated with a set R(v) = {(ri(v), ki(v))|1 ≤ i ≤ nv}, which is called the

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 175

requirement set of v. Each vertex v ∈ V is also associated with a nonnegative
integer Wmax(v), which is called the memory capacity of v, and a nonnegative
integer Wmin(v), which is called the memory floor of v. (Here Wmin(v) ≤ Wmax(v).)

Question: How to associate an integer w(v) with each vertex v ∈ V , such
that for every vertex u ∈ V and for 1 ≤ i ≤ nu,

∑
v∈N (u,ri (u)) w(v) ≥ ki(u)? Here

Wmin(v) ≤ w(v) ≤ Wmax(v) for all v ∈ V . w(v) is called the memory size of v. A
feasible solution to this problem that minimizes the value

∑
v∈V w(v) is called

an optimal solution.

Comments: All the parameters above—except the new parameter Wmin(v)—
have the same meaning as in the file storage problem (Definition 1.1). So we
omit defining their allowed ranges of values.

The memory-allocation problem has one generalization compared to the file
storage problem—an integer Wmin(v), instead of the constant 0, is set to be the
lower bound for the memory size of v. Other than that, the memory allocation
problem is a simplification of the file storage problem—instead of requiring that
there are at least ki(v) distinct codeword symbols stored on the vertices in the set
N (v, ri(v)), the memory allocation problem just requires at least ki(v) codeword
symbols (whether they are the same or not) to be stored there. Clearly, in the
case where Wmin(v) = 0 for all v ∈ V , if an optimal solution to the memory
allocation problem assigns the integer w(v) to vertex v, then

∑
v∈V w(v) is a

lower bound for the total number of codeword symbols stored in the tree in any
feasible solution to the file storage problem. In later sections, we will show that
in fact, storing

∑
v∈V w(v) codeword symbols is also sufficient.

We assume in the rest of the article that for every vertex u ∈ V and for 1 ≤
i ≤ nu,

∑
v∈N (u,ri (u)) Wmax(v) ≥ ki(u), because that is the necessary and sufficient

condition for there to exist a solution to the memory allocation problem.

2.2 Memory-Allocation Algorithm

We see one of the vertices of the tree G as its root, and denote it by vroot . For any
two vertices v1 and v2, we say “v1 is a descendant of v2” or “v2 is an ancestor of v1”
if v2 �= v1 and v2 is on the shortest path from the root to v1. We say “v1 is a child
of v2” or “v2 is the parent of v1” if v1 and v2 are adjacent and v1 is a descendant
of v2. For any vertex v ∈ V , we use Des(v) to denote the set of descendants of v.

For any set S, we use |S| to denote its cardinality. For any two sets S and
T , S − T denotes the set of elements that are in S but not in T . For any two
variables a and b, a ← b means to make a be equal to b (in other words, it
means to assign the value of b to a).

We present below a memory-allocation algorithm that uses the technique
of searching the tree from its leaves toward its root. Similar techniques have
been used in several articles [Kariv and Hakimi 1979; Slater 1976] to solve the
domination problem.

Definition 2.2. An Optimal Memory Basis.

A set {w(v)|v ∈ V } is called an optimal memory basis if there exists an optimal
solution to the memory allocation problem which assigns the integer wopt(v) to
every vertex v ∈ V , such that for every vertex v ∈ V , Wmin(v) ≤ w(v) ≤ wopt(v).

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



176 • A. Jiang and J. Bruck

The following lemma shows how, given an optimal memory basis {w1(v)|v ∈
V }, one can derive a new optimal memory basis {w2(v)|v ∈ V } that dominates
{w1(v)|v ∈ V }—meaning that for every v ∈ V , w2(v) ≥ w1(v).

LEMMA 2.1. In the memory allocation problem, let u1 be a child of u2 in the
tree G = (V , E). Let {w1(v)|v ∈ V } be an optimal memory basis. Assume the
following condition is true: for every vertex v ∈ Des(u1), its requirement set
R(v) = ∅; R(u1) contains an element (r, k), namely, (r, k) ∈ R(u1).

Define S1 as S1 = N (u2, r −d (u2 → u1)), and define S2 as S2 = N (u1, r)− S1.
We compute the elements of a set {w2(v)|v ∈ V } through the following three
steps:

Step 1: for all v ∈ V , let w2(v) ← w1(v).

Step 2: Let

X ← max

{
0, k −

∑
v∈S1

Wmax(v) −
∑
v∈S2

w1(v)

}
,

and let C ← S2.

Step 3: Let v0 be the vertex in C that is the closest to u1—namely, v0 ∈ C
and d (v0 → u1) = minv∈C d (v → u1). Let w2(v0) ← min{Wmax(v0),
w1(v0) + X }. Let X ← X − (w2(v0) − w1(v0)), and let C ← C − {v0}.
Repeat Step 3 until X equals 0.

Then the following two conclusions are true:

(1) {w2(v)|v ∈ V } is an optimal memory basis, and {w2(v)|v ∈ V } dominates the
optimal memory basis {w1(v)|v ∈ V };

(2)
∑

v∈S1
Wmax(v) + ∑

v∈S2
w2(v) ≥ k.

PROOF. It is not difficult to see that the second conclusion is true. And it is
simple to see that {w2(v)|v ∈ V } dominates the optimal memory basis {w1(v)|v ∈
V }. So below we just need to prove that {w2(v)|v ∈ V } is an optimal memory
basis.

The following two statements are clearly true:

STATEMENT 1: S1 ∪ S2 = N (u1, r), and S1 ∩ S2 = ∅.

STATEMENT 2: For any v ∈ S2, Wmin(v) ≤ w1(v) ≤ w2(v) ≤ Wmax(v). For any
v ∈ V − S2, Wmin(v) ≤ w1(v) = w2(v) ≤ Wmax(v). And

∑
v∈V w2(v)− ∑

v∈V w1(v) =
max{0, k − ∑

v∈S1
Wmax(v) − ∑

v∈S2
w1(v)}.

{w1(v)|v ∈ V } is an optimal memory basis. So there exists an optimal so-
lution to the memory allocation problem that assigns memory size wopt(v)
to every vertex v ∈ V , such that w1(v) ≤ wopt(v) for any v ∈ V . We know∑

v∈N (u1,r) wopt(v) ≥ k. Since
∑

v∈N (u1,r) wopt(v) = ∑
v∈S1

wopt(v) + ∑
v∈S2

wopt(v) ≤∑
v∈S1

Wmax(v) + ∑
v∈S2

wopt(v), we get
∑

v∈S2
wopt(v) ≥ k − ∑

v∈S1
Wmax(v). By

STATEMENT 2,
∑

v∈S2
w2(v) = ∑

v∈S2
w2(v) + ∑

v∈V −S2
w2(v) − ∑

v∈V −S2
w1(v) −∑

v∈S2
w1(v) + ∑

v∈S2
w1(v) = ∑

v∈V w2(v) − ∑
v∈V w1(v) + ∑

v∈S2
w1(v) =

max{0, k − ∑
v∈S1

Wmax(v) − ∑
v∈S2

w1(v)} + ∑
v∈S2

w1(v) = max{∑v∈S2
w1(v), k−∑

v∈S1
Wmax(v)}. So

∑
v∈S2

wopt(v) ≥ ∑
v∈S2

w2(v).

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 177

Let’s compute a set {wo(v)|v ∈ V } through the following three steps:

Step 1: for all v ∈ V −S2, let wo(v) ← wopt(v). For all v ∈ S2, let wo(v) ← w1(v).

Step 2: Let Y ← ∑
v∈S2

wopt(v) − ∑
v∈S2

w1(v), and let C ← S2.

Step 3: Let v0 be the vertex in C that is the closest to u1—namely, v0 ∈ C and
d (v0 → u1) = minv∈C d (v → u1). Let wo(v0) ← min{Wmax(v0), w1(v0) + Y }. Let
Y ← Y − (wo(v0)−w1(v0)), and let C ← C−{v0}. Repeat Step 3 until Y equals 0.

From the above three steps, it is simple to see that the following must be true:
for any v ∈ V , wo(v) ≥ w2(v); for any v ∈ V − S2, wo(v) = wopt(v); for any v ∈ S2,
Wmin(v) ≤ wo(v) ≤ Wmax(v);

∑
v∈V wo(v) = ∑

v∈V wopt(v), and
∑

v∈S2
wo(v) =∑

v∈S2
wopt(v). It is simple to see that the following must also be true: if there

exists a vertex v1 ∈ S2 such that wo(v1) > w1(v1), then for any v ∈ S2 such that
d (v → u1) < d (v1 → u1), wo(v) = Wmax(v); if there exists a vertex v2 ∈ S2 such
that wo(v2) < Wmax(v2), then for any v ∈ S2 such that d (v → u1) > d (v2 → u1),
wo(v) = w1(v). Therefore for any real number L, if we define Q as Q = {v|v ∈
S2, d (v → u1) ≤ L)}, then

∑
v∈Q wo(v) ≥ ∑

v∈Q wopt(v).
Let v0 ∈ V be any vertex such that R(v0) �= ∅, and let (r0, k0) be any el-

ement in R(v0). Clearly v0 /∈ Des(u1). Since S2 ⊆ Des(u1) ∪ {u1}, N (v0, r0) =
{v|v ∈ N (v0, r0), v /∈ S2} ∪ {v|v ∈ N (v0, r0), v ∈ S2} = {v|v ∈ N (v0, r0), v /∈
S2} ∪ {v|v ∈ S2, d (v → v0) ≤ r0} = {v|v ∈ N (v0, r0), v /∈ S2} ∪ {v|v ∈
S2, d (v → u1) ≤ r0 − d (u1 → v0)}. So

∑
v∈N (v0,r0) wo(v) ≥ ∑

v∈N (v0,r0) wopt(v).
Clearly

∑
v∈N (v0,r0) wopt(v) ≥ k0. So

∑
v∈N (v0,r0) wo(v) ≥ k0. Since

∑
v∈V wo(v) =∑

v∈V wopt(v), the memory-allocation solution that assigns memory size wo(v) to
every vertex v ∈ V is an optimal solution to the memory-allocation problem.

We have known that for any v ∈ V , Wmin(v) ≤ w2(v) ≤ wo(v). So {w2(v)|v ∈ V }
is an optimal memory basis.

The following lemma shows how, given a memory-allocation problem, one
can derive a new memory-allocation problem by modifying the requirement sets
and memory floors, such that an optimal solution to the new problem is also an
optimal solution to the original memory-allocation problem, and what’s more,
more vertices in the new problem have empty requirements sets than in the
original problem (therefore the new problem is easier to solve).

LEMMA 2.2. In the memory-allocation problem, let u1 be a child of u2 in
the tree G = (V , E). Let {w0(v)|v ∈ V } be an optimal memory basis. Assume
the following conditions are true: for every vertex v ∈ Des(u1), its requirement
set R(v) = ∅; for every element in R(u1)—say the element is (r, k)—we have∑

v∈N (u2,r−d (u2→u1)) Wmax(v) + ∑
v∈N (u1,r)−N (u2,r−d (u2→u1)) w0(v) ≥ k.

We compute the elements of a set {R̂(v)|v ∈ V } through the following two steps:

Step 1: for all v ∈ V , let R̂(v) ← R(v).

Step 2: let (r, k) be an element in R̂(u1). If
∑

v∈N (u1,r) w0(v) < k, then add an
element (r − d (u2 → u1), k − ∑

v∈N (u1,r)−N (u2,r−d (u2→u1)) w0(v)) to the set R̂(u2).
Remove the element (r, k) from R̂(u1). Repeat Step 2 until R̂(u1) becomes an
empty set.

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



178 • A. Jiang and J. Bruck

Let’s call the original memory-allocation problem, in which the requirement
set of each vertex v ∈ V is R(v), the old problem. We derive a new memory
allocation problem—which we call the new problem—in the following way: in
the new problem everything is the same as in the old problem, except that for
each vertex v ∈ V , its requirement set is R̂(v) instead of R(v), and its memory
floor is w0(v) instead of Wmin(v).

Then the following two conclusions are true:
(1) the new problem has a feasible solution;
(2) an optimal solution to the new problem is also an optimal solution to the old

problem.

PROOF. It is not difficult to see that the first conclusion is true. Below we
prove the second conclusion through two steps: first, we prove that an optimal
solution to the new problem is a feasible solution to the old problem; then, we
prove that an optimal solution to the new problem assigns the same total mem-
ory size to the vertices of the tree as an optimal solution to the old problem does.

Consider an optimal solution to the new problem that assigns memory size
ŵopt(v) to each vertex v ∈ V . Let v̄ ∈ V be any vertex such that R(v̄) �= ∅,
and let (r̄, k̄) be any element in R(v̄). Either (r̄, k̄) ∈ R̂(v̄) or (r̄, k̄) /∈ R̂(v̄). If
(r̄, k̄) ∈ R̂(v̄), then clearly

∑
u∈N (v̄,r̄) ŵopt(u) ≥ k̄. Now consider the case where

(r̄, k̄) /∈ R̂(v̄). Clearly in this case v̄ = u1, and either
∑

u∈N (u1,r̄) w0(u) ≥ k̄, or∑
u∈N (u1,r̄) w0(u) < k̄. If

∑
u∈N (u1,r̄) w0(u) ≥ k̄, since ŵopt(u) ≥ w0(u) for any u ∈ V ,

we have
∑

u∈N (v̄,r̄) ŵopt(u) ≥ k̄. We define S1 as S1 = N (u2, r̄ − d (u2 → u1)),
and define S2 as S2 = N (u1, r̄) − S1. Then if

∑
u∈N (u1,r̄) w0(u) < k̄, it is simple

to see that (r̄ − d (u2 → u1), k̄ − ∑
u∈S2

w0(u)) ∈ R̂(u2). So
∑

u∈N (v̄,r̄) ŵopt(u) =∑
u∈S1

ŵopt(u) + ∑
u∈S2

ŵopt(u) ≥ k̄ − ∑
u∈S2

w0(u) + ∑
u∈S2

ŵopt(u) ≥ k̄. Therefore∑
u∈N (v̄,r̄) ŵopt(u) ≥ k̄ in all cases. Therefore, an optimal solution to the new

problem is a feasible solution to the old problem.
{w0(v)|v ∈ V } is an optimal memory basis for the old problem. So there

exists an optimal solution to the old problem that assigns memory size wopt(v)
to each vertex v ∈ V , such that for any v ∈ V , w0(v) ≤ wopt(v).

We compute the elements of four sets—{w1(v)|v ∈ V }, {w2(v)|v ∈ V },
{w3(v)|v ∈ V } and {w4(v)|v ∈ V }—through the following five steps:

Step 1: for each v ∈ Des(u2), let w1(v) ← w0(v). For each v ∈ V − Des(u2), let
w1(v) ← wopt(v).

Step 2: for each v ∈ Des(u2), let w2(v) ← wopt(v) − w0(v). For each
v ∈ V − Des(u2), let w2(v) ← 0.

Step 3: for each v ∈ V , let w3(v) ← 0. Let Z ← ∑
v∈V w2(v), and let C ← V .

Step 4: Let v0 be the vertex in C that is the closest to u2—namely, v0 ∈ C
and d (v0 → u2) = minv∈C d (v → u2). Let w3(v0) ← min{Wmax(v0) − w1(v0), Z }.
Let Z ← Z − w3(v0), and let C ← C − {v0}. Repeat Step 4 until Z equals 0.

Step 5: for each v ∈ V , let w4(v) ← w1(v) + w3(v).

It is simple to see that the following must be true after the above
five steps:

∑
v∈V wopt(v) = ∑

v∈V w1(v) + ∑
v∈V w2(v) = ∑

v∈V w4(v), and∑
v∈V w2(v) = ∑

v∈V w3(v); for any v ∈ V , w0(v) ≤ w4(v) ≤ Wmax(v); for any real

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 179

number L,
∑

v∈N (u2,L) w3(v) ≥ ∑
v∈N (u2,L) w2(v); for any v ∈ V , if w4(v) < Wmax(v),

then
∑

u∈N (u2,d (v→u2)) w3(u) = ∑
u∈V w2(u).

Let v̂ ∈ V be any vertex such thatR̂(v̂) �= ∅, and let (r̂, k̂) be any element
inR̂(v̂). Clearly v̂ ∈ V − Des(u2). Either (r̂, k̂) ∈ R(v̂) or (r̂, k̂) /∈ R(v̂). If (r̂, k̂) ∈
R(v̂), then

∑
v∈N (v̂,r̂) w4(v) = ∑

v∈N (v̂,r̂) w1(v) + ∑
v∈N (v̂,r̂) w3(v) ≥ ∑

v∈N (v̂,r̂) w1(v) +∑
v∈N (u2,r̂−d (u2→v̂)) w3(v) ≥ ∑

v∈N (v̂,r̂) w1(v) + ∑
v∈N (u2,r̂−d (u2→v̂)) w2(v) = ∑

v∈N (v̂,r̂)

w1(v) + ∑
v∈N (v̂,r̂) w2(v) = ∑

v∈N (v̂,r̂) wopt(v) ≥ k̂.
Now consider the case where (r̂, k̂) /∈ R(v̂). We define r̃ as r̃ = r̂ +d (u2 → u1),

define Ŝ1 as Ŝ1 = N (u2, r̂), define Ŝ2 as Ŝ2 = N (u1, r̃) − Ŝ1, and define
k̃ as k̃ = k̂ + ∑

v∈Ŝ2
w0(v). It is easy to see that, in this case, v̂ = u2 and

(r̃, k̃) ∈ R(u1). If w4(v) = Wmax(v) for every vertex v ∈ N (u2, r̂), then clearly∑
v∈N (v̂,r̂) w4(v) ≥ k̂ because the new problem has a feasible solution. If there

exists v0 ∈ N (u2, r̂) such that w4(v0) < Wmax(v0), then
∑

v∈N (v̂,r̂) w4(v) =∑
v∈Ŝ1

w1(v) + ∑
v∈V w2(v) ≥ ∑

v∈N (u1,r̃) w1(v) − ∑
v∈Ŝ2

w1(v) + ∑
v∈N (u1,r̃) w2(v) =∑

v∈N (u1,r̃) wopt(v) − ∑
v∈Ŝ2

w1(v) ≥ k̃ − ∑
v∈Ŝ2

w1(v) = k̂.
So

∑
v∈N (v̂,r̂) w4(v) ≥ k̂ in all cases. So the solution that assigns memory

size w4(v) to every vertex v ∈ V is a feasible solution to the new problem—so∑
v∈V ŵopt(v) ≤ ∑

v∈V w4(v). Since every optimal solution to the new problem
is a feasible solution to the old problem, we have

∑
v∈V wopt(v) ≤ ∑

v∈V ŵopt(v).
Clearly

∑
v∈V w4(v) = ∑

v∈V wopt(v), so
∑

v∈V ŵopt(v) = ∑
v∈V wopt(v). So the

optimal solution to the new problem, which assigns memory size ŵopt(v) to
every vertex v ∈ V , is also an optimal solution to the old problem. Now we can
see that the second conclusion of this lemma is true.

Lemma 2.1 and Lemma 2.2 naturally lead us to an algorithm for optimally
solving the memory-allocation problem. We can process the vertices of the tree
one by one, with every vertex processed before its parent. Every time a vertex
is processed, corresponding to each element in its requirement set, we use the
method in Lemma 2.1 to derive an optimal memory basis of larger values; then
we use the method in Lemma 2.2 to force the vertex’s requirement set to be
empty. In the end, the root becomes the only vertex whose requirement set may
not be empty, and the memory-allocation problem becomes very simple to solve.

The following algorithm outputs an optimal solution to the memory-
allocation problem.

Algorithm 2.1 (Memory-Allocation on Tree G = (V , E))

(1) Initially, for every vertex v ∈ V , let w(v) ← Wmin(v).
(2) Process all the vertices one by one, in an order that follows the following rule: every

vertex is processed before its parent. For each vertex ṽ ∈ V that is not the root vroot ,
it is processed through the following two steps:

Step 1: Treat ṽ, the parent of ṽ and the set {w(v)|v ∈ V }, respectively, as the vertex
u1, the vertex u2 and the set {w1(v)|v ∈ V } in Lemma 2.1, and for each element in
R(ṽ) do the following two things: (1) treat that element in R(ṽ) as the element (r, k)
in Lemma 2.1, and compute the set {w2(v)|v ∈ V } as in Lemma 2.1; (2) for every
vertex v ∈ V , let w(v) get the value of w2(v)—namely, w(v) ← w2(v).

Step 2: Treat ṽ, the parent of ṽ and the set {w(v)|v ∈ V }, respectively, as the vertex
u1, the vertex u2 and the set {w0(v)|v ∈ V } in Lemma 2.2, and do the following two
things: (1) compute the set {R̂(v)|v ∈ V } as in Lemma 2.2; (2) for every vertex v ∈ V ,
let R(v) ← R̂(v), and let Wmin(v) ← w(v).

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



180 • A. Jiang and J. Bruck

The root vroot is processed in the following way:
Pretend that the root vroot has a parent whose distance to vroot is infinitely large.

Treat vroot as the vertex ṽ above, and run just its Step 1.
(3) Output the following solution as the solution to the memory-allocation problem: for

each vertex v ∈ V , assign w(v) to it as its “memory size.”
A pseudocode of Algorithm 2.1 is presented in Appendix A for interested

readers.
Analysis shows that Algorithm 2.1 has time complexity O(q|V |3), where |V |

is the number of vertices and q is the average cardinality of a requirement set,
namely, q = 1

|V |
∑

v∈V |R(v)|. The complexity analysis as well as the proof for the
correctness of Algorithm 2.1 (including the optimality of the solution it outputs)
are presented in Appendix B.

2.3 Variation of the Algorithm

Algorithm 2.1 has complexity O(q|V |3). But if Wmax(v) = ∞ for all v ∈ V —
namely, if no upper bound exists for the vertices’ memory sizes—then an algo-
rithm of time complexity O(q|V |2) can actually be derived. We present such an
algorithm and its complexity analysis in Appendix C for interested readers.

3. DATA INTERLEAVING

3.1 Definition of the Problem

Assume that, in the file storage problem, the number of codeword symbols
assigned to each vertex v ∈ V , w(v), is already known. (The only require-
ment for w(v) here is that for every vertex u ∈ V and for 1 ≤ i ≤ nu,∑

v∈N (u,ri (u)) w(v) ≥ ki(u). No feasible solution to the problem exists if that re-
quirement is not satisfied.) Then, the file storage problem is simplified to be the
following data-interleaving problem.

Definition 3.1. The Date-Interleaving Problem.
Instance: A tree G = (V , E) with asymmetric edges, and N different colors.

Every edge (u, v) ∈ E has a positive length l (u, v). Every vertex v ∈ V is associ-
ated with a set R(v) = {(ri(v), ki(v))|1 ≤ i ≤ nv}, which is called the requirement
set of v. Every vertex v ∈ V is also associated with a nonnegative integer w(v).
(Here w(v) ≤ N .)

Question: How to assign w(v) colors to each vertex v ∈ V , such that for every
vertex u ∈ V and for 1 ≤ i ≤ nu, the vertices in the set N (u, ri(u)) together have
at least ki(u) distinct colors? (At most N different colors can be used, and every
color can be assigned more than once to the vertices.)

Comments: All the parameters above have the same meaning as in the file
storage problem (Definition 1.1). So we omit defining their allowed ranges of
values.

In the data-interleaving problem, we use N different colors to represent the
N symbols in the codeword, for a more abstract understanding of the problem.

3.2 Data-Interleaving Algorithm

In the Jiang and Bruck [2003a], a solution was presented for coloring the
vertices of an undirected tree using N colors, in such a way that, for every

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 181

point of the tree (which can be either a vertex or a point on an edge), there exist
K different colors that are placed as closely as possible around it, for a preset
parameter K (K ≤ N ). In this section, we derive a data-interleaving algorithm
using a similar technique. The new algorithm is adapted to the file-allocation
scheme studied here, and is for trees with asymmetric edges between adjacent
vertices.

Since every vertex v ∈ V is to be assigned w(v) colors, we think of v as having
w(v) color-slots, where each color-slot is to be assigned one color—and we say
that those w(v) color-slots belong to v.

We define � as � = ∑
v∈V w(v), that is, the total number of color-slots in the

tree G. We label all the color-slots in G as s1, s2, . . . , s� following this rule: if
d (si → vroot) < d (sj → vroot), then i < j .

For any two color-slots si and sj , we use d (si → sj ) to denote the distance
from the vertex that si belongs to, to the vertex that sj belongs to. In other
words, if si is a color-slot of vertex u, and sj is a color-slot of vertex v, then
d (si → sj ) = d (u → v). Similarly, we also use d (si → v) and d (u → sj ) to
denote the same value as d (u → v).

For any vertex v ∈ V and any real number r, we define B(v, r) as B(v, r) =
{si|1 ≤ i ≤ �, d (si → v) ≤ r}—namely, the set of color-slots whose distance to
v is at most r. Similarly, for any color-slot sj and any real number r, we define
B(sj , r) as B(sj , r) = {si|1 ≤ i ≤ �, d (si → sj ) ≤ r}.

For any three color-slots sx , sy , and sz , where x �= y (but z does not have to be
different from x and y), we use “(sx ⇒ sz ) � (sy ⇒ sz )” to denote the following
condition: either d (sx → sz ) < d (sy → sz ), or d (sx → sz ) = d (sy → sz ) and
x < y .

Similarly, by replacing the term color-slot sz in the above paragraph by vertex
v, we get the definition of (sx ⇒ v) � (sy ⇒ v).

For every vertex v, we define κv as κv = max1≤i≤nv ki(v). We use Sv to denote
the set of color-slots that satisfies the following two conditions: (1) |Sv| = κv; (2)
for any color-slot sp ∈ Sv and any color-slot sq /∈ Sv, (sp ⇒ v) � (sq ⇒ v).

Finally, for every color-slot si, we assign to it an integer X i that satisfies the
following two conditions: (1) for every vertex v, if si ∈ Sv, then X i ≥ |Sv ∩{st |t ≤
i}|; (2) 1 ≤ X i ≤ N , and X i ≤ i. For now let’s assume that the integer X i is
given by an oracle; later in Subsection 3.3 we will discuss how to set the value
of X i.

The following algorithm solves the data interleaving problem.

Algorithm 3.1 (Data Interleaving on Tree G = (V , E))
for i = 1 to � do
{Let T be the set of color-slots that satisfies the following two conditions:

(1) T ⊆ {st |t < i}, and |T | = X i − 1;
(2) for any color-slot sp ∈ T and any color-slot sq ∈ {st |t < i} − T ,

(sp ⇒ si) � (sq ⇒ si).
Assign to si a color that differs from the color of every color-slot in T .

}

LEMMA 3.1. After Algorithm 3.1 is used to assign colors to the tree G =
(V , E), for any integer i (1 ≤ i ≤ � ) and any vertex v ∈ V , no two color-slots in
the set Sv ∩ {st |t ≤ i} are assigned the same color.

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



182 • A. Jiang and J. Bruck

PROOF. Let v be an arbitrary vertex. Let’s use ASSERTION to denote the
following assertion: no two color-slots in the set Sv ∩ {st |t ≤ i} are assigned the
same color.

We use induction on the parameter i (1 ≤ i ≤ � ) to prove this lemma.
When i = 1, the set Sv ∩ {st |t ≤ i} contains at most one color-slot, so the

ASSERTION is true. This serves as our base case.
Now let I be an integer such that 2 ≤ I ≤ � . Assume that when i < I ,

the ASSERTION is true. We shall prove that when i = I , the ASSERTION still
holds.

Let i = I . If |Sv ∩ {st |t ≤ i}| equals 0 or 1, then clearly the ASSERTION is
true. If |Sv ∩ {st |t ≤ i}| ≥ 1 and si /∈ Sv ∩ {st |t ≤ i}, by letting j ∗ denote the
maximum value of j subject to the constraint that sj ∈ Sv ∩ {st |t ≤ i}, we can
see that Sv ∩ {st |t ≤ i} = Sv ∩ {st |t ≤ j ∗} and j ∗ < i—then by the induction
assumption, no two color-slots in the set Sv ∩ {st |t ≤ j ∗} are assigned the same
color, so the ASSERTION is true. Therefore in the remainder of the proof, we
shall only consider the case where |Sv ∩ {st |t ≤ i}| ≥ 2 and si ∈ Sv ∩ {st |t ≤ i}.

Let LCA denote the least common ancestor of v and the vertex that si belongs
to—namely, LCA is the unique vertex that lies on the path between vroot and
v, on the path between vroot and the vertex that si belongs to, and on the path
between v and the vertex that si belongs to.

Let sp be an arbitrary color-slot in the set Sv ∩{st |t < i}. Let sq be an arbitrary
color-slot in the set {st |st /∈ Sv, t < i}. Define P as such a set: P = {st |t < i, the
vertex that st belongs to is either LCA or a descendant of LCA}. We have the
following three statements.

STATEMENT 1: sq /∈ P .
STATEMENT 2: if sp ∈ P , then (sp ⇒ si) � (sq ⇒ si).
STATEMENT 3: if sp /∈ P , then (sp ⇒ si) � (sq ⇒ si).

To see why STATEMENT 1 is true, we use contradiction. Assume sq ∈ P . Then
d (sq → vroot) = d (sq → LCA) + d ( LCA→ vroot). Clearly d (si → vroot) = d (si →
LCA) + d (LCA→ vroot). Since q < i, we get that d (sq → vroot) ≤ d (si → vroot),
so d (sq → LCA) ≤ d (si → LCA). So d (sq → v) ≤ d (sq → LCA) + d ( LCA→ v) ≤
d (si → LCA) + d (LCA→ v) = d (si → v). Since si ∈ Sv, d (sq → v) ≤ d (si → v)
and q < i, by the definition of Sv, we get that sq ∈ Sv, which is a contradiction.
So STATEMENT 1 is true.

To see why STATEMENT 2 is true, let’s assume that sp ∈ P . By the same
argument as in the previous paragraph, we get that d (sp → LCA) ≤ d (si →
LCA). Since si ∈ Sv, i > q and sq /∈ Sv, by the definition of Sv, we get that
d (sq → v) > d (si → v). From STATEMENT 1, we know that the vertex that
sq belongs to is neither LCA nor a descendant of LCA, so d (sq → v) = d (sq →
LCA) + d ( LCA→ v); and we know that d (si → v) = d (si → LCA) + d (LCA→ v).
So d (sq → LCA) > d (si → LCA) ≥ d (sp → LCA). So d (sp → si) ≤ d (sp → LCA) +
d (LCA→ si) < d (sq → LCA)+d (LCA→ si) = d (sq → si). So (sp ⇒ si) � (sq ⇒ si).
So STATEMENT 2 is true.

To see why STATEMENT 3 is true, let’s assume that sp /∈ P . Since sp ∈ Sv
and sq /∈ Sv, by the definition of Sv, we get that (sp ⇒ v) � (sq ⇒ v). Since
neither the vertex that sp belongs to nor the vertex that sq belongs to is LCA or

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 183

a descendant of LCA, but v is either the same as or a descendant of LCA, we get
that (sp ⇒ LCA) � (sq ⇒ LCA). Since si is either the same as or a descendant of
LCA, we get that (sp ⇒ si) � (sq ⇒ si). So STATEMENT 3 is true.

By STATEMENT 2 and STATEMENT 3, we know that (sp ⇒ si) � (sq ⇒ si) in
any case. Note that sp is an arbitrary color-slot in the set Sv ∩{st |t < i}, and sq is
an arbitrary color-slot in the set {st |st /∈ Sv, t < i}. Since X i ≥ |Sv∩{st |t ≤ i}| and
si ∈ Sv, we get that |Sv ∩{st |t < i}| ≤ X i −1—so by Algorithm 3.1, the color of si
differs from that of any color-slot in Sv ∩{st |t < i}. By the induction assumption,
no two color-slots in the set Sv ∩ {st |t < i} are assigned the same color. So no
two color-slots in Sv ∩ {st |t ≤ i} are assigned the same color. So the ASSERTION
is true when i = I . That concludes the induction step of the proof.

LEMMA 3.2. After Algorithm 3.1 is used to assign colors to the tree G =
(V , E), for any vertex v, no two color-slots in Sv—whose cardinality is κv =
max1≤i≤nv ki(v)—are assigned the same color.

PROOF. Replace the integer i in Lemma 3.1 by � . Note that Sv ∩{st |t ≤ � } =
Sv.

THEOREM 3.3. Algorithm 3.1 correctly outputs a solution to the data inter-
leaving problem.

PROOF. For any vertex v, we know that there are κv = max1≤i≤nv ki(v) distinct
colors assigned to the color-slots in Sv. Consider an arbitrary requirement of v—
say it is (ri(v), ki(v)). By the definition of Sv and the fact that |B(v, ri(v))| ≥ ki(v),
we can see that there are at least ki distinct colors assigned to the color-slots
in the set {st |d (st → v) ≤ ri}.

3.3 Discussion of the Data-Interleaving Algorithm

For Algorithm 3.1, the minimum value that X i (1 ≤ i ≤ � ) can take is the
greater number between 1 and maxv:si∈Sv |Sv ∩ {st |t ≤ i}|, and the maximum
value X i can take is min{N , i}. X i can take any value between those two bounds.
The smaller X i is, the less restriction the algorithm has while choosing a color
for si—therefore the more possible outputs the algorithm has. So choosing a
smaller value for X i increases the generality of the algorithm; on the other side,
setting X i to be the maximum value—min{N , i}—certainly makes its compu-
tation simple.

If we set X i to be min{N , i} for all i, then Algorithm 3.1 will output a solution
that has the following property: for every vertex, there are N different colors
placed as closely to it as possible. That property can be proved by using the
following two facts: (1) if we make the requirement set of each vertex v ∈ V to
be R(v) = {(∗, N )}, where ∗ is an arbitrary integer, Algorithm 3.1 will still work
exactly the same way as before (since the value of each X i has been fixed to
be min{N , i}); (2) Lemma 3.2 tells us that, if a vertex has a requirement (r, k),
then Algorithm 3.1 places at least k different colors as closely to it as possible.

Note that, for the data-interleaving algorithm, we can, in fact, pick any vertex
of G to be the root vertex vroot . It does not have to be the same root as in the
memory-allocation algorithm.

The complexity analysis of Algorithm 3.1 is presented in Appendix D.

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



184 • A. Jiang and J. Bruck

4. OPTIMAL SOLUTION TO THE FILE STORAGE PROBLEM

The combination of the memory-allocation algorithm and the data-interleaving
algorithm yields an optimal solution to the file storage problem—we first use
the memory-allocation algorithm to determine the number of codeword symbols,
w(v), assigned to each vertex v ∈ V (where we should set Wmin(v) = 0 for all
v ∈ V in the corresponding memory-allocation problem), then use the data-
interleaving algorithm to determine which w(v) codeword symbols to assign to
each vertex v ∈ V .

For any element (r, k) in the requirement set of any vertex v ∈ V , the memory-
allocation algorithm guarantees that there are at least k codeword symbols
placed within distance r to v; then the data-interleaving algorithm further
guarantees that there are at least k distinct codeword symbols placed within
distance r to v—so the solution to the file storage problem is feasible. The
total memory size determined by the memory-allocation algorithm,

∑
v∈V w(v),

is a lower bound for the total memory size in a file storage solution, and the
data-interleaving algorithm shows that this lower bound is in fact sufficiently
large—so the solution to the file storage problem is optimal.

5. CONCLUSION

This article proposes a scheme for storing a file in a network where clients have
diverse requirements on file-retrieval delays, under both fault-free and faulty
circumstances. The file is encoded with a general error-correcting code. When
the network is a tree with asymmetric edges between adjacent nodes, a memory-
allocation algorithm and a data-interleaving algorithm are used to respectively
determine how many and which codeword symbol to store on each node. Both
algorithms are of polynomial time complexity. They together provide an optimal
solution to the file storage problem, which minimizes the total amount of data
stored in the network.

There are many additional important issues to be solved in the field of file
storage using error-correcting codes. Among them, storing files in dynamic en-
vironments and finding good codes that have low complexity for file revision
are two interesting examples.

APPENDIX A. PSEUDOCODE OF ALGORITHM 2.1

In this appendix we present the pseudocode of Algorithm 2.1.

Algorithm 2.1 (Memory Allocation on Tree G = (V , E))

1. Label the vertices in V as v1, v2, . . . , v|V | according to the following rule: if vi
is the parent of vj , then i > j .
For 1 ≤ i ≤ |V |, let w(vi) ← Wmin(vi).

2. For i = 1 to |V | − 1 do:
{ Let vP denote the parent of vi . Let R̃(vi) ← R(vi).

While R̃(vi) �= ∅ do:
{ Let (r, k) be any element in R̃(vi). Define S1 as S1 = N (vP , r − d (vP → vi)),

and define S2 as S2 = N (vi , r) − S1. Update the elements in {w(v)|v ∈ V }
through the following two steps:

Step 1: Let X ← max{0, k − ∑
v∈S1

Wmax(v) − ∑
v∈S2

w(v)}, and let
C ← S2.

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 185

Step 2: Let u0 be the vertex in C that is the closest to vi—namely, u0 ∈ C
and d (u0 → vi) = minu∈C d (u → vi). Let Temp ← min{Wmax(u0),
w(u0) + X }. Let X ← X − (Temp − w(u0)), let w(u0) ← Temp,
and let C ← C − {u0}. Repeat Step 2 until X equals 0.

Remove the element (r, k) from R̃(vi).
}
While R(vi) �= ∅ do:
{ Let (r, k) be any element in R(vi). If

∑
u∈N (vi ,r) w(u) < k, then add an

element (r − d (vP → vi), k − ∑
u∈N (vi ,r)−N (vP ,r−d (vP →vi ))

w(u)) to the set
R(vP ). Remove the element (r, k) from R(vi).

}
}

3. While R(v|V |) �= ∅ do:
{ Let (r, k) be any element in R(v|V |). Update the elements in {w(v)|v ∈ V }

through the following two steps:
Step 1: Let X ← max{0, k − ∑

u∈N (v|V |,r) w(v)}, and let C ← V .
Step 2: Let u0 be the vertex in C that is the closest to v|V |—namely,

u0 ∈ C and d (u0 → v|V |) = minu∈C d (u → v|V |). Let Temp ←
min{Wmax(u0), w(u0) + X }. Let X ← X − (Temp − w(u0)), let
w(u0) ← Temp, and let C ← C − {u0}. Repeat Step 2 until X
equals 0.

Remove the element (r, k) from R(v|V |).
}
Output w(v1), w(v2), . . . , w(v|V |) as the solution to the memory-allocation
problem.

Note that in the above pseudocode, the values of memory floors are not really
updated because it is not necessary to do that, although they have been used
in Section 2 as a helpful tool for analysis.

APPENDIX B. PROOF AND COMPLEXITY ANALYSIS OF ALGORITHM 2.1

In this appendix, we prove the correctness of Algorithm 2.1, and analyze its
complexity.

THEOREM B.1. Algorithm 2.1 correctly outputs an optimal solution to the
memory allocation problem.

PROOF. For all the vertices except the root vroot , Algorithm 2.1 processes
them one by one, using the methods in Lemma 2.1 and Lemma 2.2 to increase
the memory sizes of vertices and transform the memory allocation problem
from old problems to new problems. (To recall the definition of old problem and
new problem, see Lemma 2.2.) After that, only vroot has not been processed, and
vroot is the only vertex whose requirement set may not be empty. Then the algo-
rithm increases the memory sizes of the vertices to satisfy vroot ’s requirements,
with the increased part of the memory sizes placed as close as possible to vroot
and being as small as possible, and ends there—and that is clearly the optimal
way to solve the new memory-allocation problem at that moment (which is just
to assign enough memory sizes to satisfy the requirements of vroot). Since an
optimal solution to a new problem is always an optimal solution to an old prob-
lem, Algorithm 2.1 has successfully found an optimal solution to the original
memory-allocation problem.

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



186 • A. Jiang and J. Bruck

In terms of complexity analysis, Algorithm 2.1 needs two tools for its exe-
cution: a distance matrix recording the distance between any pair of vertices,
which takes time complexity O(|V |2) to compute; and for every vertex v, a table
ordering all the vertices according to their distance to v—computing all these
|V | tables has time complexity O(|V |2), too. With these two tools available, the
algorithm processes all the vertices one by one. Let q denote the average cardi-
nality of a requirement set in the original memory-allocation problem, namely,
q = 1

|V |
∑

v∈V |R(v)|. So originally there are totally q|V | elements in all the re-
quirement sets. When the algorithm is computing, every time an element in a
vertex’s requirement set is deleted, a new element might be inserted into the
vertex’s parent’s requirement set—and on no other occasion will a new element
be generated. Each vertex can have at most |V | − 1 ancestors. So during the
whole period when the algorithm is computing, there are no more than q|V |2
elements—old and new, in total—in all the requirement sets. Every time a ver-
tex is processed, all the elements in its requirement sets are processed in the
following way—for each element, the set {w(v)|v ∈ V } and the set {R(v)|v ∈ V }
are updated, which has time complexity O(|V |). So the complexity of Algorithm
2.1 is O(|V |2 + |V |2 + q|V |2 · |V |), which equals O(q|V |3).

APPENDIX C. ALGORITHM FOR MEMORY-ALLOCATION PROBLEM
WITHOUT UPPER BOUND FOR MEMORY SIZES

When Wmax(v) = ∞ for all v ∈ V —that is, when no upper bound exists for
the memory sizes—the memory-allocation problem can be solve with time
complexity O(q|V |2). In this appendix, we present the pseudocode of such an
algorithm—Algorithm C.1.

Algorithm C.1 is similar to Algorithm 2.1, except that in Algorithm C.1, a new
notion named residual requirement set is used. The notion is defined as follows.
Say at some moment, each vertex v ∈ V is temporarily assigned a memory size
w(v), and its requirement set is R(v). For every element (r, k) ∈ R(v), there is
a corresponding element (r̄, k̄) in the residual requirement set of v, denoted by
Res(v), computed in the following way: r̄ = r, and k̄ = max{k−∑

u∈N (v,r) w(u), 0}.
(The meaning of the element (r̄, k̄) is that the summation of the memory sizes
of the vertices in N (v, r) needs to be increased by k̄ so that

∑
u∈N (v,r) w(u) will

be no less than k.)
Algorithm C.1 (Memory-Allocation on Tree G = (V , E) without Upper Bound for

Memory Sizes)

1. Label the vertices in V as v1, v2, . . . , v|V | according to the following rule: if
vi is the parent of vj , then i > j . Let w(vi) ← Wmin(vi) for 1 ≤ i ≤ |V |. Let
Res(vi) ← ∅ for 1 ≤ i ≤ |V |. For 1 ≤ i ≤ |V |, and for each element (r, k) ∈ R(vi),
do the following: if k − ∑

v∈N (vi ,r) w(v) > 0, then let Res(vi) ← Res(vi) ∪
{(r, k − ∑

v∈N (vi ,r) w(v))}.
2. For i = 1 to |V | − 1 do:

{ Let vP denote the parent of vi . Let Q(vi) ← Res(vi), and let x ← 0.
While Q(vi) �= ∅ do:
{ Let (r, k) be any element in Q(vi). If r < d (vP → vi), then let x ← max{x, k}

and remove the element (r, k) from the set Res(vi). Remove the element
(r, k) from Q(vi).

}
ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 187

Let w(vi) ← w(vi) + x.
For j = i + 1 to |V |, and for every element (r, k) ∈ Res(vj ), do the following:
if r ≥ d (vi → vj ) and k − x > 0, then replace the element (r, k) in the set
Res(vj ) by (r, k − x); if r ≥ d (vi → vj ) and k − x ≤ 0, then remove the element
(r, k) from Res(vj ).
For every element (r, k) ∈ Res(vi) do the following: if k > x, then let Res(vP )
← Res(vP ) ∪ {(r − d (vP → vi), k − x)}.
Let Res(vi) ← ∅.

}
3. Let x ← 0.

While Res(v|V |) �= ∅ do:
{ Let (r, k) be any element in Res(v|V |). Let x ← max{x, k}. Remove the

element (r, k) from Res(v|V |).
}
Let w(v|V |) ← w(v|V |) + x.

4. Output w(v1), w(v2), . . ., w(v|V |) as the solution to the memory allocation problem.

In regard to the complexity analysis, the complexity of Algorithm 2.1, which
is O(q|V |3), is dominated by the complexity of updating memory sizes—the
memory sizes can be updated up to O(q|V |2) times, and each time up to O(|V |)
memory sizes might change. When there is no upper bound for the memory
sizes, with the help of residual requirement sets, each time only one memory
size will need to be updated, which has complexity O(1). So the complexity
of updating memory sizes is reduced from O(q|V |3) to O(q|V |2). Maintaining
the residual requirement sets also has a total complexity of O(q|V |2). So the
complexity of Algorithm C.1 is O(q|V |2).

APPENDIX D. COMPLEXITY OF THE DATA-INTERLEAVING ALGORITHM

The complexity of the data-interleaving algorithm depends on how the variables
X i (1 ≤ i ≤ � ) are chosen. The smaller the values of X i are, the more general
the algorithm is—meaning that the algorithm has more possible outputs. The
smallest value X i can take is maxv:si∈Sv |Sv ∩ {st |t ≤ i}| (assuming that number
is no less than 1; otherwise the value is simply 1.) Below we will show that,
if the algorithm chooses X i to be maxv:si∈Sv |Sv ∩ {st |t ≤ i}| for 1 ≤ i ≤ � ,
then the algorithm has the total time complexity of O(|V |2 + N� 2 + N� |V |).
We point out that this time complexity can be reduced if one is willing to add
more restrictions on the algorithm—for example, when the color-slots of the
same vertex are labeled with consecutive indices, or when X i is simply set to
be min{N , i} for all i, the algorithm can be implemented in more efficient ways.

The full implementation of the data-interleaving algorithm has the following
major operations:

—Operation 1: label the color-slots as s1, s2, . . . , s� ;
—Operation 2: for each vertex v, find out the set Sv;
—Operation 3: for 1 ≤ i ≤ � , set the value of X i to be maxv:si∈Sv |Sv ∩{st |t ≤ i}|;
—Operation 4: for 1 ≤ i ≤ � , find the set denoted by T in the algorithm.

Below we analyze the time complexity.
In order to implement the algorithm, we need to construct a |V |×|V | distance

table which records the distance from any vertex to any other vertex; then for

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



188 • A. Jiang and J. Bruck

every vertex v, we need to construct a list which orders all the vertices according
to their distance to v. That has time complexity O(|V |2). Then, Operation 1 has
time complexity O(� + |V |).

Now consider Operation 2. Computing κv = max1≤i≤nv ki(v) for all v takes
complexity

∑
v∈V nv. It is very reasonable to assume that nv ≤ N (because

otherwise some of v’s requirements would be redundant), so that complexity
becomes O(N |V |). To find out Sv, we need to sort the color-slots first based
on their distance to v then according to the indices of their labels, and pick
out the first κv of them—which can be done with complexity O(κv� + |V |) ≤
O(N� + |V |). So Operation 2 has complexity O(N |V | + |V |(N� + |V |)) =
O(N� |V | + |V |2).

Now consider Operation 3. For each vertex v, we sort the color-slots in Sv
based on the indices of their labels, which has complexity O(κv log κv); then, if
a color-slot si is the j th element in the sorted list, it means |Sv ∩ {st |t ≤ i}| = j ,
which can be used to update the value of X i. So Operation 3 has complexity
O(

∑
v∈V κv log κv) ≤ O(|V |N log N ).

Operation 4 is similar to Operation 2, except that here we consider it for
each color-slot si instead of for each vertex v. So Operation 4 can be seen to have
complexity O(� (N� + |V |)) = O(N� 2 + � |V |).

We can rightly assume that � ≥ N , because otherwise the data-interleaving
problem would be trivial—we just make all the color-slots have different col-
ors. Therefore, the total time complexity of the data-interleaving algorithm is
O(|V |2)+ O(� +|V |)+ O(N� |V |+ |V |2)+ O(|V |N log N )+ O(N� 2 +� |V |) =
O(|V |2 + N� 2 + N� |V |).
REFERENCES

BORODIN, A. AND EL-YANIV, R. 1998. Online Computation and Competitive Analysis. Cambridge
University Press, Cambridge, U.K.

DOWDY, L. W. AND FOSTER, D. V. 1982. Comparative models of the file assignment problem. ACM
Comput. Surv. 14, 2, 287–313.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, NY, and San Francisco, CA.

HOCHBAUM, D. S. AND SHMOYS, D. B. 1985. A best possible heuristic for the k-center problem. Math.
Operat. Res. 10, 2, 180–184.

JIANG, A. AND BRUCK, J. 2003a. Diversity coloring for distributed data storage in networks. Un-
published manuscript.

JIANG, A. AND BRUCK, J. 2003b. Memory allocation in information storage networks. In Proceedings
of the IEEE International Symposium on Information Theory, (Tokohama, Japan). 453.

JIANG, A. AND BRUCK, J. 2005. Multicluster interleaving on linear paths and cycles. IEEE Trans.
Inform. Theory 51, 2 (Feb.), 597–611.

JIANG, A., COOK, M., AND BRUCK, J. 2004. Optimal t-interleaving on tori. In Proceedings of the
IEEE International Symposium on Information Theory (Chicago, IL). 22.

KALPAKIS, K., DASGUPTA, K., AND WOLFSON, O. 2001. Optimal placement of replicas in trees
with read, write, and storage costs. IEEE Trans. Parallel Distrib. Syst. 12, 6 (June), 628–
637.

KARIV, O. AND HAKIMI, S. L. 1979. An algorithmic approach to network location problems. I: The
p-centers. SIAM J. Appl. Math. 37, 3 (Dec.), 513–538.

MAHMOUD, S. AND RIORDAN, J. S. 1976. Optimal allocation of resources in distributed information
networks. ACM Trans. Database Syst. 1, 66–78.

MALLUHI, Q. M. AND JOHNSTON, W. E. 1998. Coding for high availability of a distributed-parallel
storage system. IEEE Trans. Parallel Distrib. Syst. 9, 12 (Dec.), 1237–1252.

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.



Network File Storage With Graceful Performance Degradation • 189

NAOR, M. AND ROTH, R. M. 1995. Optimal file sharing in distributed networks. SIAM J. Comput.
24, 1, 158–183.

PATTERSON, D. A., GIBSON, G. A., AND KATZ, R. 1988. A case for redundant arrays of inexpensive
disks. In Proceedings of the SIGMOD International Conference on Data Management. 109–116.

SLATER, P. J. 1976. R-domination in graphs. J. Assoc. Comput. Mach. 23, 3 (March), 446–450.
WANG, J. 1999. A survey of Web caching schemes for the Internet. ACM SIGCOMM Comput.

Comm. Rev. 29, 5, 36–46.

Received August 2004; revised September 2004; accepted September 2004

ACM Transactions on Storage, Vol. 1, No. 2, May 2005.


