
Exploiting Half-wits: Smarter Storage for Low-Power Devices

Mastooreh Salajegheh∗, Yue Wang†, Kevin Fu∗, Anxiao (Andrew) Jiang†, Erik Learned-Miller∗
∗Department of Computer Science, University of Massachusetts Amherst

†Department of Computer Science and Engineering, Texas A&M University
{negin,kevinfu,elm}@cs.umass.edu, {yuewang,ajiang}@cse.tamu.edu

Abstract

This work analyzes the stochastic behavior of writing to
embedded flash memory at voltages lower than recom-
mended by a microcontroller’s specifications to reduce
energy consumption. Flash memory integrated within a
microcontroller typically requires the entire chip to op-
erate on common supply voltage almost double what the
CPU portion requires. Our approach tolerates a lower
supply voltage so that the CPU may operate in a more en-
ergy efficient manner. Energy efficient coding algorithms
then cope with flash memory that behaves unpredictably.

Our software-only coding algorithms (in-place writes,
multiple-place writes, RS-Berger codes) enable reliable
storage at low voltages on unmodified hardware by ex-
ploiting the electrically cumulative nature of half-written
data in write-once bits. For a sensor monitoring applica-
tion using the MSP430, coding with in-place writes re-
duces the overall energy consumption by 34%. In-place
writes are competitive when the time spent on computa-
tion is at least four times greater than the time spent on
writes to flash memory. Our evaluation shows that tightly
maintaining the digital abstraction for storage in embed-
ded flash memory comes at a significant cost to energy
consumption with minimal gain in reliability.

1 Introduction
Billions of microcontrollers appear in embedded systems
ranging from thermostats and utility meters to tollway
payment transponders and pacemakers1. Recent years
have witnessed a proliferation of low-power embedded
devices [2, 7, 17, 21], many of which use on-chip flash
memory for storage.

While the reliability, low cost, and high storage den-
sity of flash memory make it a natural choice for embed-
ded systems [15], its relatively high voltage requirement
(Table 1) introduces challenges for energy-efficient de-

1A single manufacturer claims to have shipped over 8 billion mi-
crocontrollers http://www.microchip.com/sec/annual/FY10/.

signs aiming to maximize the system’s effective lifetime
(e.g., the run time on a typical battery whose voltage
declines over time). Instrumenting the system to oper-
ate at a fixed low voltage vl is one way to reduce power
consumption; however, achieving consistently correct re-
sults for flash writes are guaranteed only if vl is higher
than a manufacturer-specified threshold. Moreover, in
energy-limited devices that cannot provide a constant
supply voltage, scenarios may arise in which the flash
memory is the only part of the circuit whose operating
requirements are not met. In such cases, applications can
expect normal operation when they are not performing
flash writes and unpredictable behavior when they are.

Microcontroller CPU Flash write
Min. voltage Min. voltage

TI MSP430 [36] 1.8 V 2.2 or 2.7 V
PIC32M [24] 2.3 V 3.0 V

ATmega128L [3] 2.7 V 4.5 V

Table 1: Flash memory restricts choices for the CPU
voltage supply on microcontrollers because the CPU
shares the same power rail as the on-chip flash memory.

Because embedded flash memory typically shares a
common voltage supply with the CPU (separate power
rails are cost prohibitive), a single voltage must be cho-
sen that satisfies different components with different
minimum voltage requirements. Current embedded sys-
tems address the voltage limitations of flash memory in
one of the following ways:

i) A system can choose a high supply voltage suffi-
cient for both reliable writes to flash memory and reliable
CPU operation. This is a common choice for embed-
ded systems with on-chip flash memory, but causes the
CPU to consume more energy than necessary. For exam-
ple, the TI MSP430F2131 microcontroller [36] in active
mode consumes almost double the power when operat-

CPU

F
la
s
h

F
la
s
h

V
o
lt
a
g
e

Time

CPU

Half-wits

Conventional

Figure 1: Operating at a lower voltage and tolerat-
ing errors instead of the conventional case of choos-
ing the highest minimum voltage requirement may
help decrease energy consumption. Considering that
Energy = voltage2× time/resistance, decreasing volt-
age decreases the energy consumption quadratically.

ing at 2.2 V instead of 1.8 V. Its onboard flash memory
requires 2.2 V for reliable writes to flash memory.

ii) A system can choose a low supply voltage sufficient
for CPU operation, but insufficient for reliable writes to
flash memory. This choice allows the energy source to
last longer and for the CPU to compute more efficiently.
An example of such a system is the Intel WISP [33],
a batteryless RFID tag that sets its operating voltage to
1.8 V—below its onboard flash memory’s 2.2 V spec-
ified minimum—to save power. Flash memory cannot
be written on this device. The microcontroller could use
a low-power wireless interface (e.g., RF backscatter) to
store data remotely. Such an approach, however, raises
privacy as well as performance concerns [32].

iii) A system can modify hardware to enable dy-
namic voltage scaling. This approach requires additional
analog circuitry such as voltage regulators and GPIO-
controlled switches. Because many embedded systems
are extremely cost sensitive, this choice is unattractive
for high-volume manufacturing with low per-unit profit
margins. An additional 50 cent part on a thermostat con-
trol can be cost prohibitive. Moreover, small changes
may necessitate a new PCB layout—upsetting the deli-
cate supply chain and invalidating stocked inventories of
already fabricated PCBs.

Approach. Our approach reduces the operating volt-
age of the microcontroller to a point at which the result-
ing energy savings of the CPU portion of the workload
exceeds the energy cost of the algorithms for ensuring
reliable writes (Figure 1). The technique requires min-
imal or no hardware modification and also allows for
RFID-scale devices to better exploit capacitors as power
supplies. The capacitor provides finite energy and there-
fore the voltage decays exponentially. The long tail of
the curve provides insufficient voltage for conventional
writes to flash memory, but is sufficient for reliable stor-
age with our techniques.

Of wits and half-wits. In 1982, Rivest and Shamir in-
troduced the notion of write-once bits (wits) in the con-
text of coding theory to make write-once storage behave
like read-write storage [31]. Bits in flash memory be-
have like wits because a programmed bit cannot be re-
programmed without calling an energy-intensive erase
operation to a block of memory much larger than a sin-
gle write. We coin the term half-wits to refer to wits used
in a manner inconsistent with a manufacturer’s specifica-
tions, resulting in stochastic behavior. Half-wits in this
work are wits of flash memory used below the recom-
mended supply voltage.

In examining error rates at low voltage and construct-
ing a system that provides reliable storage despite errors,
our work suggests that it is appropriate to relax previ-
ously assumed constraints and reexamine the costly dig-
ital abstractions layered above on-chip flash memory.

Contributions. Our primary contributions include an
empirical evaluation that characterizes the behavior of
on-chip flash memory at voltages below minimum lev-
els specified by manufacturers, and algorithms that en-
able reliable writes to flash memory while coping with
low voltage. Our evaluation identifies three key factors
affecting error rates: voltage, Hamming weight of the
data, and the wear-out history of the flash memory.

The first algorithm, in-place writes, makes attempts at
write time to store a value correctly in the given memory
address. The in-place writes method repeatedly writes
data to the same memory address. The intuition behind
this approach is that repeating a write attempt in a con-
sistent location accumulates the charge in the same cell,
increasing the chance of storing a bit of information cor-
rectly. In addition, since flash writes only change bits
in a single direction, a correctly written bit cannot be re-
versed to produce an error on a second write attempt. The
second algorithm, multiple-place writes, tries to decrease
the probability of error by making attempts at both write
time and read time. This method stores data in more than
one location aiming that the data (even partially) will be
stored correctly in at least one of these locations. The
third algorithm is a hybrid error-correcting code combin-
ing Reed-Solomon (RS) [29] and Berger [5] codes. The
Berger code detects, but does not correct, asymmetric er-
rors caused by the low write voltage. Given the approx-
imate locations of errors, which are determined by the
Berger code, the RS code efficiently recovers the origi-
nally stored data.

The paper compares all three methods in terms of en-
ergy consumption, execution time, and error correction
rate. We also show that our methods are most effective
for CPU-bound workloads. With respect to cost and en-
ergy, our techniques may enable already deployed em-
bedded flash memory to remain competitive with emerg-
ing technology for low-power, non-volatile memory.

2

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

V
ol

ta
ge

 (
m

v)

(a) Writes at 2.0 V

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

V
ol

ta
ge

 (
m

v)

(b) Writes at 1.9 V

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

V
ol

ta
ge

 (
m

v)

(c) Writes at 1.8 V

Figure 2: As operating voltage decreases, flash-write errors increase. (a) shows an original ECG signal correctly
stored at 2.0 V (despite operating below the recommended threshold). As the voltage decreases in (b) and further
in (c), erroneous writes (light-colored spikes, height varying according to the magnitude of the error) become more
common. The black line shows the reconstructed signal that includes the errors.

2 Behavior of Storage on Half-wits
Before we can design effective coding algorithms, we
must first understand the behavior of errors in half-wits.
By tolerating a lower voltage, an energy-limited em-
bedded device can decrease its power consumption and
therefore extend its lifetime on a finite energy supply2.
The minimum operating voltage of embedded devices
that use nonvolatile on-chip storage is usually deter-
mined by the requirements of flash memory. For exam-
ple, the TI MSP430 microcontroller can operate at 1.8 V,
but its nominal minimum voltage for flash writing and
erasure is 2.2 V (Table 1). Increasing operating voltage
from 1.8 V to 2.2 V causes the CPU to draw about 50%
more power without commensurate gain in clock speed
because of the voltage squaring effect.

The drawback of lowering voltage below flash mem-
ory requirements in order to save power is the loss of
flash memory reliability. Figure 2 shows the result of
running a MSP430F2131 at three different voltages—
all lower than the nominal minimum for flash writes—
to store electrocardiogram (ECG) data samples from the
PhysioNet database [13] in flash memory. Many medical
sensor networks [20, 22, 34] that provide ECG measure-
ments are energy limited and use on-chip flash memory
as primary storage.

These graphs support the intuition that flash writes
may not be error free at low voltages and that there exist
voltage levels below the minimum recommended voltage
at which flash writes function correctly3. To investigate
the behavior of flash memory at low voltage and deter-
mine the factors influencing the error rate, we performed
experiments on an automated testbed of our own design.

2Or because of relaxed requirements, eliminate the need for multi-
ple batteries in series to achieve a high voltage.

3Moreover, a nonzero error rate may be tolerable by some appli-
cations. In the case of ECG data, the cardiac pulse interval can be
recovered from noisy data stored at low voltage.

2.1 Experimental Methodology

We use a consistent experimental setup for all of the ex-
periments in this work. Our choice of test platform is a TI
MSP430 [36] microcontroller with on-chip flash mem-
ory. More specifically, we tested two types of TI mi-
crocontrollers: MSP430F2131 and MSP430F1232. The
MSP430 is common in low-power embedded applica-
tions; we note especially its use in sensor motes [28]
and RFID-scale batteryless devices [33]. In our setup,
an MSP430 microcontroller runs a test program that in-
volves both computation and flash operation. We power
the microcontroller with an external power supply held
steady at a voltage below the nominal minimum for flash
writes. An external chip captures the contents of flash
memory after each experiment.

To automate the testing of flash write behavior, we
have developed a flash memory testbed. The two major
components of the testbed are a test platform and a con-
nected monitoring platform. The monitoring platform is
based on an additional MSP430 microcontroller. The test
platform runs a test program at low voltage. When the
test program completes, the test platform sends the result
of the experiment to the monitoring chip via GPIO pins.
The test and monitoring platforms share 8+1 GPIO pins
to carry one byte of data and a clock signal. Once the
test platform puts data on its eight data pins, it raises the
clock pin. The monitoring chip reads data from its GPIO
pins whenever it detects a rising clock signal and logs
the results in its own flash memory. The monitoring chip
runs at a voltage above the nominal minimum for its own
flash writes, and therefore stores reliably.

2.2 Unreliable, Low-Voltage Flash Memory Writes

The TI MSP430 datasheet [36] states that flash writes
at any voltage lower than the nominal minimum volt-
age (which is 2.2 V in the case of MSP430F2131) are
not guaranteed to succeed. However, as the graphs in

3

Figure 2 show, not all flash writes fail at low voltages.
On the contrary, in this specific experiment, most of the
writes (95.24% at 1.9 V and 89.88% at 1.8 V) succeed.

In a NOR flash memory, all cells are initialized to 1,
and writing data to a byte of flash memory means setting
an appropriate number of bits to 0 by applying electri-
cal charge to the corresponding flash cells. At low volt-
age, there may be insufficient charge to effect a transi-
tion to 0, and a flash write may store fewer 0 bits than
requested [27]. To be specific, we define errors as fol-
lows: when a byte of data d1 is written in a flash memory
address and then data d2 is read from that address, there
is an error if d1 6= d2. An experiment, explained next, in-
vestigates the behavior of low-voltage flash memory and
gives bit-level results.

Using the automated flash testbed explained in Section
2.1, the test platform runs a program that writes numbers
{0, · · · ,255} to flash memory, then sends the contents of
its flash memory to the monitoring platform via GPIO
pins. Table 2 compares the written data and the intended
data for cases in which errors occurred. It demonstrates
that, when both are represented as integers, the absolute
value of the stored data is always greater than or equal to
the absolute value of the intended data.

2.3 Determining Factors That Affect Error Rates

We consider the following potential factors that may af-
fect the error rate of setting a bit to 0 in a flash memory
at low voltage: voltage level, Hamming weight of the
data, wear-out history, permutation of 0s, and neighbor
cells. The effects of each of these variables are evalu-
ated by designing an experiment to test a hypothesis. All
the experiments are performed on flash memories with
minimal previous usage unless stated otherwise.

Voltage level: Our hypothesis is that the lower a chip’s
operating voltage (and that of its on-chip flash memory),
the higher the error rate of flash writes. Figure 3 confirms
this hypothesis; moreover, the graph shows that for dif-
ferent chips of exactly the same type, the error rate can
be different even under equivalent voltage.

Experiment: Two MSP430F2131 and two
MSP430F1232 microcontrollers run a program that
writes zeros to the data segment of their flash memory.
We increased the microcontroller’s operating voltage
in 10 mV steps, and used the monitoring platform to
compute the byte error rates over 50 runs.

Hamming weight: In an erased (i.e., having value 1)
flash cell, writing a 1 is always error free because no
change to the cell is necessary. However, setting a cell to
0 might fail if there is not enough charge accumulated in
that cell. Our hypothesis is that, the lower the Hamming
weight (number of 1s in the binary representation) of a
number, the higher the probability of error when writing
that number to flash at low voltage.

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

Voltage (V)

E
rr

o
r

ra
te

 (
%

)

2131 (A)

2131 (B)

1232 (A)

1232 (B)

Figure 3: Flash write error rates decrease as volt-
age increases. This trend holds for all the chips
(MSP430F2131 and MSP430F1232) we tested, though
error rates differ even between chips of the same model.

Based on per-byte Hamming weight, there are nine
equivalence classes of integers that can be represented in
one byte. The weight-8 equivalence class has only one
member, 255, which can always be written to an erased
flash cell without error. The other extreme case is the
weight-0 equivalence class, containing only 0s, that re-
quires all eight bits to transition to 0. Figure 4 shows the
byte error rate for all nine equivalence classes, measured
via the following experiment.

0 1 2 3 4 5 6 7 8
0

50

100

Hamming weight

E
rr

or
 r

at
e(

%
)

Figure 4: As the Hamming weight (number of 1s in the
binary representation) of a number increases, the error
rate of low-voltage flash write declines. The data corre-
sponds to a MSP430F2131 running at 1.84 V.

Experiment: At 1.84 V, a MSP430F2131 runs a pro-
gram that writes numbers from the same equivalence
class to one block (64 bytes) of flash memory. We used
the monitoring platform to compute the average byte er-
ror rate of flash writes for each of the nine equivalence
classes over 50 runs.

Corollary: To exploit the fact that the Hamming
weight of a number affects probability of error when it
is written to flash, one can transform numbers into num-
bers with greater Hamming weights before writing them
to flash memory.

Wear-out history: Flash memory has a limited life-
time (about 105 cycles of erasures) after which the erase
operations fail to reliably reset the bits to 1. We sus-
pect that the more flash memory is erased (worn-out), the

4

Intended 00001100 00001101 00001110 00010100 00100111 10100100(Binary)
Written 11101101 01011111 11111111 11111111 00101111 10101111

Hamming distance 4 3 5 6 1 3

Table 2: Erroneous flash writes at low voltage. Insufficient electrical charge may result in some bits failing to transition
from 1 (the initial state) to 0.

lower its error rate of setting bits to 0 would become4.
Figure 5 shows a heat map of bit error rate for three
blocks of flash memory (192 bytes) on an MSP430F2131
microprocessor. Lighter colors in the heat map represent
higher error rates. The disproportionately dark color of
the middle block is due to more frequent erasure of that
block compared to the other two blocks.

Figure 5: Worn-out flash memory blocks are biased to-
ward ease of writing zeros. Lighter color represents
higher average number of errors over 50 trials. The mid-
dle block has been write/erase cycled 6,000 times. The
other two blocks are minimally used.

Experiment: A MSP430F2131 runs a program that
writes zeros to all three blocks of its flash memory. The
MSP430 is first worn out such that one block has 6,000
write/erase cycles and two blocks have minimal previous
usage. We used the monitoring platform to compute the
average error rate for all bits in the three blocks of mem-
ory over 50 trials.

Corollary: Wear-out history affects error rate, so stor-
ing data in more than one location might help decrease
the error rate, especially if those locations are in different
blocks of memory.

Permutation of 0s: Two numbers belonging to the
same Hamming-weight equivalence class can have dif-
ferent permutations of 0 bits. We tested to see if the er-
ror rate depends on the permutation of 0s in one byte
of data. For example, the numbers 240, 15, 170, and
71 all have four 0s in their binary representation but in

4This counterintuitive hypothesis is consistent with the notion that
flash erasures (settings bits to 1) become harder with wear out.

different places (240 has 0s in the right nibble, and 15
has all of its 0s in its left nibble, etc.). The result of
the experiment shows a similar byte error rate with mean
of 39.85± 4.29% for numbers in the same equivalence
class. The small standard deviation (4.29%) shows that
the permutation of 0s does not significantly affect the er-
ror rate and therefore we do not consider this factor in
our design directions.

Experiment: A MSP430F2131 runs a program that cy-
cles through eight numbers from the same Hamming-
weight equivalence class, writing them to 192 consec-
utive bytes of flash memory. We used the monitoring
platform to compute the average error rates for each of
the 192 bytes over 50 trials.

Neighbor cells: Another factor that might affect the
error rate of storage in a flash cell at low voltage is the
values of neighboring cells. However, our results suggest
that a cell’s error rate does not appear to depend on the
values stored in neighboring cells (Figure 6).

1.820 1.825 1.830 1.835 1.840
0

20

40

60

80

Voltage (V)

E
rr

or
 r

at
e

of
 L

S
B

 (
%

)

 data=xxxxxx00, H−Weight(data)=4
data=xxxxxx10, H−Weight(data)=4

Figure 6: Error rate of a cell is not noticeably influ-
enced by the value of its neighbor. The graph shows that
the value of the second LSB does not greatly affect the
error rate of the LSB. The bars show the error rate of
the LSB for writing numbers from the same Hamming-
weight equivalence class whose two LSBs are set to ei-
ther 00 (dark bars) or to 10 (light bars).

Experiment: In order to determine if the error rate of
a cell is affected by its neighbor, we consider all num-
bers from the same Hamming-weight equivalence class
whose two Least Significant Bits (LSBs) are set to either
00 (case 1) or 10 (case 2). An example of case 1 is num-
ber 60 (0b00111100) and an example of case 2 is number
30 (0b00011110). This experiment fixes the Hamming
weight variable and changes the neighbor value of the

5

LSB to be 0 or 1. We deem a write erroneous if the LSB
is not set to 0. The experiment was done for a Hamming
weight of four and it was repeated for five voltage levels
in the interval of 1.82 V to 1.84 V with steps of 5 mV.
The error rate for any voltage above 1.84 V was close to
0% and for any voltage below 1.82 was close to 100%.
We used the monitoring platform to compute the average
error rates of case 1 and case 2 for each of the voltage
levels over 50 trials.

2.4 Accumulative Memory Behavior

It is helpful to understand a few details of the electri-
cal nature of flash memory in order to appreciate the
expected behavior of conventional digital abstractions
when layered above embedded flash memory. Each flash
memory cell is a floating-gate (FG) transistor made up
of a source, drain, control gate, and floating gate. The
floating gate is separated from the source and drain by an
insulating oxide layer that makes it difficult for electrons
to travel into or out of the gate. Flash cells rely on this
oxide to maintain logical state in the absence of power,
making the memory non-volatile [27].

To write a memory cell (which has an erased value of
1), the control circuitry applies a high field to the source.
The application of this field greatly increases the proba-
bility that electrons in the floating gate will tunnel to the
source. If a sufficient number of electrons tunnel to the
source, the cell is subsequently read as a 0. To erase a
cell (restoring a 1), the control circuitry applies a high
field to both the source and drain. This field energizes
the electrons currently stored near the source, allowing
them to jump the oxide barrier to the floating gate where
they are once again trapped [27].

Not all electrons must transition in order for a write
or erase operation to be successful. The operation only
needs to change the state of some majority of the elec-
trons so that subsequent read operations detect sufficient
charge to discern the intended value. Lowering the ap-
plied voltage (and thus the field strength) lowers the
probability of state change for each electron but, as noted
earlier, electrons that do transition will remain in place.

A low-power storage scheme can benefit from this ac-
cumulative property by repeating writes to the same cell.
Each write operation will increase the chance of success
by forcing some number of state transitions. In other
words, a failed write is still progress.

3 Design of a Low-Voltage Storage
This section presents our design for a software system
that enables reliable flash memory writes at low voltage.
We first present a model that captures the basic character-
istics and behavior of flash memory. We then set design
goals with that model under consideration. We introduce
three methods for reliable flash storage, which we refer to

as in-place writes, multiple-place writes, and RS-Berger
codes. Each method aims to meet our design goals for
reliable non-volatile storage.

3.1 Modeling Low-Voltage Flash Memory

A NOR flash memory has a set of n cells that are initially
set to 1. We represent the state of the cells by c1, . . . ,cn;
the value of ci can be 0 or 1. A cell can be set to 0 using
a write operation. The 1→ 0 transition might fail at low
voltage while the 1→ 1 will obviously succeed. Flash
memory at low voltage, where errors occur only in one
direction, can be modeled as a Z-channel [19].

Flash memory is a write-once memory [31] and once
a cell is set to 0 (i.e., once it is programmed), it cannot be
changed back to 1 without using an erase operation. In
flash memory, cells are organized by blocks, and an erase
operation resets an entire block of cells. Block erasures
are costly in terms of time and energy and they cause
wear to flash cells.

Operations: There are two operations in this model:
(1) An update operation that changes a subset of cells
to 0 to represent a value, and (2) A decoding operation
that maps cell states (i.e., memory state) to a value. Up-
dating a variable means changing the values of c1, . . . ,cn
to c′1, . . . ,c

′
n. Assuming no erase operation occurs, and

therefore no bits are reset to 1 after being set to 0, we
have ∀i ∈ {1, . . . ,n},ci ≥ c′i after an update. If the update
operation is performed when operating voltage is below
the nominal minimum required for flash memory, the up-
date operation may not be error free.

3.2 Design Goals

Our storage techniques, which aim to provide reliable
storage for low-power devices, are designed with the fol-
lowing metrics in mind:

• Error rate: The first and foremost design goal is to
minimize the error rate to provide applications with
reliable non-volatile storage.

• Energy consumption: The energy consumed to
achieve an acceptably low error rate should not ex-
ceed the expected energy savings gained by running
at a lower voltage.

• Delay: We define delay as the difference between
the execution time to reliably store data at a low
voltage and to store the same data at a high voltage.
The delay caused by the storage technique should
be reasonably small.

3.3 Proposed Methods

Toward the design goals discussed previously, we pro-
pose methods to deal with errors caused by using flash
memory at low voltage.

6

3.3.1 In-Place Writes

Since the transition of a 1 to a 0 in a NOR flash memory
at low voltage is stochastic rather than guaranteed, the
in-place writes method repeats the write of each byte (to
the same memory location) more than once if necessary,
up to a threshold number of attempts. Algorithm 1 gives
the details for ENCODE and DECODE procedures for in-
place writes.

Algorithm 1 The encoding and decoding algorithms for
in-place writes method to store data to address by re-
peating the writes up to threshold a number of attempts
if necessary.

ENCODE(data,address, threshold)
1 WRITE TO FLASH(data,address)
2 result← READ FROM FLASH(address)
3 repeat← 1
4 while (result 6= data) AND (repeat < threshold)
5 do WRITE TO FLASH(data,address)
6 result← READ FROM FLASH(address)
7 repeat← repeat+1

DECODE(address)
1 result← READ FROM FLASH(address)
2 return result

The reason in-place writes decrease the error rate is
that, as explained in Section 2.4, each write attempt in
the same memory location increases the accumulated
charge and therefore raises the probability of storing the
intended bit sequence successfully.

3.3.2 Multiple-Place Writes

Another approach to increase the reliability of flash
writes at low voltage is to write a value to more than one
location in flash memory if necessary up to a threshold
number of locations. Later, to retrieve the stored data,
the multiple-place writes method reads the data from the
specified address and several other addresses associated
with it, then returns the bitwise AND of all of the stored
values. Algorithm 2 details ENCODE and DECODE pro-
cedures of the multiple-place writes method. Writing a
value to more than one memory location increases the
probability of storing it successfully in the flash mem-
ory.

The reason the multiple-place writes approach can de-
crease the error rate is as follows: All cells of flash mem-
ory are initially set to 1. An error means that writing a 0
has failed and a bit cell ci has remained untouched (log-
ical 1) although it was intended to be set to 0. If the cell
write in one of the locations has not failed, and cell ci is 0

Algorithm 2 The encoding and decoding algorithms for
multiple-place writes method to store data to address by
repeating the writes up to a threshold number of loca-
tions if necessary. The distance between each of these
associated locations is offset.

ENCODE(data,addr, threshold,offset)
1 WRITE TO FLASH(data,addr)
2 result← READ FROM FLASH(addr)
3 repeat← 1
4 while (result 6= data) and (repeat < threshold)
5 do phy addr← addr + (repeat × offset)
6 WRITE TO FLASH(data,phy addr)
7 n result← READ FROM FLASH(phy addr)
8 result← result & n result
9 repeat← repeat+1

DECODE(addr, threshold,offset)
1 for i← 0 to (threshold−1)
2 do phy← addr + (i × offset)
3 n result← READ FROM FLASH(phy)
4 result← result & n result
5 return result

in at least one location, getting the AND of the read val-
ues from all locations will make cell ci = 0 in the AND
result. The case of writing a 1 to a cell does not cause an
error since it means changing a cell from 1 to 1.

3.3.3 RS-Berger Codes

Our third method to provide reliable flash memory at low
voltage involves data coding. We use the concatenation
of Reed-Solomon [29] and Berger [29] codes—which we
call RS-Berger codes—to detect and correct errors at read
time. Reed-Solomon is a widely used error-correcting
code that can correct twice as many erasures as errors.
Therefore, if the locations of errors are known, an RS
code’s error-correcting capacity is improved twofold.

To detect the location of errors and therefore improve
the efficiency of the RS code, we use a Berger code, an
error-detecting code for asymmetric channels. As previ-
ously mentioned (Section 3.1), flash memory at low volt-
age can be modeled as a Z-channel for which a Berger
code is suitable. A Berger codeword consists of two
parts: k information bits and dlog2(k + 1)e check bits.
The check bits of the Berger codeword represents the
number of zeros in the k information bits. The Berger
code can detect all zero-to-one errors, because the num-
ber of zeros in the information-bit component will al-
ways be less than the number represented by the check-
bit component.

7

To represent RS-Berger codewords, we use a matrix
in which each row is an RS codeword except for the last
row which includes the Berger check bits of the RS code-
words. In other words, each cell in the last row of the
matrix is the sum of the number of zeros in the corre-
sponding cells in all other rows.

When encoding the data, we first use RS code to gen-
erate n codewords (rows of the matrix) and then we apply
a Berger code to compute the check bits for each symbol
for all codewords (each column of the matrix).

When decoding data, we first use the Berger decoder
to check whether or not each column is erroneous. If
one entry in the column is erroneous, we consider all the
symbols in the column erasures; otherwise, all the sym-
bols in the column are considered correct. Then, once
the error locations are known, we apply RS decoding to
correct the erroneous sequences row by row.

Algorithm 3 The encoding and decoding algorithms for
RS-Berger codes write method. t is the maximum num-
ber of errors RS-Berger code can correct.

ENCODE(data1,..,N ,n)
1 for i← 1 to N
2 do CWi← RS ENCODE(datai,n)
3 WRITE TO FLASH(CWi,addressi)
4 for i← 1 to n
5 do for j← 1 to N
6 do symi,j←CWj(i)
7 chki← BERGER ENCODE(symi,(1,..,N))
8 WRITE TO FLASH(chki,addressN+1 + i-1)

DECODE(addr1,..,(N+1),n, t)
1 for i← 1 to N
2 do chki← READ FROM FLASH(addrN+1+i-1)
3 for i← 1 to N
4 do CWi← READ FROM FLASH(addri)
5 for j← 1 to n
6 do symi,j← CWi(j)
7 errors←{}
8 for i← 1 to n
9 do err← BERGER DECODE(symi,(1,..,N),chki)

10 if err = 0
11 then errors← errors∪{i}
12 if |errors| ≤ t
13 then for i← 1 to N
14 do resulti← RS DECODE(CWi,errors)
15 return result
16 else return “fail to correct errors”

4 Evaluation
Our storage techniques are designed for the resource lim-
itations of low-power devices. In this section, we first
evaluate the suitability of the three methods proposed in
Section 3.3 for low-power devices; we then evaluate the
hypothesis that for CPU-bound workloads, operating at
low voltage and managing errors is more energy efficient
than fixing the operating voltage to the maximum of all
the components’ nominal minimum voltages.

Summary of results: For a sensor monitoring appli-
cation that reads 256 data samples from flash memory,
aggregates data, and stores the results in flash memory,
use of in-place writes at 1.8 V reduces the energy con-
sumption up to 34% versus running the same applica-
tion at 2.2 V (minimum voltage requirement for the flash
memory). This sensing application models a common
workload for both wireless sensor nodes and RFID-scale
devices.

Experimental setup: We used a consistent experi-
mental setup to measure the energy consumption and ex-
ecution time of each program. Using an oscilloscope, we
measured the voltage of a small resistor in series with a
MSP430 microcontroller programmed with a task (e.g.,
a flash write). The integration of the current (voltage di-
vided by the resistance) over the execution time of the
task multiplied by the operating voltage of the device
gives the energy consumption of that task (Energy =R

I(t) dt×V). To facilitate precise identification of the
task on the oscilloscope, the microcontroller toggled a
GPIO pin immediately before and after the task.

4.1 Comparison of the Proposed Storage Methods

The workload used to measure the performance of each
of the proposed methods is the storage of accelerome-
ter traces—generated using the Intel WISP 4.1’s 10-bit
ADC sensor—to flash memory. The input trace is a se-
ries of three-dimensional 16-bit samples containing ten
bits of information. We used a simple data compression
method to store more data in the available flash memory.
The compression method involved reading four samples
of data, preparing the first byte of each sample to be
stored in flash memory, then combining the remaining
two bits of each sample into one byte of data. Using
this compression scheme, we reduced every four samples
(eight bytes) to five bytes.

The maximum number of write attempts for both in-
place writes and multiple-place methods were set to
two. The RS-Berger codes used three codewords of size
38 bytes (32 bytes data and 6 bytes parity). These set-
tings enable all three methods to fit their data in 192 bytes
of flash memory. Table 3 shows the energy consump-
tion and time taken for the same workload under each
method. Both in-place writes and multiple-place writes
consume less energy and finish more quickly at 1.9 V

8

than at 1.8 V. Both of these methods are feedback based
and repeat writes if they detect errors. Because there is a
lower chance of error at 1.9 V, fewer rewrites are required
than at 1.8 V, so less energy and time are required.

The in-place writes method slightly outperforms the
multiple-place writes method at both voltage levels be-
cause its decoding procedure is less CPU intensive. In-
place writes method has the best Error Correction Rate
(ECR in Table 3) of all. The multiple-place writes
method seems to be the most suitable when there are
some memory cells that are hard to program and there-
fore rewriting in those cells is not helpful (Figure 5
gives an example of such case). Compared to RS-Berger
codes that always guarantee that a certain number of er-
rors can be corrected, the in-place writes and multiple-
place writes methods are less reliable—they offer no
such guarantees. Therefore, for applications with a hard
reliability requirement, RS-Berger codes may be more
suitable if the application knows the error rate in advance
and is willing to incur extra computational costs for RS-
Berger encoding and decoding.

Method V Time (ms) E (µJ) ECR
In-place 1.8 24.16 59 96%
M-place 1.8 25.00 63 84%

RS-B 1.8 334.45 160 0%
In-place 1.9 15.43 38 100%
M-place 1.9 16.85 40̄ 100%

RS-B 1.9 334.73 180 100%

Table 3: Performance comparison of the proposed meth-
ods at 1.8 V and 1.9 V. Error Correction Rate (ECR)
shows the effectiveness of the methods.

Error Correction Rate: As Table 3 illustrates, the
two methods that do not use coding—in-place writes and
multiple-place writes—incur similar energy consump-
tion costs. We now compare the effectiveness of these
two approaches with respect to the error correction rate.

Figure 7 and Figure 8 demonstrate that flash storage
reliability improves as we increase the number of re-
peated writes/places at five different voltage levels (all
below the nominal minimum voltage for flash writes).

Experiment: Using our automated testbed, the test
platform runs a program that writes zeros to 192 consec-
utive bytes of flash memory (using in-place writes and
multiple-place writes methods in two different experi-
ments). We increase the maximum number of repeated
writes from one to ten, one unit at a time. The moni-
toring platform counts the number of incorrectly stored
bytes (those that are not set to zero after the experiment).
The experiment was repeated for five different voltages
(1.86 V–1.90 V).

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of sequential in−place writes

P
er

ce
nt

ag
e

of
 in

co
rr

ec
t b

yt
es

 (
%

)

1.86 V
1.87 V
1.88 V
1.89 V
1.90 V

Figure 7: Reliability improvement using in-place writes
over five different voltages.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of sequential multiple−place writes

P
e
rc

e
n
ta

g
e
 o

f
in

c
o
rr

e
c
t
b
y
te

s
 (

%
)

1.86 V

1.87 V

1.88 V

1.89 V

1.90 V

Figure 8: Reliability improvement using multiple-place
writes over five different voltages.

Figure 9 compares the error rate of the in-place and
multiple-place write methods. We choose the same max-
imum number of repeated writes for both approaches. As
the graph shows, the in-place writes method improves
the error rate more dramatically. We attribute this phe-
nomenon to the fact that electrons accumulate in flash
cells with each programming attempt. Figure 9 also al-
lows us to evaluate hybrids of the in-place writes and
multiple-place writes methods. For example, choosing
one place to write the value and repeating the write up
to three times (up to three writes in total) works better
than repeating the write up to twice in two places (up to
four writes in total). This graph offers evidence that a
pure in-place writes approach works better than a hybrid
approach or a pure multiple-place writes approach. How-
ever, we do not conclude that the in-place writes method
always outperforms the multiple-place writes. A winning
case for multiple-place writes is when a flash memory
has unbalanced blocks (different error rates), for exam-
ple, the chip shown in Figure 5. While multiple-place
writes method requires more space, it could provide a
more reliable storage compared to in-place writes.

9

Figure 9: The in-place writes method reduces the error
rate more effectively than multiple-place writes and a hy-
brid of both methods.

4.2 Half-wits Versus Wits in Practice

To evaluate our storage schemes, we consider three test
cases representing CPU operations, flash read opera-
tions, and flash write operations.

The RC5 [30] test case, a CPU-only workload, is a
commonly used encryption algorithm that can cope with
the resource limitations of low-power devices [8, 18].
RC5 was implemented with a 32-bit word size, 18 rounds,
and 16 bytes of secret key.

The retrieve and store test cases are both I/O-
bound tasks. One reads and the other one writes 192
bytes of data from/to flash memory. CPU-bound opera-
tions in these test cases are minimal (essentially only a
loop that calls a function to flash memory). The store
program uses in-place writes with a maximum number
of three (re)writes to deal with errors. Because flash read
operations are fundamentally simpler than flash write op-
erations, flash reads are reliable at low voltage.

We run each of the three test cases on a MSP430F2131
microcontroller at four different voltages that are all in
the operating range of this microcontroller (1.8 V–3.5 V).
Two voltage levels are below the recommended thresh-
old for flash memory: 1.8 V and 1.9 V. Two voltage lev-
els are at and above the recommended threshold: 2.2 V
and 3.0 V. The microcontroller is set to work at its high-
est possible clock rate for each voltage level in order
to gain the best energy performance. Figure 10 com-
pares the average energy consumption over five trials of
each test case at each voltage. By running at 1.8 V (be-
low the nominal minimum voltage for flash writes on
the MSP430F2131), the microcontroller consumes 48%
and 33% less energy to finish the RC5 and retrieve test
cases respectively. However, our storage schemes do not
seem to be beneficial for flash-write-intensive tasks (the
store test case).

To evaluate the end-to-end performance of our stor-
age methods, we have tested a sensor-monitoring appli-
cation that is CPU-intensive and can benefit from a low-

RC5 Retrieve Store
0

50

100

150

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

In−place @1.8V
In−place @1.9V
2.2V
3.0V

Figure 10: Micro-benchmarks: CPU (RC5), read
(retrieve), and write (store) energy consumption
measured at four different voltage levels. Although the
RC5 and retrieve test cases consume less energy at low
voltage, this is not the case for the store test case (a
write-intensive application) as the savings due to running
the chip at low voltage does not compensate for the en-
ergy cost required to correct errors.

voltage storage. This application reads from flash mem-
ory 256 accelerometer samples (each ten bits), computes
the maximum, minimum, mean, and standard deviation
of the samples, and stores the aggregate information in
flash memory. This monitoring application is a blend of
CPU and I/O, but it is still a CPU-intensive workload. Ta-
ble 4 shows that providing the system with a low-voltage
storage mechanism via our methods helps to decrease the
task’s total energy consumption by 34%.

4.3 Finding a Crossover Point

We can empirically find the point at which the energy
saved on computation compensates for the added cost
of repeated flash writes. We compare a workload exe-
cuted at 2.2 V to the same one running at 1.8 V using
the in-place writes scheme with the threshold k set to 2.
We make the worst-case assumption that all data must be
written to flash twice (no bits change on the first attempt).
The time spent on flash writes while running at 1.8 V is

Method In-place In-place None None
1.8 V 1.9 V 2.2 V 3.0 V

Clock rate 6 MHz 6 MHz 8 MHz 14 MHz
Energy(µJ) 270 30̄0 410 760
Time(ms) 151.15 151.32 113.24 64.72

Table 4: Energy consumption and execution time for the
accelerometer sensor application. At voltages below the
recommended (1.8 V and 1.9 V), in-place writes method
with a threshold of two is used.

10

then twice the time spent when operating at 2.2 V. We
also assume that the clock rate of the system is set to the
highest specified for the CPU at each voltage. Specifi-
cally, the clock rate would be set to 6 MHz at 1.8 V and
to 8 MHz at 2.2 V.

We empirically determined the power consumption
of CPU and flash writes with 1.8 V and 2.2 V voltage
supplies. PC 1.8 = 1.8 mW , PC 2.2 = 3.4 mW , PF 1.8 =
3.7 mW , and PF 2.2 = 5.8 mW . The variables TC and TF
are the time spent in computation and on flash memory
respectively. With these assumptions, we can write the
following inequality to determine whether a given work-
load is likely to result in reduced energy consumption:

Energy1.8 ≤ Energy2.2⇒
PC 1.8×TC 1.8 +PF 1.8× k×TF 1.8 ≤

PC 2.2×TC 2.2 +PF 2.2×TF 2.2⇒
PC 1.8× 8MHz

6MHz ×TC 2.2+PF 1.8× k× 8MHz
6MHz ×TF 2.2 ≤

PC 2.2×TC 2.2 +PF 2.2×TF 2.2

The solution with k = 2 is TC 2.2 ≥ 4×TF 2.2. There-
fore, in-place writes are competitive over normal flash
writes when the time spent on computation is at least four
times greater than the time spent on flash writes.

5 Improvements and Alternatives
This section describes several complementary ways to
further decrease the energy requirements of our schemes.

Hardware. One could add an adjustable voltage
regulator and about a dozen other analog components
such that software could toggle a GPIO for discrete dy-
namic voltage scaling. A feedback loop that dynamically
adjusts a voltage supply could help identify the mini-
mum voltage at which no write errors are detected, but
such boundaries can vary with temperature and wear-out.
Thus, our coding algorithms would remain helpful to
cope with potential errors. Our work seeks to avoid hard-
ware modification that would require additional compo-
nents or design changes to a Printed Circuit Board (PCB)
because embedded applications are often cost sensitive.
Changing the PCB layout may require a manufacturer
to flush its supply chain of parts typically manufactured
in high volume. If an inexpensive, software-only ap-
proach with minimal disturbance to manufacturing can
lead to significant savings in energy consumption, then
it is hard to financially justify an expensive hardware ap-
proach that offers only comparable performance.

Sign bits and storing complements. As discussed in
Section 2.3, one of the major factors influencing the error
rate is the Hamming weight of a number. One way to im-
prove the performance of the low-voltage storage meth-
ods is to store numbers with greater Hamming weights
(weight ≥ 4) in flash memory. If a number is lightweight
(weight < 4), the complement of the number would be

0 20 40 60 80 100 120 140 160
−200

−100

0

100

200

Time (s)

V
ol

ta
ge

 (
m

v)

Figure 11: ECG data stored in flash memory at 1.89 V
(the same chip from Figure 2) improved by using a sign
bit. The light-colored bars show the difference between
the ECG stored at low voltage and the original ECG data.

stored and a sign bit would be set for future data ac-
cess. An array of sign bits can be stored separately from
the data to avoid disturbing word alignment. A previous
work [26] uses a similar technique for multi-level cell
(MLC) flash memories with four levels; their techniques
result in a significant decrease of energy consumption.
Figure 11 shows that using the sign-bit scheme decreases
the error rate at low voltage for the same ECG data used
in Section 2. For this specific example, out of 168 bytes
of ECG data, 160 bytes are overweight and therefore us-
ing the sign-bit scheme greatly decreased the error rate.
The sign-bit approach involves very lightweight compu-
tation (counting the number of ones) and increases the
number of writes by a factor of one-eighth. Therefore,
the effect of this improvement on energy consumption
and delay should be comparatively small.

Memory mapping table. Another method to exploit
the fact that numbers with greater Hamming weights
have a lower probability of error is to map the most fre-
quently used numbers in the user’s data to the heavier
numbers. The solution we suggest is to preprocess the
data to sort numbers based on their frequency of use.
A simple memory mapping table would map the most
frequent numbers to the heaviest numbers. Such a table
could be preloaded in flash memory so that storing the
table would not consume energy at run time. Use of a
memory mapping table would only increase the number
of reads and would not increase the number of writes.
Therefore, the energy consumption overhead and the de-
lay should be smaller than the sign bit method.

An ideal, unrealizable scheme. We initially tried to
set the voltage to a level lower than recommended but
high enough to avoid errors. This method could not be
realized for two reasons: finding a voltage that satisfies
this condition requires a large number of experiments per
chip—error rate varies chip by chip (Figure 3), and the
error rate of flash writes varies depending on its lifespan

11

and its environment. We found that the byte error rate of
MSP430F2131 that is 63% at 1.83 V at 25◦C becomes
negligible when the temperature goes up to 39◦C.

6 Related Work
Storage for low-power embedded devices: Recent
research focuses on optimizing use of off-chip flash
memory. Off-chip memory allows for special features
and larger memories than found on microcontrollers,
but introduces additional costs for components. Micro-
hash [38] is a memory index structure tailored for sen-
sor devices with a large external flash memory. Mathur
et al. [23] perform an extensive study of available flash
memory candidates for sensor devices and demonstrate
that an off-chip parallel NAND flash memory decreases
the energy consumption of storage. Considering the off-
chip NAND flash memory as the best candidate for sen-
sor devices, Agrawal et al. [1] propose a method that al-
lows sensor devices to exploit their flash memory while
adapting to different amount of RAM. However, our
storage schemes are designed for already deployed low-
power devices that use on-chip flash memory. Moreover,
while devices at the scale of sensor nodes might switch to
block-grained, large off-chip flash memory, RFID-scale
platforms might not benefit from this transition because
of their challenging resource limitations to drive I/O.

Energy proportionality: Our approaches share the
philosophy that energy consumption should scale pro-
portionally to utilization or error rates rather than pro-
portional to a worst-case scenario. Blaauw et al. [6] re-
duce power consumption by lowering the operating volt-
age of a pipelined CPU. Certain pipeline stages may pro-
duce incorrect computation that require recomputation,
but the errors can be made rare to allow better scalabil-
ity of power consumption. Misailovic et al. [25] demon-
strate that the programs whose loops performs fewer it-
erations cause tolerable errors while their execution time
becomes shorter. Weddle et al. [37] introduce PARAID,
a scheme that scales power based on the user demand
while maintaining the reliability of the system. Their
present work also tries to scale power based on the uti-
lization of flash memory without losing storage reliabil-
ity. Our approaches share this philosophy of scaling per-
formance with utilization. Our performance metric is en-
ergy consumption, writes to flash memory represent our
utilization, and energy-efficient error correction is our
coping mechanism.

Error correction codes for storage: Most previously
published flash error correction codes [9, 11, 14] are de-
signed for NAND flash memory. Chen et al. [10] men-
tion that NOR flash normally does not require error cor-
rection. These techniques consider neither the asymme-
try in low-voltage flash memory nor the resource limi-

tations of low-power embedded devices. Many previous
codes [4, 16, 40, 35] leverage the fact that each cell of
MLC flash memory represents more than one bit of in-
formation. But the fact that single-level cells (SLC) are
more suitable for embedded devices, in addition to the
occurrence of errors in low-voltage conditions, requires
a reconsideration of these codes for SLCs at low voltage.
Zemor et al. [39] introduce error-correcting WOM codes
for flash memory. They suggest codes that are able to
correct up to one error when the flash memory is given
enough voltage. This work does not account for errors
that occur at low voltage. Godard et al. [12] propose hier-
archical code correction and reliability management for
NOR flash memory. This work considers on-chip ECCs
such as Hamming and parity codes to correct the errors
in NOR flash memory.

7 Conclusions and Future Work
The high voltage requirement of on-chip flash memory
is a barrier to reducing the total energy consumption of
low-power devices. This work examines the main fac-
tors affecting the behavior of flash memory at low volt-
age. Based on our observations of flash memory behav-
ior at low voltage, we proposed three storage schemes—
in-place writes, multiple-place writes, and RS-Berger
codes—that aim to make flash memory available and re-
liable at low voltage while tolerating the resource limi-
tations of low-power devices. Our evaluation shows that
in-place writes can save 34% of energy consumption for
a sensing workload on the MSP430 microcontroller.

Future work includes finding more energy-efficient
coding schemes to combat flash write errors caused by
low voltage. Currently, the system cannot take full ad-
vantage of dynamic voltage scaling. Another plan is to
introduce benchmarks for the storage systems of low-
power devices. The standard benchmarks used to eval-
uate the storage systems designed for desktop computers
are not immediately applicable to the low-power domain.

Acknowledgments
This material is supported by a Sloan Research Fel-
lowship and the NSF under CAREER Award CCF-
0747415, CNS-0627476 (prime), CNS-0627529, CA-
REER Award CNS-0845874, CNS-0923313, and ECCS-
0802107. Any opinions, findings, and conclusions ex-
pressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

We thank Shane Clark, Wendy Cooper, Marc Liber-
atore, and Benjamin Ransford for feedback on drafts;
Joshua Smith and Alanson Sample at Intel Labs Seat-
tle for providing the WISP over the last three years; and
our shepherd Brian Noble and the anonymous reviewers
for their detailed feedback and guidance. Portions of this
work are patent pending in the United States.

12

References
[1] D. Agrawal, B. Li, Z. Cao, D. Ganesan, Y. Diao, and P. Shenoy.

Exploiting the interplay between memory and flash storage in em-
bedded sensor devices. In Proceedings of the 16th IEEE Confer-
ence on Embedded and Real-time Computing Systems (RTCSA),
pages 227–236, 2010.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
Wireless sensor networks: a survey. Computer Networks,
38(4):393–422, 2002.

[3] Atmel AVR Solutions. ATmega128L.
http://www.atmel.com/atmel/acrobat/doc2467.pdf.

[4] A. Barg and A. Mazumdar. Codes in permutations and error cor-
rection for rank modulation. IEEE Transactions on Information
Theory, 56(7):3158–3165, 2010.

[5] J. Berger. A note on error detection codes for asymmetric chan-
nels. Information and Control, 4(1):68–73, 1961.

[6] D. Blaauw and S. Das. CPU, heal thyself. IEEE Spectrum,
46(8):40–56, 2009.

[7] M. Buettner, B. Greenstein, A. Sample, J. R. Smith, and
D. Wetherall. Revisiting smart dust with RFID sensor networks.
In Proceedings of the 7th ACM Workshop on Hot Topics in Net-
works (HotNets-VII), October 2008.

[8] H.-J. Chae, D. J. Yeager, J. R. Smith, and K. Fu. Maximalist
cryptography and computation on the WISP UHF RFID tag. In
Proceedings of the Conference on RFID Security, July 2007.

[9] B. Chen, X. Zhang, and Z. Wang. Error correction for multi-
level NAND flash memory using Reed-Solomon codes. In IEEE
Workshop on Signal Processing Systems (SiPS 2008), pages 94–
99, Oct. 2008.

[10] S. Chen. What types of ECC should be used on flash memory?
Application Note for SPANSION, 2007.

[11] M. Fujino and V. Moshnyaga. An efficient Hamming distance
comparator for low-power applications. In 9th International Con-
ference on Electronics, Circuits and Systems, volume 2, pages
641–644, 2002.

[12] B. Godard, J.-M. Daga, L. Torres, and G. Sassatelli. Hierarchical
code correction and reliability management in embedded NOR
flash memories. In Proceedings of the 2008 13th European Test
Symposium, pages 84–90, 2008.

[13] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Haus-
dorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B.
Moody, C.-K. Peng, and H. E. Stanley. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new re-
search resource for complex physiologic signals. Circula-
tion, 101(23):e215–e220, 2000. Circulation Electronic Pages:
http://circ.ahajournals.org/cgi/content/full/101/23/e215.

[14] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli. On-chip error
correcting techniques for new-generation flash memories. Pro-
ceedings of the IEEE, 91(4):602–616, April 2003.

[15] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. Rank modu-
lation for flash memories. In IEEE International Symposium on
Information Theory (ISIT), pages 1731–1735, 2008.

[16] A. Jiang, M. Schwartz, and J. Bruck. Correcting charge-
constrained errors in the rank-modulation scheme. IEEE Trans-
actions on Information Theory, 56(5):2112–2120, 2010.

[17] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century chal-
lenges: mobile networking for “Smart Dust”. In Proceedings of
the 5th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), pages 271–278, 1999.

[18] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer se-
curity architecture for wireless sensor networks. In Proceedings
of the Second ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2004.

[19] T. Klove. Error correcting codes for the asymmetric channel.
Technical report, Informatics, University of Bergen, 1995.

[20] B. P. L. Lo, S. Thiemjarus, R. King, and G. zhong Yang. Body
sensor network - a wireless sensor platform for pervasive health-
care monitoring. In Adjunct Proceedings of the 3rd International
Conference on Pervasive Computing (PERVASIVE), pages 77–
80, 2005.

[21] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. An-
derson. Wireless sensor networks for habitat monitoring. In Pro-
ceedings of the 1st ACM International Workshop on Wireless Sen-
sor Networks and Applications, pages 88–97, 2002.

[22] D. Malan, T. Fulford-jones, M. Welsh, and S. Moulton. Code-
blue: An ad hoc sensor network infrastructure for emergency
medical care. In International Workshop on Wearable and Im-
plantable Body Sensor Networks, 2004.

[23] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low
power data storage for sensor networks. In Proceedings of the 5th
ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN), pages 374–381, 2006.

[24] Microchip. 32-bit PIC MCUs.
http://www.microchip.com/en US/family/pic32/.

[25] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Qual-
ity of service profiling. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE), pages
25–34, 2010.

[26] V. Papirla and C. Chakrabarti. Energy-aware error control coding
for flash memories. In Proceedings of the 46th Annual Design Au-
tomation Conference (DAC), pages 658–663. ACM/EDAC/IEEE,
2009.

[27] P. Pavan, R. Bez, P. Olivo, and E. Zanoni. Flash memory cells-an
overview. Proceedings of the IEEE, 85(8):1248–1271, Aug 1997.

[28] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-
low power wireless research. In Proceedings of the Fourth Inter-
national Conference on Information Processing in Sensor Net-
works: Special track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS), April 2005.

[29] I. S. Reed and G. Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathe-
matics, 8(2):300–304, 1960.

[30] R. L. Rivest. The RC5 encryption algorithm. In B. Preneel,
editor, Fast Software Encryption, pages 86–96. Springer, 1995.
(Proceedings Second International Workshop, Dec. 1994, Leu-
ven, Belgium).

[31] R. L. Rivest and A. Shamir. How to reuse a write-once memory.
Information and Control, 55:1–19, 1982.

[32] M. Salajegheh, S. Clark, B. Ransford, K. Fu, and A. Juels. CCCP:
Secure remote storage for computational RFIDs. In Proceedings
of the 18th USENIX Security Symposium, August 2009.

[33] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and
J. R. Smith. Design of an RFID-based battery-free programmable
sensing platform. In IEEE Transactions on Instrumentation and
Measurement, 2008.

[34] V. Shnayder, B.-r. Chen, K. Lorincz, T. R. F. F. Jones, and
M. Welsh. Sensor networks for medical care. In Proceedings
of the 3rd ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys), pages 314–314, 2005.

[35] I. Tamo and M. Schwartz. Correcting limited-magnitude errors in
the rank-modulation scheme. IEEE Transaction on Information
Theory, 56(6):2551–2560, 2010.

13

[36] Texas Instruments Incorporated. MSP430 Ultra-Low Power Mi-
crocontrollers. http://www.ti.com/msp430.

[37] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang, P. Reiher, and
G. Kuenning. PARAID: A gear-shifting power-aware RAID.
ACM Transactions on Storage (TOS), 3(3):Article 13:1–33, 2007.

[38] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and
W. A. Najjar. Microhash: An efficient index structure for fash-
based sensor devices. In Proceedings of the 4th USENIX Confer-
ence on File and Storage Technologies, pages 31–44, 2005.

[39] G. Zemor and G. D. Cohen. Error-correcting WOM-codes. IEEE
Transactions on Information Theory, 37(3):730–734, May 1991.

[40] F. Zhang, H. D. Pster, and A. Jiang. LDPC codes for rank modu-
lation in flash memories. In Proc. IEEE International Symposium
on Information Theory (ISIT), 2010.

14

