
Optimal Content Placement for En-Route Web Caching∗

Anxiao (Andrew) Jiang and Jehoshua Bruck
California Institute of Technology

Parallel and Distributed Systems Lab
MC 136-93

Pasadena, CA 91125, U.S.A.
E-mail: {jax,bruck}@paradise.caltech.edu

Abstract

This paper studies the optimal placement of web files for
en-route web caching. It is shown that existing placement
policies are all solvingrestricted partial problemsof the file
placement problem, and therefore give only sub-optimal so-
lutions. A dynamic programming algorithm of low com-
plexity which computes the optimal solution is presented. It
is shown both analytically and experimentally that the file-
placement solution output by our algorithm outperforms ex-
isting en-route caching policies. The optimal placement of
web files can be implemented with a reasonable level of
cache coordination and management overhead for en-route
caching; and importantly, it can be achieved with or without
using data prefetching.

1. Introduction

Web caching is one of the main techniques solving the
performance problems the World Wide Web faces today.
WWW has been experiencing very fast growth in recent
years, but long access latency can seriously hurt its popular-
ity, especially for hot websites. Web caching dynamically
stores popular files in different places of the Internet, thus
decreasing the distance between clients and web content.
It can significantly reduce network congestion, server load
and access delay. A huge amount of research effort has been
devoted to all aspects of web caching, and various caching
schemes have been proposed [2] [5] [8] [10] [11].

Effective caching requires cooperative content manage-
ment of web caches. Traditional caches include clients,
proxies and servers. Two common approaches to coor-
dinate caches areHierarchical Cachingand Distributed
Caching[8], where caches are located at one or more lev-

1This work was supported in part by the Lee Center for Advanced Net-
working at the California Institute of Technology.

els of the network and file-requests are forwarded from
low-level caches to higher-level caches or among caches
at the same level. Some hybrid caching architectures also
exist [8]. A new caching architecture, calledEn-Route
Caching[1] [5] [7] [10], differs from hierarchical caching
and distributed caching in that caches are associated with
routing nodes and that a request is always forwarded from
the client toward the web server along theregular routing
path. Every en-route cache inspects the requests that pass
through its associated routing node. If it has the requested
file, it transmits the file to the client and the request is sat-
isfied. Otherwise, it forwards the request along the regular
routing path. En-route caching has the merit that it is trans-
parent to both clients and servers, and requires no file loca-
tion mechanisms such as broadcasting queries or exchang-
ing content summaries [10]. So it’s easy to manage in this
sense. And it provides a much stronger capability to locate
caches reallyinside the network, whose effectiveness has
been shown [4].

File placement/replacement is a key technique that af-
fects the effectiveness of caching. A large number of
file placement/replacement policies are available for en-
route caching [6] [11]. Most policies make decisions on
file placement and replacement for individual caches only.
Some policies, such as MODULO [1], consider the path
from the cache (or server) containing the file to the client,
and cache the file along the path using simple placement
schemes. Recently a novel caching scheme, calledCo-
ordinated En-Route Web Caching, is proposed by Tang et
al. [10]. The coordinated en-route web caching schemeop-
timizesthe placement of files along the path from the cache
(or server) to the client, and it requires moderately more co-
ordination among the en-route caches. Its performance has
been shown to be significantly better than the other poli-
cies [10].

This paper explores the file placement techniques for
en-route web caching. We study file placement policies
in a more general caching model, and show that existing

policies, including the coordinated en-route web caching
scheme, are all solvingrestricted partial problemsof the
placement problem, and therefore they give only sub-
optimal solutions. We then present a dynamic program-
ming algorithm which computes the optimal solution for
file placement. It is shown both analytically and experimen-
tally that the optimal solution given by our algorithm can be
significantly better than the sub-optimal solutions given by
other schemes. Implementation details are introduced, and
it’s shown that our scheme requires the same level of co-
ordination among caches as thecoordinated en-route web
caching scheme. It is proven that the optimal placement
can be implemented in anindependently successive way—
meaning that the file can be cached only in caches that
it necessarily passes through, and successive independent
computation and caching will aggregately give the optimal
placement. Thus the optimal placement can be achieved
with or without using prefetching (data pushing). That is a
very important property desired by any caching scheme.

The rest of the paper is organized as follows. In Section
2, a general model for the file placement of en-route web
caching is presented, and the performance of existing place-
ment schemes and that of the optimal scheme are compared.
In Section 3, the dynamic programming algorithm solving
the optimal file placement problem is presented. The algo-
rithm has complexityO(|V |2), where|V | is the number of
caches in consideration. In Section 4, implementation de-
tails are introduced. In Section 5, simulation results show-
ing the performance difference between the optimal scheme
and other existing schemes are provided. In Section 6, we
conclude this paper.

2. Modelling En-Route Web Caching

In this section we model en-route web caching, and com-
pare the performance of different file placement policies.

2.1. Caching Model and File Placement

The model we use in this paper closely follows the net-
work model in [10]. We model the network as a graph
G = (V,E), whereV is the set of routers each of which
is associated with an en-route cache, andE is the set of
network links. Each server or client is attached to a node
in V . Without loss of generality, we assume there is only
one server, and clients request for web files maintained by
the server. A client’s request goes along the path from the
client to the server, and is satisfied by the first node on the
path whose cache stores the requested file. The file from the
cache is transmitted downstream along the same path to the
client. For simplicity, symmetric routing is assumed here.
(If the routing is asymmetric, then we letV only include
those nodes on both upstream and downstream paths. Such

a simplification is validated by Tang et al. in [10], where it
is pointed out that for en-route caching, nodes not contained
in both upstream and downstream paths are not appropriate
locations for caching the file.) Routing paths from all clients
to the server form a tree topology [5] [8] [10].

v7

v0

v3

v1

v4

v8

2v

v9

v5

10v

v11

v6 v7

v0

v3

v1

v4

v8

2v

v9

v5

10v

v11

v6

: a node containing a copy of file F

: a node not containing a copy of file F

(a) (b)

Figure 1. (a) En-Route Web Caching (b) Sub-
trees Corresponding to Cached File Copies

An example of such a tree topology is shown in Fig-
ure 1(a). Here nodev0 is the router associated with the web
server, while all other nodes are associated with en-route
caches. For any web fileF and every cache (or server)
which contains the fileF , the set of nodes in the network
whose requests forF are satisfied by that particular node
containingF form a subtree. Figure 1(b) shows the three
subtrees corresponding to the three nodes containing the
file F . Clearly in every such subtree, there is only one node
containing the fileF , which is the node closest to the server.

For a fileF , we associate every edge(u, v) ∈ E with
a nonnegative costc(u, v, F), which represents the cost of
transmitting a request forF and the corresponding response
through edge(u, v). As in [10], the ‘cost’ here has a gen-
eral meaning which can correspond to delay, data flow or
request-processing cost. If a request goes through multiple
edges, the total cost is considered to be the summation of
the cost over each edge.

Consider a nodeA0 which contains the fileF . We use
U = {A0, A1, A2, · · · , An} to denote the set of nodes
whose requests forF are satisfied byA0. So nodes inU
and the associated edges form a subtree—which we denote
by T—of the network. We callA0 the root of the subtree
T . Let f(Ai) (1 ≤ i ≤ n) denote the rate of requests forF
passing through nodeAi (including the requests fromAi it-
self and from others). Then the total cost of the requests for
F from nodes inU is

∑n
i=1 f(Ai) · c(Ai, PAi , F), where

PAi is the parent of nodeAi in the treeT .
CurrentlyA0 is the only node in the treeT which con-

tains the fileF . If the rates of requests forF are high, it’s
beneficial to cache more copies ofF in the tree. However,

because of the limited memory capacity of each cache, ifF
is to be stored in a cache, then one or more files in the cache
will need to be removed in order to make room. Caching
the file F at a node decreases the cost for accessingF in
the future (referred to ascost saving), but increases the cost
for accessing the files that are removed (referred to ascost
loss).

Our goal is to minimize the access cost for both the fileF
and the files removed. Assume we select a set R ofr nodes,
R = {Aj1 , Aj2 , · · · , Ajr

} ⊆ U − {A0}, to cacheF . Thus
the cost for accessingF is reduced. DefineBi (1 ≤ i ≤ r)
as the node that satisfies the following three requirements:
(1) Bi ∈ R

⋃{A0}; (2) Bi is an ancestor ofAji in the
treeT ; (3) no node inR is both an ancestor ofAji

and a
descendant ofBi in the treeT . Then thecost savinghere
can be shown to be:

∑r
i=1

∑
(u1,u2)∈PATH(Aji

,Bi)
f(Aji

)·
c(u1, u2, F), wherePATH(Aji , Bi) is the set of edges on
the path betweenAji

andBi.

Removing a fileO from a nodeAji
will cause cost loss∑

(u1,u2)∈PATH(Aji
,CO,i)

fO,i · c(u1, u2, O), wherefO,i is
the rate of requests forO passing through nodeAji , and
CO,i is the node containing the fileO which will satisfy the
requests coming fromAji for the fileO onceO is removed
from Aji . The cost loss of removing multiple files from a
nodeAji is simply the summation of the cost loss of remov-
ing each file fromAji .

Deciding which file to remove from a cache is the file
replacement problem. There exist a large number of file
replacement policies. In this paper, we adopt replacement
policies that optimize access cost, such as LNC-R [9]. Let
l(Aji) be the cost loss of removing files from nodeAji to
make enough room for storing fileF . Then the totalcost
lossis

∑r
i=1 l(Aji).

The above cost-loss formula is used in [10], too. We
would like to point out that strictly speaking, the cost loss
of removing files at several nodes is not simply the summa-
tion of the cost loss of removing files at each node individ-
ually, if the same file is removed from at least two nodes
and those two nodes are successive among the sites caching
the file. However, files removed by cost-based replacement
policies usually have very low access frequencies, there-
fore are sparsely populated among caches, which makes the
above scenario unlikely to happen. So the formula above is
a good approximation for the total cost loss.

Now we can define an ‘optimal placementof file F on
treeT ’ as follows: an optimal placement of fileF on treeT
is to cache fileF on a set of nodes{Aj1 , Aj2 , · · · , Ajr} ⊆
U − {A0} such that thenet cost saving (cost saving
minus cost loss)

∑r
i=1

∑
(u1,u2)∈PATH(Aji

,Bi)
f(Aji) ·

c(u1, u2, F)−∑r
i=1 l(Aji) is maximized.

2.2. Performance Comparison of Placement Policies

There are lots of file placement policies available for en-
route caching. For most of them, when a file is transmitted
from a cache (or server) to a client, the file is cached on
every node along the path. And at each individual node,
some file replacement policy is used to evict files to cre-
ate space for the newly cached file. Examples of such re-
placement policies include LRU, LFU, LRU-MIN, Hybrid,
LNC-R, GD-Size, etc.. For some placement policies, the
file is still cached along the path when it’s being transmitted
to the client, but each node on the path decides indepen-
dently whether or not it’s beneficial to cache the file, based
on some key attribute or other admission control mecha-
nisms. Some file placement policies cache files in a more
coordinated way. An example isMODULO caching[1],
which caches a file on nodes that are a fixed number of hops
apart along the path between the server (or cache) and the
client.

The Coordinated En-Route Web Caching schemepre-
sented recently in [10] is a file placement policy whichop-
timizesthe placement of the file along the whole path from
the cache (server) to the client. It uses the same cost-saving
and cost-loss formulas as in this paper, although they are
written in different forms. The scheme considers a linear
array (a path) instead of a tree. Thus it can be seen as a
special (or restricted) case of the optimization problem con-
sidered in this paper.

All the file placement policies discussed above try to
optimize the placement of a file on the path from a cache
(server) to a client, some considering individual nodes only,
while others considering the whole path. None of them
considers the placement of a file over a tree. LetT de-
note the same tree as in the previous subsection, which con-
sists of aroot node containing the fileF and all the nodes
whose requests forF are serviced by the root. Although
after enough requests forF from different nodes ofT are
sent, each of which causing a placement ofF on a path, we
will get a placement of the fileF over the whole treeT ,
that placement is the aggregation of the placements on sin-
gle paths which might be locally optimal but are globally
sub-optimal. So the global placements onT of existing file
placement policies are sub-optimal.

We use the following example to illustrate the sub-
optimality of existing file placement policies.

Example :In this example, we consider three file place-
ment policies: caching a file on every node the file passes
through, theCoordinated En-Route Web Caching scheme
presented in [10], and theoptimal placementas defined in
the previous subsection.

A tree of 4 nodes is shown in Fig. 2, whereA0 is the only
node that contains a fileF . AssumeA2 issues a request for
F first, andA3 issues a request forF some time later. (Note

f(A) = 21

f(A) = 12

f(A) = 13

l(A) = 1.21

l(A) = 1.22

l(A) = 1.23

c(A ,A ,F) = 11 0

c(A ,A ,F) = 0.82 1

3 1c(A ,A ,F) = 0.8

A 0

A 2 3A

A 1

Figure 2. File Placement on Trees

that A1 doesn’t issue any request forF becausef(A1) =
f(A2) + f(A3).)

When the policy ‘caching a file on every node the file
passes through’ is used, after both requests ofA2 andA3

are satisfied, clearlyF will be cached on all nodes in the
tree, and thenetcost saving is

∑3
i=1 f(Ai)·c(Ai, PAi , F)−∑3

i=1 l(Ai) = 0.
When theCoordinated En-Route Web Caching scheme

is used, whenA2’s request reachesA0, A0 computes the
placement ofF on the path betweenA0 andA2 which will
maximize thenet cost saving — and in this case thenet
cost saving will be maximized by placingF on A1. So
whenA0 sendsF to A2 in response toA2’s request,F is
cached onA1, which causes anet cost saving off(A1) ·
c(A1, A0, F)− l(A1) = 0.8. After this moment, every time
Ai (i = 2, 3) issues a request forF , it will be satisfied by
A1; and placingF on Ai (i = 2, 3) will cause anet cost
saving off(Ai) · c(Ai, A1, F) − l(Ai) = −0.4. So when
A1 sendsF to Ai (i = 2, 3) in response toAi’s request,F
won’t be cached on the path betweenA1 andAi (excluding
the nodeA1 which has already cachedF). So the totalnet
cost saving stabilizes to be0.8.

It can be verified that theoptimal placementof F , which
maximized thenet cost saving for the tree, is to cacheF
on nodesA2 and A3, whose correspondingnet cost sav-
ing is

∑3
i=2

∑
(u1,u2)∈PATH(Ai,A0)

f(Ai) · c(u1, u2, F)−∑3
i=2 l(Ai) = 1.2, better than the outputs of other policies.
2

It can be shown that even if the tree is a linear array,
all the sub-optimal file placement polices discussed so far
(those except theoptimal placementpolicy for trees) can
output non-optimal solutions, if the first file request is not
issued by the end-node of the array. What’s more, further
analysis shows that in the worst case the following rela-
tive performance will be achieved for every sub-optimal file
placement policy: the policy cachesO(n) more copies of
the file than the optimal solution does, wheren is the num-
ber of nodes in the tree; and the ratio between the net cost
saving of the optimal solution and the net cost saving of that
policy approaches∞ (if the net cost saving of the policy is
positive). For simplicity of this paper we omit this analysis.

3. Optimal File Placement Algorithm

In this section we formally define the optimal file place-
ment problem for en-route web caching, and present a dy-
namic programming algorithm which gives the optimal so-
lution. The notations used in this section will be slightly
different from those in previous sections for simplicity.

Definition 1 T = (V, E) is a tree, whereV is the set of
vertices andE is the set of edges. The treeT has a vertex
called its ‘root’. For every vertexv ∈ V , D(v) denotes the
set of all the vertices that are descendants ofv, andC(v)
denotes the set of all the vertices that are children ofv. (So
D(v) ⊇ C(v).) For any two verticesu ∈ V and v ∈ V ,
PATH(u, v) denotes the set of all the edges on the path
betweenu andv. For every edge(u, v) ∈ E, it is associated
with a nonnegative parameterc(u, v). For every vertexv ∈
V , it is associated with two nonnegative parameters,f(v)
andl(v). For any vertexv ∈ V , f(v) ≥ ∑

u∈C(v) f(u).
Letw ∈ V be a vertex in the tree. Letr be a nonnegative

integer, wherer ≤ |D(w)|. (|D(w)| is the cardinality of the
setD(w).) LetR = {A1, A2, · · · , Ar} ⊆ D(w) be a set of
r vertices. For1 ≤ i ≤ r, defineBi as the vertex that sat-
isfies the following three requirements: (1)Bi ∈ R

⋃{w};
(2) Bi is an ancestor ofAi; (3) no vertex inR is both an
ancestor ofAi and a descendant ofBi. Then we define the
objective function∆cost(w : r : R) as∆cost(w : r : R) =∑r

i=1

∑
(u,v)∈PATH(Ai,Bi)

f(Ai) · c(u, v) − ∑r
i=1 l(Ai).

If r = 0, define∆cost(w : 0 : ∅) = 0. Findingr and R that
maximize∆cost(w : r : R) is referred to as the ‘optimal
placement problem corresponding tow’.

Let w1 ∈ V and w2 ∈ V be two vertices in the tree,
wherew1 is an ancestor ofw2. Let s be a nonnegative
integer, wheres ≤ |D(w2)| + 1. (|D(w2)| is the cardi-
nality of the setD(w2).) Let S = {P1, P2, · · · , Ps} ⊆
D(w2)

⋃{w2} be a set ofs vertices. For1 ≤ i ≤ s, de-
fine Qi as the vertex that satisfies the following three re-
quirements: (1)Qi ∈ S

⋃{w1}; (2) Qi is an ancestor
of Pi; (3) no vertex inS is both an ancestor ofPi and
a descendant ofQi. Then we define the objective func-
tion δ(w1 : w2 : s : S) as δ(w1 : w2 : s : S) =∑s

i=1

∑
(u,v)∈PATH(Pi,Qi)

f(Pi) · c(u, v)−∑s
i=1 l(Pi). If

s = 0, defineδ(w1 : w2 : 0 : ∅) = 0.
2

If we usev0 to denote the root of the treeT , then the
optimal file placement problem we’re studying is simply the
‘optimal placement problem corresponding tov0’.

Theorem 1 Letu0 ∈ V be a vertex in treeT = (V,E). Say
u0 hasn (n ≥ 1) children—u1, u2, · · · , un. Suppose for
1 ≤ i ≤ n, s = si andS = Si are a solution that maximizes
the functionδ(u0 : ui : s : S). Thenr =

∑n
i=1 si and

R =
⋃n

i=1 Si are a solution that maximizes the function

∆cost(u0 : r : R). And∆cost(u0 :
∑n

i=1 si :
⋃n

i=1 Si) =∑n
i=1 δ(u0 : ui : si : Si).

Proof: Let r′ be a nonnegative integer that is no greater
than|D(u0)|. Let R′ ⊆ D(u0) be a set ofr′ vertices. For
any vertexv ∈ R′, defineB′

v as the vertex that satisfies the
following three requirements: (1)B′

v ∈ R′ ∪ {u0}; (2) B′
v

is an ancestor ofv; (3) no vertex inR′ is both an ancestor
of v and a descendant ofB′

v.
For 1 ≤ i ≤ n, defineS′i = R′ ∩ (D(ui) ∪ {ui}).

(Then obviously
⋃n

i=1 S′i = R′, andS′i ∩ S′j = ∅ for any
1 ≤ i 6= j ≤ n.) Defines′i = |S′i| to be the cardinality ofS′i.
(Then obviously

∑n
i=1 s′i = r′.) By definition,∆cost(u0 :

r′ : R′) =
∑

v∈R′
∑

(v1,v2)∈PATH(v,B′v) f(v) · c(v1, v2)−∑
v∈R′ l(v) =

∑n
i=1

∑
v∈S′

i

∑
(v1,v2)∈PATH(v,B′v) f(v) ·

c(v1, v2) − ∑n
i=1

∑
v∈S′

i
l(v) =∑n

i=1{
∑

v∈S′
i

∑
(v1,v2)∈PATH(v,B′v) f(v) · c(v1, v2) −∑

v∈S′
i
l(v)} =

∑n
i=1 δ(u0 : ui : s′i : S′i)

For 1 ≤ i ≤ n, the value ofδ(u0 : ui : s′i : S′i) is
maximized whens′i = si andS′i = Si. Therefore the value
of ∆cost(u0 : r′ : R′) is maximized whenr′ =

∑n
i=1 si

andR′ =
⋃n

i=1 Si, and∆cost(u0 :
∑n

i=1 si :
⋃n

i=1 Si) =∑n
i=1 δ(u0 : ui : si : Si).
2

Theorem 2 Let u−1 and u0 be two vertices in treeT =
(V, E), whereu−1 is an ancestor ofu0. Sayu0 hasn (n ≥
1) children—u1, u2, · · ·, un. Suppose for1 ≤ i ≤ n, s =
si and S = Si are a solution that maximizes the function
δ(u−1 : ui : s : S). Supposer = r0 and R = R0 are
a solution that maximizes the function∆cost(u0 : r : R).
Then

(1) if
∑n

i=1 δ(u−1 : ui : si : Si) ≥∑
(u,v)∈PATH(u0,u−1)

f(u0) · c(u, v)− l(u0)+∆cost(u0 :
r0 : R0), thens =

∑n
i=1 si andS =

⋃n
i=1 Si are a solu-

tion that maximizes the functionδ(u−1 : u0 : s : S), and
δ(u−1 : u0 :

∑n
i=1 si :

⋃n
i=1 Si) =

∑n
i=1 δ(u−1 : ui : si :

Si);
(2) if

∑n
i=1 δ(u−1 : ui : si : Si) ≤∑

(u,v)∈PATH(u0,u−1)
f(u0) · c(u, v)− l(u0)+∆cost(u0 :

r0 : R0), then s = r0 + 1 and S = R0 ∪ {u0}
are a solution that maximizes the functionδ(u−1 : u0 :
s : S), and δ(u−1 : u0 : r0 + 1 : R0 ∪ {u0}) =∑

(u,v)∈PATH(u0,u−1)
f(u0) · c(u, v)− l(u0)+∆cost(u0 :

r0 : R0).

Proof: Let s = s′ andS = S′ be a solution which max-
imizes the functionδ(u−1 : u0 : s : S) given the condition
thatu0 /∈ S. Let s = s′′ andS = S′′ be a solution which
maximizes the functionδ(u−1 : u0 : s : S) given the con-
dition thatu0 ∈ S. Clearly eithers = s′ andS = S′, or
s = s′′ andS = S′′, is a solution which maximizes the
functionδ(u−1 : u0 : s : S).

For every vertexv ∈ S′, defineQ′
v as the vertex that

satisfies the following three requirements: (1)Q′v ∈ S′ ∪
{u−1}; (2) Q′

v is an ancestor ofv; (3) no vertex inS′ is
both an ancestor ofv and a descendant ofQ′v. Similarly, we
defineQ′′v for every vertexv ∈ S′′.

For1 ≤ i ≤ n, defineS′i = S′ ∩ (D(ui) ∪ {ui}). (Then
obviously

⋃n
i=1 S′i = S′, andS′i ∩ S′j = ∅ for any1 ≤ i 6=

j ≤ n.) Defines′i = |S′i| to be the cardinality ofS′i. (Then
obviously

∑n
i=1 s′i = s′.)

For1 ≤ i ≤ n, defineS′′i = S′′∩(D(ui) ∪ {ui}). (Then
obviouslyS′′ = (

⋃n
i=1 S′′i) ∪ {u0}, andS′′i ∩ S′′j = ∅ for

any1 ≤ i 6= j ≤ n.) Defines′′i = |S′′i | to be the cardinality
of S′′i . (Then obviouslys′′ = 1 +

∑n
i=1 s′′i .)

We analyze the following two cases.
(1) By definition, δ(u−1 : u0 : s′ : S′) =∑
v∈S′

∑
(v1,v2)∈PATH(v,Q′v) f(v) · c(v1, v2) −∑

v∈S′ l(v) =
∑n

i=1

∑
v∈S′

i

∑
(v1,v2)∈PATH(v,Q′v) f(v) ·

c(v1, v2) − ∑n
i=1

∑
v∈S′

i
l(v) =∑n

i=1{
∑

v∈S′
i

∑
(v1,v2)∈PATH(v,Q′v) f(v) · c(v1, v2) −∑

v∈S′
i
l(v)} =

∑n
i=1 δ(u−1 : ui : s′i : S′i).

s = s′ andS = S′ is a solution which maximizes the
functionδ(u−1 : u0 : s : S) given the condition thatu0 /∈
S. So for 1 ≤ i ≤ n, s = s′i andS = S′i is a solution
that maximizes the functionδ(u−1 : ui : s : S), just as
the solutions = si andS = Si is. Soδ(u−1 : u0 : s′ :
S′) =

∑n
i=1 δ(u−1 : ui : si : Si). By definition, we know

u0 /∈ ⋃n
i=1 Si, sos =

∑n
i=1 si andS =

⋃n
i=1 Si is also a

solution which maximizes the functionδ(u−1 : u0 : s : S)
given the condition thatu0 /∈ S.

(2) By definition, δ(u−1 : u0 : s′′ : S′′) =∑
v∈S′′

∑
(v1,v2)∈PATH(v,Q′′v) f(v) · c(v1, v2) −∑

v∈S′′ l(v) =
∑n

i=1

∑
v∈S′′

i

∑
(v1,v2)∈PATH(v,Q′′v) f(v) ·

c(v1, v2) +
∑

(v1,v2)∈PATH(u0,u−1)
f(u0) ·

c(v1, v2) − ∑n
i=1

∑
v∈S′′

i
l(v) − l(u0) =∑

(v1,v2)∈PATH(u0,u−1)
f(u0) · c(v1, v2) − l(u0) +

{∑n
i=1

∑
v∈S′′

i

∑
(v1,v2)∈PATH(v,Q′′v) f(v) · c(v1, v2) −∑n

i=1

∑
v∈S′′

i
l(v)} =

∑
(v1,v2)∈PATH(u0,u−1)

f(u0) ·
c(v1, v2) − l(u0) + ∆cost(u0 :

∑n
i=1 s′′i :

⋃n
i=1 S′′i) =∑

(v1,v2)∈PATH(u0,u−1)
f(u0) · c(v1, v2) − l(u0) +

∆cost(u0 : s′′ − 1 : S′′ − {u0}).
s = s′′ and S = S′′ is a solution which maximizes

the functionδ(u−1 : u0 : s : S) given the condition that
u0 ∈ S. So r = s′′ − 1 andR = S′′ − {u0} is a solu-
tion that maximizes the function∆cost(u0 : r : R), just
as the solutionr = r0 andR = R0 is. Soδ(u−1 : u0 :
s′′ : S′′) =

∑
(v1,v2)∈PATH(u0,u−1)

f(u0) · c(v1, v2) −
l(u0) + ∆cost(u0 : r0 : R0). Clearly s = r0 + 1 and
S = R0∪{u0} is also a solution which maximizes the func-
tion δ(u−1 : u0 : s : S) given the condition thatu0 ∈ S.

Eithers =
∑n

i=1 si andS =
⋃n

i=1 Si, or s = r0 +1 and
S = R0 ∪ {u0}, is a solution that maximizes the function

δ(u−1 : u0 : s : S). Which of them is the solution that
maximizes the functionδ(u−1 : u0 : s : S) depends on
whetherδ(u−1 : u0 :

∑n
i=1 si :

⋃n
i=1 Si) is greater or less

thanδ(u−1 : u0 : r0 + 1 : R0 ∪ {u0}). Now it’s easy to see
that Theorem 2 holds.

2

Theorem 1 and 2 show how an optimization problem on
placement can be decomposed into subproblems. Based on
those two theorems, theoptimal file placement problemcan
be solved with a dynamic programming algorithm.

We first define a few notations.

Definition 2 Given a vertexw ∈ V of the treeT = (V, E),
defineropt

w andRopt
w to be a pair of parameters such that the

solution ‘r = ropt
w andR = Ropt

w ’ maximizes the function
∆cost(w : r : R). And define∆opt

w as∆opt
w = ∆cost(w :

ropt
w : Ropt

w).
Given two verticesw1 ∈ V and w2 ∈ V of the tree

T = (V, E), wherew1 is an ancestor ofw2, definesopt
w1,w2

and Sopt
w1,w2

to be a pair of parameters such that the solu-
tion ‘s = sopt

w1,w2
andS = Sopt

w1,w2
’ maximizes the function

δ(w1 : w2 : s : S). And defineδopt
w1,w2

asδopt
w1,w2

= δ(w1 :
w2 : sopt

w1,w2
: Sopt

w1,w2
). 2

Now we present the recurrences of the dynamic pro-
gramming algorithm:

• If a vertexu0 in treeT = (V,E) hasn ≥ 1 children—
u1, u2, · · ·, un—then ropt

u0
=

∑n
i=1 sopt

u0,ui
, Ropt

u0
=⋃n

i=1 Sopt
u0,ui

, and∆opt
u0

=
∑n

i=1 δopt
u0,ui

.

• If a vertexu0 in treeT = (V, E) has no child, then
ropt
u0

= 0, Ropt
u0

= ∅, and∆opt
u0

= 0.

• For two verticesu−1 and u0 in tree T = (V, E),
where u−1 is an ancestor ofu0, if u0 has n ≥ 1
children—u1, u2, · · ·, un—then δopt

u−1,u0
=

max{∑n
i=1 δopt

u−1,ui
,
∑

(u,v)∈PATH(u0,u−1)
f(u0) ·

c(u, v) − l(u0) + ∆opt
u0
}. If

∑n
i=1 δopt

u−1,ui
≥∑

(u,v)∈PATH(u0,u−1)
f(u0) · c(u, v)− l(u0) + ∆opt

u0
,

then sopt
u−1,u0

=
∑n

i=1 sopt
u−1,ui

and Sopt
u−1,u0

=⋃n
i=1 Sopt

u−1,ui
; otherwise,sopt

u−1,u0
= ropt

u0
+ 1 and

Sopt
u−1,u0

= Ropt
u0
∪ {u0}.

• For two verticesu−1 and u0 in tree T = (V, E),
where u−1 is an ancestor ofu0, if u0 has 0 child,
then δopt

u−1,u0
= max{∑(u,v)∈PATH(u0,u−1)

f(u0) ·
c(u, v) − l(u0), 0}. If

∑
(u,v)∈PATH(u0,u−1)

f(u0) ·
c(u, v) − l(u0) > 0, thensopt

u−1,u0
= 1 andSopt

u−1,u0
=

{u0}; otherwise,sopt
u−1,u0

= 0 andSopt
u−1,u0

= ∅.

The first and third recurrences come from Theorem 1
and 2 respectively, and the second and fourth recurrences
can be easily seen to be correct. If we usev0 to denote the

root of the treeT = (V, E), then theoptimal file placement
problemis to find ropt

v0
andRopt

v0
, and to cacheropt

v0
copies

of the file on nodes in the setRopt
v0

. The dynamic program-
ming algorithm can be shown to have complexityO(|V |2),
where|V | is the number of vertices in treeT = (V, E).

4. Implementation of Optimal Content Place-
ment for En-Route Caching

In this section we show how the optimal file placement
can be fulfilled without prefetching (data pushing) for en-
route web caching, and introduce the implementation de-
tails of the caching scheme.

4.1. Optimal Placement without Prefetching

Theorem 3 Let T = (V, E) be the tree considered in Def-
inition 1, and letA0 be its root. Letr = r0 and R =
R0 be a solution that maximizes∆cost(A0, r, R), and let
N = {A1, A2, · · · , An} ⊆ R0 be an arbitrary subset of
R0. DecomposeT into n + 1 subtrees, which we denote by
T0 = (V0, E0), T1 = (V1, E1), · · ·, Tn = (Vn, En), ac-
cording to the following three rules: (1)V = ∪n

i=0Vi, and
Vi ∩ Vj = ∅ for any0 ≤ i 6= j ≤ n; (2) for 0 ≤ i ≤ n,
Ai ∈ Vi; (3) for any nodev ∈ V − {Ai|0 ≤ i ≤ n},
if Aj ∈ {Ai|0 ≤ i ≤ n} is an ancestor ofv and the
path betweenv andAj doesn’t contain any node in the set
{Ai|0 ≤ i ≤ n, i 6= j}, thenv ∈ Vj .

For any nodev ∈ V , defineU(v) as the maximal set
that satisfies the following two requirements: (1)U(v) ⊆
D(v) ∩ N , (hereD(v) is the set of all the nodes that are
descendants ofv in the treeT , as defined in Definition 1);
(2) for every nodeu ∈ U(v), the path betweenv and u
doesn’t contain any node in the setD(v) ∩N − {u}.

For any nodev ∈ V , definef ′(v) as f ′(v) = f(v) −∑
u∈U(v) f(u). (For the definition off(v), see Defini-

tion 1.)
For any i such that0 ≤ i ≤ n, for any nonnega-

tive integerr′ such thatr′ ≤ |Vi| − 1, for any setR′ =
{a1, a2, · · · , ar′} such thatR′ ⊆ Vi − {Ai}, define the
objective function∆′cost(Ai : r′ : R′) as ∆′cost(Ai :
r′ : R′) =

∑r′

j=1

∑
(u,v)∈PATH(aj ,bj)

f ′(aj) · c(u, v) −
∑r′

j=1 l(aj), where bj (1 ≤ j ≤ r′) is defined as the
node that satisfies the following three requirements: (1)
bj ∈ R′

⋃{Ai}; (2) bj is an ancestor ofaj ; (3) no ver-
tex inR′ is both an ancestor ofaj and a descendant ofbj .
If r′ = 0, define∆′cost(Ai : 0 : ∅) = 0.

For 0 ≤ i ≤ n, let r′ = r′i andR′ = R′i be a solution
that maximizes the value of∆′cost(Ai : r′ : R′). Thenr =
n+

∑n
i=0 r′i andR = N∪(

⋃n
i=0 R′i) is a solution that maxi-

mizes the value of∆cost(A0, r, R), namely,∆cost(A0, n+∑n
i=0 r′i, N ∪ (

⋃n
i=0 R′i)) = ∆cost(A0, r0, R0).

Proof: ConsiderT as the tree network whereA0 is the
only node originally caching the fileF . The maximum net
cost saving of cachingF on T can be got by first caching
F on nodes inN , and then cachingF on nodes inR0 −N .
WhenF is cached on nodes inN , the rate of requests for
F passing through any nodev, which was originallyf(v),
becomesf ′(v), andT can be partitioned inton + 1 sub-
trees each of which containing exactly one copy ofF on its
node closest toA0. It can be seen that the net cost saving
got by caching additional copies ofF on any of then + 1
subtrees is independent of any of the othern subtrees. So
this theorem can be seen to hold.

2

Theorem 3 shows that the optimal placement of a file
on a tree can be fulfilled without prefetching (data push-
ing) for en-route caching. When a cache containing a fileF
receives a request forF issued by a nodev, the cache com-
putes the locations to cacheF that is optimal for the whole
tree. However,F only needs to be cached on nodes that not
only belong to the optimal locations but also belong to the
path between the cache andv, which is fulfilled whenF is
transmitted from the cache tov. Such a caching process can
keep going on in the tree, and eventually when no request
for F will causeF to be cached on any additional node, by
Theorem 3 the placement ofF on the tree is optimal for
the whole tree. So the fileF never needs to be cached out-
side the path it necessarily passes through, which is called
prefetchingor data pushing. Prefetching is many times con-
sidered overly-active or unnecessary for caching; and hav-
ing a caching scheme which doesn’t have to use prefetching
is certainly desirable. However, it’s simple to see that the
optimal placement here can also be achieved while using
prefetching.

4.2. Implementation

The caching scheme is implemented as follows. Each
cachev containing a fileF maintains information about the
tree rooted atv corresponding to the fileF . The informa-
tion consists of the tree topology and the parametersf(v′),
l(v′) for every nodev′ andc(u, u′) for every edge(u, u′)
in the tree. Every time a request forF is sent to the cache
v, the nodes that the request passes through piggybacks to
the request-packet the information about the path that the
request traverses; andv maintains the recent information.
Upon receiving the request,v computes the optimal loca-
tions in the tree, and cachesF on the path leading to the
node that issued the request, whenF is transmitted to that
node. The information nodes piggyback to the request and
the information used for computing optimal locations byv
can be estimated from data for the fileF as well as for files
of sizes similar to that ofF . For a network containing hun-
dreds of thousands of web files (or more), such estimated

information is usually well updated. The implementation
is very similar to that of theCoordinated En-Route Web
Caching scheme[10], with the major difference that in [10],
the maintained information for a file is evenly divided and
stored by all nodes in the corresponding tree, while here all
the information is stored by the root of the tree. However,
the amount of data stored on different nodes can be well
evened by the large number of files and nodes in the net-
work. The information piggybacked to requests is similar
to that in [10]. So it’s easy to show that the extra storage
and transmission overheads of this scheme is at the same
level of those of theCoordinated En-Route Web Caching
scheme.

5. Simulation

The emphasis of our simulation is to compare therela-
tive performanceof the optimal file placement scheme with
existing en-route caching schemes. Instead of simulating
over a network containing a large number of web files, we
simulate for a single file and over a sub-network which is
the tree rooted at the server permanently maintaining the
file. Being consistent with the Tiers model [3], the network
consists of a WAN (wide area network) in the middle and a
number of MANs (metropolitan area networks) attached to
it. The WAN is seen as a backbone network where no server
or client (source of requests) is attached. An en-route cache
is attached to every WAN and MAN node. The single server
containing the file in consideration is chosen randomly from
the MAN nodes. An eviction costl(v) is associated with ev-
ery nodev, and its value changes from time to time. To sim-
ulate the removal of the file from a node it has been cached
on, every time if the cost loss of removing the file from a
cache is smaller than the cache’s eviction cost, the file will
be evicted from the cache.

We simulate three caching schemes: the scheme us-
ing the optimal file placement on trees (but each time the
file is only cached along a path) — which we shall call
the tree scheme, the Coordinated En-Route Web Caching
scheme [10] which optimizes the file placement on paths
— which we shall call thepath scheme, and the scheme
which caches the file in every cache the file passes through
— which we shall call thenode scheme. Extensive experi-
ments have been performed for a large number of randomly
generated tree networks (of reasonable characteristics) and
wide ranges of parameters. It turns out that the relative
performance of the three schemes is quite similar for dif-
ferent network topologies and parameters. Therefore we
only show the results of two experiments as examples. Let
U(x, y) denote the uniform distribution betweenx andy.
Then the parameters of the two experiments are as shown in
Table 1.

Parameter Experiment 1 Experiment 2
Total number of nodes 200 300
Ratio of WAN nodes 1:1 1:1

to MAN nodes
Delay of WAN links U(0.41, 0.51) U(0.41, 0.51)

second second

Delay of MAN links U(0.06, 0.08) U(0.06, 0.08)

second second

Eviction cost U(1, 1.2) U(1, 1.2)

Table 1: Parameters of Two Experiments

In both experiments, we increase the request rate of
MAN nodes, and observe how the average access latency
changes when the request rate increases (which means the
file becomes more and more popular). The performances
of the three schemes are shown in Fig. 3. It can be seen
that both the ‘Tree scheme’ and the ‘Path scheme’ perform
much better than the ‘Node scheme’, while the performance
difference between the ‘Tree scheme’ and the ‘Path scheme’
is comparatively smaller. The figures imply that the ‘Path’
scheme is a big improvement on the ‘Node’ scheme, and
the ‘Tree’ scheme further improves the performance by op-
timizing the file’s placement even better.

6. Conclusions

In this paper we show that existing file placement poli-
cies for en-route caching are all solving restricted partial
problem of the original file placement problem, thus give
only sub-optimal solutions. A low-complexity dynamic-
programming algorithm which outputs the optimal solution
is presented. It’s shown that the optimal placement of web
files can be implemented without prefetching. And both
analysis and simulations show that the optimal file place-
ment solution perform better than other existing file place-
ment policies for en-route caching.

References

[1] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. Self-
organizing wide-area network caches. InProceedings of
IEEE INFOCOM’98, pages 600–608, 1998.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: evidence and implica-
tions. InProc. IEEE INFOCOM’99, pages 126–134, 1999.

[3] K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling
internet topology.IEEE Comm. Magazine, 35(6):160–163,
1997.

[4] P. B. Danzig, R. S. Hall, and M. F. Schwartz. A case for
caching file objects inside internetworks. InProceedings of
the ACM SIGCOMM, pages 239–243, 1993.

[5] P. Krishnan, D. Raz, and Y. Shavitt. The cache location prob-
lem. IEEE/ACM Transactions on Networking, 8(5):568–
582, 2000.

10
−2

10
−1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Average Number of Requests Issued by a MAN Node per Second (in logscale)

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

(s
ec

on
d)

Experiment 1

Tree scheme
Path scheme
Node scheme

10
−2

10
−1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Average Number of Requests Issued by a MAN Node per Second (in logscale)

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

(s
ec

on
d)

Experiment 2

Tree scheme
Path scheme
Node scheme

Figure 3. Average access latency vs. average
request rate

[6] L. Rizzo and L. Vicisano. Replacement policies for a proxy
cache.IEEE/ACM Trans. Networking, 8(2):158–170, 2000.

[7] P. Rodriguez and S. Sibal. Spread: scalable platform for
reliable and efficient automated distribution.Computer Net-
works, 33(1-6):33–49, 2000.

[8] P. Rodriguez, C. Spanner, and E. W. Biersack. Analysis
of web caching architectures: hierarchical and distributed
caching.IEEE/ACM Transactions on Networking, 9(4):404–
418, 2001.

[9] P. Scheuermann, J. Shim, and R. Vingralek. A case for
delay-conscious caching of web documents.Computer Net-
works and ISDN Systems, 29(8-13):997–1005, 1997.

[10] X. Tang and S. T. Chanson. Coordinated en-route web
caching.IEEE Trans. Computers, 51(6):595–607, 2002.

[11] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla,
and E. A. Fox. Removal policies in network caches for
world wide web documents. InProceedings of ACM SIG-
COMM’96, pages 293–305, 1996.

