Optimal Content Placement for En-Route Web Caching

Anxiao (Andrew) Jiang and Jehoshua Bruck
California Institute of Technology
Parallel and Distributed Systems Lab
MC 136-93
Pasadena, CA 91125, U.S.A.
E-mail: {jax,bruck @paradise.caltech.edu

Abstract els of the network and file-requests are forwarded from
low-level caches to higher-level caches or among caches
This paper studies the optimal placement of web files for at the same level. Some hybrid caching architectures also
en-route web caching. It is shown that existing placementexist [8]. A new caching architecture, calléth-Route
policies are all solvingestricted partial problemsf the file Caching[1] [5] [7] [10], differs from hierarchical caching
placement problem, and therefore give only sub-optimal so-and distributed caching in that caches are associated with
lutions. A dynamic programming algorithm of low com- routing nodes and that a request is always forwarded from
plexity which computes the optimal solution is presented. It the client toward the web server along tlegular routing
is shown both analytically and experimentally that the file- path. Every en-route cache inspects the requests that pass
placement solution output by our algorithm outperforms ex- through its associated routing node. If it has the requested
isting en-route caching policies. The optimal placement of file, it transmits the file to the client and the request is sat-
web files can be implemented with a reasonable level ofisfied. Otherwise, it forwards the request along the regular
cache coordination and management overhead for en-routerouting path. En-route caching has the merit that it is trans-
caching; and importantly, it can be achieved with or without parent to both clients and servers, and requires no file loca-
using data prefetching. tion mechanisms such as broadcasting queries or exchang-
ing content summaries [10]. So it's easy to manage in this
sense. And it provides a much stronger capability to locate
caches reallynside the network, whose effectiveness has
been shown [4].
. i i i File placement/replacement is a key technique that af-
Web caching is one of the main techniques solving the o g the effectiveness of caching. A large number of
performance problems the World Wide Web faces today. fjo piacement/replacement policies are available for en-
WWW has been experiencing very f?‘St growth_ln recent o te caching [6] [11]. Most policies make decisions on
years, butlong access latency can seriously hurtits popularsjie pjacement and replacement for individual caches only.
ity, especially fo_r ho.t wgbsnes. Web caching dynamically Some policies, such as MODULO [1], consider the path
stores popular files in different places of the Internet, thus from the cache (or server) containing the file to the client,

decreasing the distance between clients and web content, 4 cache the file along the path using simple placement
It can significantly reduce network congestion, server load ¢.hames Recently a novel caching scheme, called

and access delay. A huge amount of research effort has beeg,jinated En-Route Web Cachinig proposed by Tang et
devoted to all aspects of web caching, and various caching,| [10]. The coordinated en-route web caching schepre

schemes have been proposed [2] [5] [8] [10] [11]. timizesthe placement of files along the path from the cache
Effective caching requires cooperative content manage-(or server) to the client, and it requires moderately more co-

ment of web caches. Traditional caches include clients, 5gination among the en-route caches. Its performance has
proxies and servers. Two common approaches t0 Co0lpeen shown to be significantly better than the other poli-
dinate caches arélierarchical Cachingand Distributed cies [10].

Caching[8], where caches are located at one or more lev-

1. Introduction

This paper explores the file placement techniques for

1This work was supported in part by the Lee Center for Advanced Net- ?n'rOUte web caching. _We study file placement po!iCi_eS
working at the California Institute of Technology. in a more general caching model, and show that existing

policies, including the coordinated en-route web caching a simplification is validated by Tang et al. in [10], where it
scheme, are all solvingestricted partial problem®f the is pointed out that for en-route caching, nodes not contained
placement problem, and therefore they give only sub-in both upstream and downstream paths are not appropriate
optimal solutions. We then present a dynamic program- locations for caching the file.) Routing paths from all clients
ming algorithm which computes the optimal solution for to the server form a tree topology [5] [8] [10].
file placement. Itis shown both analytically and experimen-
tally that the optimal solution given by our algorithm can be @
significantly better than the sub-optimal solutions given by
other schemes. Implementation details are introduced, and
it's shown that our scheme requires the same level of co-
ordination among caches as tbeordinated en-route web
caching schemelt is proven that the optimal placement v,
can be implemented in @andependently successive way O O
meaning that the file can be cached only in caches that
it necessarily passes through, and successive independent
computation and caching will aggregately give the optimal
placement. Thus the optimal placement can be achieved @ : anode containing acopy of file F
with or without using prefetching (data pushing). That is a (O +anodenot containing a copy of file F
very important property desired by any caching scheme.

The rest of the paper is organized as follows. In Section ~ Figure 1. (a) En-Route Web Caching (b) Sub-
2, a general model for the file placement of en-route web trees Corresponding to Cached File Copies
caching is presented, and the performance of existing place-
ment schemes and that of the optimal scheme are compared.
In Section 3, the dynamic programming algorithm solving
the optimal file placement problem is presented. The algo-
rithm has complexityD(|V|?), where|V| is the number of

V3

An example of such a tree topology is shown in Fig-
ure 1(a). Here node is the router associated with the web
server, while all other nodes are associated with en-route
caches in consideration. In Section 4, implementation de-c2ches. For any web filé” and every cache (or server)

which contains the filg”, the set of nodes in the network

tails are introduced. In Section 5, simulation results show- h ; isfied by th icul d
ing the performance difference between the optimal scheme’/"'95€ requests faf” are satisfied by that particular node

and other existing schemes are provided. In Section 6, wecontainingF” form a s_ubtree. Figure 1(b) shows th_e _three
conclude this paper. §ubtrees corrr—;spondmg to the three nodgs containing the
file F'. Clearly in every such subtree, there is only one node
. . containing the file#”, which is the node closest to the server.
2. Modelling En-Route Web Caching For a file F, we associate every edge,v) € E with
a nonnegative cost(u, v, F'), which represents the cost of
In this section we model en-route web caching, and com- transmitting a request far and the corresponding response
pare the performance of different file placement policies. through edgédu, v). As in [10], the ‘cost’ here has a gen-
eral meaning which can correspond to delay, data flow or
2.1. Caching Model and File Placement request-processing cost. If a request goes through multiple
edges, the total cost is considered to be the summation of
The model we use in this paper closely follows the net- the cost over each edge.
work model in [10]. We model the network as a graph Consider a nodely which contains the fild". We use
G = (V,E), whereV is the set of routers each of which U = {Aj, A, As,---,A,} to denote the set of nodes
is associated with an en-route cache, dnds the set of whose requests foF' are satisfied byd,. So nodes i/
network links. Each server or client is attached to a node and the associated edges form a subtree—which we denote
in V. Without loss of generality, we assume there is only by T'—of the network. We call4, the root of the subtree
one server, and clients request for web files maintained byT. Let f(4;) (1 < i < n) denote the rate of requests Br
the server. A client’s request goes along the path from thepassing through nodé; (including the requests from; it-
client to the server, and is satisfied by the first node on theself and from others). Then the total cost of the requests for
path whose cache stores the requested file. The file from theF” from nodes inU is 3", f(A;) - ¢(A;, Pa,, F), where
cache is transmitted downstream along the same path to thé°,, is the parent of nodd, in the treeT".
client. For simplicity, symmetric routing is assumed here. Currently Aq is the only node in the tre& which con-
(If the routing is asymmetric, then we 1&t only include tains the fileF'. If the rates of requests fdr are high, it's
those nodes on both upstream and downstream paths. Sudbeneficial to cache more copies Bfin the tree. However,

because of the limited memaory capacity of each cachig, if 2.2. Performance Comparison of Placement Policies

is to be stored in a cache, then one or more files in the cache

will need to be removed in order to make room. Caching There are lots of file placement policies available for en-
the file £ at a node decreases the cost for accessing route caching. For most of them, when a file is transmitted
the future (referred to asost saving, but increases the cost fom a cache (or server) to a client, the file is cached on
for accessing the files that are removed (referred tooas every node along the path. And at each individual node,

loss. some file replacement policy is used to evict files to cre-

Our goal is to minimize the access cost for both thefile &€ space for the newly cached file. Examples of such re-
and the files removed. Assume we select a setRmafdes, ~ Placement policies include LRU, LFU, LRU-MIN, Hybrid,
R={A; A}, - A; } CU—{Ag}, to cacheF. Thus LNCR GD-Size, etc.. For some pla_ceme_nt poI|C|es,_ the
the cost for accessin@Tis reduced. Defind; (1 < i < r) file is still cached along the path when it’s being transmitted
to the client, but each node on the path decides indepen-

as the node that satisfies the following three requirements: - o .
1) B € RU{Ao}; (2) B; is an ancestor ofi;, in the dently whether or'not it's beneficial tq ca_lche the file, based

on some key attribute or other admission control mecha-
nisms. Some file placement policies cache files in a more
coordinated way. An example MODULO caching[1],
which caches a file on nodes that are a fixed number of hops
apart along the path between the server (or cache) and the
client.

Removing a fileO from a nodeA;, will cause cost loss The Coordinated En-Route Web Caching schepne-
Z(ul,uQ)epATH(Aj,,co,,;) fo.i-c(ur,us, O), wherefo ; is sented recently in [10] is a file placement policy whigt
the rate of requests fap passing through nodd;,, and timizesthe placement of the file along the whole path from
Co; is the node containing the fite which will satisfy the the cache (server) to the client. It uses the same cost-saving
requests coming from;, for the fileO onceO is removed ~ and cost-loss formulas as in this paper, although they are
from A;,. The cost loss of removing multiple files from a written in different forms. The scheme considers a linear
nodeA,, is simply the summation of the cost loss of remov- array (a path) instead of a tree. Thus it can be seen as a
ing each file fromA,,. special (or restricted) case of the optimization problem con-

o o _ ~ sidered in this paper.

Deciding which file to remove_from a cache is the fll_e All the file placement policies discussed above try to
replacement problem. There exist a large number of file gptimize the placement of a file on the path from a cache
replacement policies. In this paper, we adopt replacementseryer) to a client, some considering individual nodes only,
policies that optimize access cost, such as LNC-R [9]. Let yhjle others considering the whole path. None of them
[(A;;) be the cost loss of removing files from node, to ¢onsiders the placement of a file over a tree. Tetle-
make enough room for storing file. Then the totabost npote the same tree as in the previous subsection, which con-
lossis 327 1(4;,). sists of aroot node containing the filé" and all the nodes
whose requests foF' are serviced by the root. Although

treeT’; (3) no node ink is both an ancestor of;, and a
descendant oB; in the treeT’. Then thecost savinghere
can be showntobéx;_, Z(ULW)GPATH(A”VB” f(A;)-
c(ur, ug, F), wherePAT H(A;,, B;) is the set of edges on
the path betweed ;, andB;.

The above cost-loss formula is used in [10], too. We :
would like to point out that strictly speaking, the cost loss aftér enough requests far from different nodes of” are
of removing files at several nodes is not simply the summa- S€Nt €ach of which causing a placement'ain a path, we

tion of the cost loss of removing files at each node individ- will get a placement of the f”EF over the whole tred’, .

ually, if the same file is removed from at least two nodes that placement is the aggregation of the placements on sin-

and those two nodes are successive among the sites cachirff€ Paths which might be locally optimal but are globally

the file. However, files removed by cost-based replacementSUP-0ptimal. So the global placements’biof existing file

policies usually have very low access frequencies, there-Placément policies are sub-optimal.

fore are sparsely populated among caches, which makes the We use the following example to illustrate the sub-

above scenario unlikely to happen. So the formula above isOPtimality of existing file placement policies.

a good approximation for the total cost loss. Example :In this example, we consider three file place-

ment policies: caching a file on every node the file passes

Now we can define aroptimal placemenbf file /' on through, theCoordinated En-Route Web Caching scheme

treeT” as follows: an optimal placement of filEe on treeT’ presented in [10], and theptimal placemenas defined in
is to cache filef” on a set of node$A;,, 4;,,---,A4;,} C the previous subsection.

U — {Ao} such that thenet cost saving (cost saving Atree of 4 nodes is shown in Fig. 2, whetg is the only
minus cost 10SS)) i1 >~ (u, uy)epatr(a,, 5, f(As) - node that contains a filE. AssumeA, issues a request for

c(ur,ug, F) = >0_ 1(Aj,) is maximized. F first, andA; issues a request fdf some time later. (Note

f(A)) =2
f(Ay) =1

f(Ag) =1
(AL AP =1
(A, A, F) =0
c(Asz,A, F) =0
I(A)=12
I(A,) =12

Al
A2 A3
I(A)=12

Figure 2. File Placement on Trees

>
o

that A; doesn't issue any request fét becausef(A;) =
f(A2) + f(A3).)

When the policy ‘caching a file on every node the file
passes through’ is used, after both requestdpfind A3
are satisfied, clearl¥’ will be cached on all nodes in the
tree, and th@etcost saving i§f21 f(A)-c(Ai, Pa,, F)—

S U4 =0

When theCoordinated En-Route Web Caching scheme .

is used, whend,’s request reached,, Ao computes the
placement ofF' on the path betweeA, and A5 which will
maximize thenet cost saving — and in this case thet
cost saving will be maximized by placing on A;. So
when A, sendsF' to A, in response todsy’s request,F is
cached ond,, which causes aet cost saving off(4;) -
c(Az, Ao, F)—1(A;) = 0.8. After this moment, every time
A; (i = 2,3) issues a request fdr, it will be satisfied by
Ay; and placingF’ on A4; (i = 2,3) will cause anet cost
saving of f(A;) - c(A4;, A1, F) — I(A;) = —0.4. So when
A; sendsF' to A; (i = 2,3) in response tod;’s request,F’
won't be cached on the path betweépand A; (excluding
the nodeA; which has already cachdd). So the totahet
cost saving stabilizes to I5eS.

It can be verified that theptimal placementf £, which
maximized thenet cost saving for the tree, is to caclie
on nodesA, and Az, whose correspondinget cost sav-

. . 3

NG IS 5o D (ur us)ePATH(A; Ay) (Ai) - clur, ug,) —

25’:2 1(A;) = 1.2, better than the outputs of other policies.
O

It can be shown that even if the tree is a linear array,
all the sub-optimal file placement polices discussed so far

(those except theptimal placemenpolicy for trees) can

3. Optimal File Placement Algorithm

In this section we formally define the optimal file place-
ment problem for en-route web caching, and present a dy-
namic programming algorithm which gives the optimal so-
lution. The notations used in this section will be slightly
different from those in previous sections for simplicity.

Definition1 T = (V, E) is a tree, wherd/ is the set of
vertices andF is the set of edges. The tréehas a vertex
called its ‘root’. For every vertex € V, D(v) denotes the
set of all the vertices that are descendants pénd C(v)
denotes the set of all the vertices that are children.ofSo
D(v) 2 C(v).) For any two vertices, € V andv € V,
PATH (u,v) denotes the set of all the edges on the path
between: andv. For every edgéu, v) € E, itis associated
with a nonnegative paramete(u, v). For every vertex €
V, it is associated with two nonnegative parametei@;)
andl(v). Forany vertex € V, f(v) > 3=, coq f(w).
Letw € V be avertexin the tree. Letbe a nonnegative
integer, where: < |D(w)|. (|D(w)] is the cardinality of the
setD(w).) LetR = {A;, As,---, A} C D(w) be a set of
r vertices. Forl < i < r, defineB; as the vertex that sat-
isfies the following three requirements: (B) € R|J{w};
(2) B; is an ancestor ofd;; (3) no vertex inR is both an
ancestor of4; and a descendant d8;. Then we define the
objective functiom\cost(w : r : R) asAcost(w : r: R) =
22:1 Z(u,u)ePATH(Ai,Bi) f(Ai) - e(u,v) — 22:1 I(A;).

If » = 0, defineAcost(w : 0 : f) = 0. Findingr and R that
maximizeAcost(w : r : R) is referred to as the ‘optimal
placement problem correspondingo.

Letw; € V andws; € V be two vertices in the tree,
wherew; is an ancestor ofv,. Let s be a nonnegative
integer, wheres < |D(ws)| + 1. (|D(w-2)| is the cardi-
nality of the setD(ws).) LetS = {P, P, ---,Ps} C
D(ws) | J{w2} be a set ofs vertices. Forl < i < s, de-
fine Q; as the vertex that satisfies the following three re-
quirements: (1)Q; € SU{w:i}; (2) Q; is an ancestor
of P;; (3) no vertex inS is both an ancestor of; and
a descendant of);. Then we define the objective func-
tion 6(wy @ we : s : S)asd(wy @ we s §) =
Yot 2 (uwyePATH (P F (Bi) - c(u,v) = Yo L) If
s =0, defined(w; : wy : 0: 0) = 0.

output non-optimal solutions, if the first file request is not
issued by the end-node of the array. What's more, further | e use, to denote the root of the treE, then the

analysis shows that in the worst case the following rela- optimal file placement problem we're studying is simply the
tive performance will be achieved for every sub-optimal file «gptimal placement problem correspondingig.

placement policy: the policy caché¥(n) more copies of

the file than the optimal solution does, wherés the num- ~ Theorem 1 Letuy € V be avertexintre& = (V, E). Say
ber of nodes in the tree; and the ratio between the net costuy hasn (n > 1) children—y, uo, - - -, u,,. Suppose for
saving of the optimal solution and the net cost saving of that 1 < i < n, s = s; andS = S; are a solution that maximizes
policy approacheso (if the net cost saving of the policy is the functiond(ug : u; : s : S). Thenr = > | 's; and

K2

positive). For simplicity of this paper we omit this analysis. R = [J;_, S; are a solution that maximizes the function

Acost(ug : r: R). AndAcost(ug
Sor 6w ugcos 0 S;).

Proof: Letr’ be a nonnegative integer that is no greater
than|D(ug)|. Let " C D(up) be a set of’ vertices. For
any vertexv € R’, defineB,, as the vertex that satisfies the
following three requirements: (1, € R’ U {uo}; (2) B,
is an ancestor of; (3) no vertex inR’ is both an ancestor
of v and a descendant &f/,.

(D(ui) U {ui}).

Forl < i < n, defineS, = R' N
R, andS; N S = (for any

(Then obviousiyJ;" , S, =
1<i#j<n) Defines; = |S!| to be the cardinality of’.

(Then obviously}"" | s; = r’.) By definition, Acost(uy :

: Z?:l Si - U?:l Si) =

i R) =) en D (v1,03)EPATH (v, B')f(v) - c(v1,v2) —
Dver 10) = 30 Yiest o wmepara .y F)
c(v1,v2) - i 1EUES/Z(v) =
ZZ’L:I{ZUES’ Z(Ul,vg €PATH(v,B!) f(w) c(vi,v2) —
s U0)} = S0y 8ug 2 u; - -)

Forl < i < n, the value ofd(uy : u; : s, : S})is

maximized whers; = s; andS] = S;. Therefore the value
of Acost(ug : v’ : R') is maximized when’ = >"" | s;
andR' = |J_, Sl, andAcost(ug : Yy s+ Uiy Si)
Sor 8(ug s ugz st Sy).

O

Theorem 2 Let u_; and ug be two vertices in tred
(V, E), whereu_; is an ancestor ofiy. Sayuy hasn (n
1) children—q, us, - - -, u,. Suppose fot < i < n, s
s; and S = S; are a solution that maximizes the function

>

d(u—y : u; : s : S). Suppose = rg and R = Ry are
a solution that maximizes the functidrost(ug : 7 : R).
Then

(1) if Z?:l (5(71,1 Uq S; Sz) Z

Z(u,v)GPATH(uO,u_l) f(U()) ’ c(u, U) - l(uU) + ACOSt(uU :
Ry), thens = Y | s, and S = |J;_, S; are a solu-
tion that maximizes the functioffu_; : ug : s : S), and
g(u,l sy st Uy Si) =D 0(usy w8
)(2) if Z?:l (5(11,,1 U; : S; : Sl) <
2 (uw)ePATH (ugwu_y) 4 (10) - €(t; v) = U(ug) + Acost(u :

0 R()), thens = 9 +1and S = Ry U {UO}
are a solution that maximizes the functiétu_; : wug :
s+ S),andd(u_q : up : ro+ 1 : Ry U {up}) =

Z(u,v)ePATH(uo,u,l) flug) - e(u,v) —l(ug) + Acost(ug :
ro : Ro).

Proof: Lets = s’ andS = S’ be a solution which max-
imizes the functiod(u_1 : ug : s : S) given the condition
thatug ¢ S. Lets = s” andS = S” be a solution which
maximizes the functiod(u_; : ug : s : .S) given the con-
dition thatuy € S. Clearly eithers = s’ andS = S’, or
s = s andS = S”, is a solution which maximizes the
functiond(u—_q : ug : s: .9).

For every vertexw € S’, define@/, as the vertex that
satisfies the following three requirements:) € S’ U
{u_1}; (2) Q) is an ancestor of; (3) no vertex inS’ is
both an ancestor afand a descendant ¢, . Similarly, we
defineQ!! for every vertexw € S”.

Forl < i <n,defineS, =5 N (D(u;) U{u;}). (Then
obviouslylJ;_, S = 5", andS; N S} = @ foranyl < i #
j<mn.) Defines |S/] to be the cardinality of.. (Then
obviously}"" | si = s'.)

Forl <i < n, defineS! = S"N(D(u;) U{u;}). (Then
obviously S” = (Ui, S;') U {uo}, andSj’ N S} = (for
anyl <i# j < n.) Defines! = |S/| to be the cardinality
of S’. (Then obviously” =1+ Y | s/

We analyze the following two cases.

(1) By definition, d(u—y : wuy : & S
ZUES’ Z(U],UQ)EPATH(U QL) f() C(Ul’UQ)
ZUES’ () Zz 1 ZUES’ Z (v1,v2)EPATH (v, Q’)f() :
C<U17/U2) Z’L:l ZUGS; l()
Z?:l{zves Z(vl,vz)ePATH(v,Q;) f(v)
Sues W)} = S0y 0us s uy :)2 S).

s =s andS = S’ is a solution which maximizes the
functiond(u_1 : ug : s : S) given the condition that, ¢
S. Soforl < i <mn,s=s},andS = S is a solution
that maximizes the functiof(u—_; : u; : s : S), just as
the solutions = s; andS = S;is. S0d(u_1 : up : ¢ :
S =30 0(u_y :u; :os; 2 S;). By definition, we know
ug ¢ Ui, Si,s0s =>1" s, andS = |J!_, S is also a

c(vy,ve) —

solution which maximizes the functiof{u_1 : ug : s : .S)
given the condition that, ¢ S.

(2) By definition, §(u_1 ug : 8" s =
ZUES” Z(vl,vg)EPATH(v,Q,’U’) f(U) C(Ul’ 1}2) -

Z’UES” l(U)
c(v1,v2)
c(vy,v2)

=2im1 Zvesg E(vl,UQ)ePATH(v,Qg) fv)-

+ Z(vl,vg)GPATH(uo,u,l) f(UO)
- Z?:l Zvesg l(v) I(uo)
Z(vl,vg)EPATH(uo,u,l) f(U()) C(Ul, U2) - l(UQ)
{22;1 Z’UES;' Z(vl,vg)EPATH(v,Qg) f(”) ’ C(U17U2) -
Z?:l E’UES;’ Z(U)} = Z(vl,vz)GPATH(u()}u,l) f(u()) :
c(vi,ve) — l(up) + Acost(ug = >y s« Uiy SY)
Z(vl v2)EPATH (ug,u— 1)f(U0) c(vi,v2) — l(uo)
Acost(ug : 8" —1: 5" — {ug}).

s = s” andS = S” is a solution which maximizes
the functiond(u_1 : ug : s : S) given the condition that
ug € S. Sor = s” —landR = 5" — {up} is a solu-
tion that maximizes the functiohcost(ug : r : R), just

l

+

as the solutiom = rp andR = Ry is. S0d(u—_1 : ug :
i SU) - Z(UM'UQ)EPATH(UU,ufl)f(uo) ’ C(vlaUQ) -
l(ug) + Acost(ug : r9 : Rp). Clearlys = ro + 1 and

S = RyU{uo} is also a solution which maximizes the func-

tion d(u—_1 : up : s : S) given the condition that, € S.
Eithers =Y | s;andS = J;_, S;,ors =ro+1and

S = Rp U {uop}, is a solution that maximizes the function

d(u—1 : ug = s : S). Which of them is the solution that
maximizes the functiod(u_; : ug : s : S) depends on
whether§(u_q : ug : Y1y s; : Uiy Si) is greater or less
thand(u_1 : ug : 7o + 1 : Ro U {up}). Now it's easy to see
that Theorem 2 holds.

]

root of the treel” = (V, E)), then theoptimal file placement
problemis to findr?* and RJ"*, and to cacheJ*" copies
of the file on nodes in the séﬁgg’t. The dynamic program-
ming algorithm can be shown to have complexity|V'|?),
where|V| is the number of vertices in tréé = (V, E).

Theorem 1 and 2 show how an optimization problem on 4 Implementation of Optimal Content Place-

placement can be decomposed into subproblems. Based on

those two theorems, thaptimal file placement problesan
be solved with a dynamic programming algorithm.
We first define a few notations.

Definition 2 Given a vertexw € V of the treeT’ = (V, E),
definer??* and R2" to be a pair of parameters such that the
solution r = r2" and R = RS"’ maximizes the function
Acost(w : r : R). And defineA?* as A%* = Acost(w :
ot . ROPY),

Given two verticesy; € V andw, € V of the tree

T = (V, E), wherew is an ancestor ofv,, defines??’
and Sgk*,, to be a pair of parameters such that the solu-

tion ‘s = soPt,, andS = SgP*, maximizes the function
o(wy : 152 e s;). And defing?’, asogr’,,, = d(w; :
wa - s(l)Upl,WQ : Z};,wz)' =

Now we present the recurrences of the dynamic pro-
gramming algorithm:

e Ifavertexug intreeT = (V, E) hasn > 1 children—

. o opt __ n opt opt __
ul;l u2, . y Up the? Tuo ; Zitzl Suo,ui' Ruo -
op opt __ op
Ui:l Suo,ui’ andAuo - Zi:l 5uo,ui'

If a vertexug in treeT = (V, E) has no child, then
roPt =0, RPP' =), andAZP = 0.

For two verticesu_; andug in treeT = (V,E),
where w_; is an ancestor ofiy, if ug hasn > 1
children—uy, s, ---, u,—then §oP

U—1,U0
max{Z?:l 531?1,%:’ Z(u,q;)EPATH(uo,u,l) f(’u,o)

clu,v) — l(ug) + Af]gt}. if >, 61‘111'51’“1, >
Z(u,v)GPATH(uO,u,l) f(UO) . C(U, U) - Z(UO) + Azﬁ '

opt _ n opt opt —
then Suzi],ug - Zi:l Suzil,u,; and S?J.Pil7'l,l,0 -
n opt . i opt _ opt
Uiz, S, ., otherwise,soP* | - = roP* + 1 and
opt _ popt
Su;(:huo - Ru;g U {Uo}

For two verticesu_; and ug in tree T (V,E),
whereu_; is an ancestor ofi, if ug has 0 child,

then 63112&1,“0 = maX{Z(u,v)EPATH(uo,u,l) f(UO) ’
C(U,U) - Z(U0>,O} If Z(u,v)GPATH(uo,u,l) f(u0> :
c(u,v) — l(ug) > 0, thens?* = 1andSP"

U—1,U0
{uo}; otherwiseso¥* = 0 andSg»*

U—1,U U—1,U0 = (Z)

The first and third recurrences come from Theorem 1

ment for En-Route Caching

In this section we show how the optimal file placement
can be fulfilled without prefetching (data pushing) for en-
route web caching, and introduce the implementation de-
tails of the caching scheme.

4.1. Optimal Placement without Prefetching

Theorem 3 LetT = (V, E) be the tree considered in Def-
inition 1, and letAy be its root. Letr = ro and R =
R, be a solution that maximize&cost(Ao, r, R), and let
N = {A;,Ay,---,A,} C Ry be an arbitrary subset of
Ry. Decomposq’ into n + 1 subtrees, which we denote by
TO = (‘/O,EO), Tl = (‘/hEl)i] TTL = (Vn,En), ac-
cording to the following three rules: (I = U ,V;, and
VinV; =0forany0 < i #j <n;(2)for0 <i<mn,
A; € V;; (3) for any nodev € V — {4;]0 < i < n},

if A; € {4;]0 < i < n}is an ancestor oy and the
path betweemw and A; doesn't contain any node in the set
{4;]0 <i<n,i#j}, thenv € V.

For any nodev € V, defineU(v) as the maximal set
that satisfies the following two requirements: {Ijv) C
D(v) N N, (here D(v) is the set of all the nodes that are
descendants af in the treeT’, as defined in Definition 1);
(2) for every nodex € U(v), the path between and u
doesn’t contain any node in the se{v) N N — {u}.

For any nodev € V, definef’(v) as f'(v) = f(v) —
> wev(w f(u). (For the definition off(v), see Defini-
tion 1.)

For any i such that0 < ¢ < n, for any nonnega-
tive integerr’ such thatr’ < |V;| — 1, for any setR’
{aj,as,---,a} such thatR’" C V; — {4;}, define the
objective functionA’cost(A4; : ' : R') as A’cost(A; :
o R/) = Z;:l Z(u,v)ePATH(aj,bj) f/(aj) : C(U,’U) -

S Uay), whereb; (1 < j < /) is defined as the
node that satisfies the following three requirements: (1)
b; € R'U{A:}; (2) b; is an ancestor ofi;; (3) no ver-
tex in R’ is both an ancestor af; and a descendant of.

If ' = 0, defineA’cost(A4; : 0: 0) = 0.

For0 < i < n,letr’ = r; and R’ = R/ be a solution
that maximizes the value &f cost(A4; : v’ : R'). Thenr =
n+y .o randR = NU(;_, R}) is a solution that maxi-

and 2 respectively, and the second and fourth recurrencesnizes the value dkcost(Ay, r, R), namelyAcost(Ag, n+

can be easily seen to be correct. If we wgao denote the

St orh,NU

i=0"1%’

(Ui RL)) = Acost(Ag,To, Ro).

Proof: ConsiderT" as the tree network wheté, is the information is usually well updated. The implementation
only node originally caching the fil&'. The maximum net is very similar to that of theCoordinated En-Route Web
cost saving of caching’ onT" can be got by first caching Caching schem.0], with the major difference that in [10],

Fonnodes inV, and then caching’ on nodes inkRy — N. the maintained information for a file is evenly divided and

When F' is cached on nodes iW, the rate of requests for stored by all nodes in the corresponding tree, while here all
F passing through any node which was originallyf (v), the information is stored by the root of the tree. However,
becomesf’(v), andT can be partitioned inta + 1 sub- the amount of data stored on different nodes can be well

trees each of which containing exactly one copyadn its evened by the large number of files and nodes in the net-
node closest tad,. It can be seen that the net cost saving work. The information piggybacked to requests is similar

got by caching additional copies &f on any of then + 1 to that in [10]. So it's easy to show that the extra storage
subtrees is independent of any of the othesubtrees. So and transmission overheads of this scheme is at the same
this theorem can be seen to hold. level of those of theCoordinated En-Route Web Caching

| scheme

Theorem 3 shows that the optimal placement of a file
on a tree can be fulfilled without prefetching (data push- . .
ing) for en-route caching. When a cache containing aftile 2+ Simulation
receives a request fdr issued by a node, the cache com-
putes the locations to cacliéthat is optimal for the whole The emphasis of our simulation is to compare itle-
tree. However/” only needs to be cached on nodes that not e performancef the optimal file placement scheme with
only belong to the optimal locations but also belong to the gisting en-route caching schemes. Instead of simulating
path between the cache andwhich is fulfilled when"is o er 4 hetwork containing a large number of web files, we
transmitted from the cache to Such a caching process can gjmjate for a single file and over a sub-network which is
keep going on in the tree, and eventually when no requestg ree rooted at the server permanently maintaining the
for " will cause " to be cached on any additional node, by e eing consistent with the Tiers model [3], the network
Theorem 3 the placement df on the tree is optimal for ¢qgists of a WAN (wide area network) in the middle and a
the whole tree. So the fil&' never needs to be cached out- \;mper of MANS (metropolitan area networks) attached to
side the path it necessarily passes through, which is called; he waN is seen as a backbone network where no server
prefetchingor data pushingPrefetching is many times con- o gjient (source of requests) is attached. An en-route cache
sidered overly-active or unnecessary for caching; and hav-ig atached to every WAN and MAN node. The single server
ing a caching scheme which doesn’thave to use prefetching. taining the file in consideration is chosen randomly from
is certainly desirable. However, it's simple to see that the 1o MAN nodes. An eviction costv) is associated with ev-
optimal placement here can also be achieved while usingery nodev, and its value changes from time to time. To sim-
prefetching. ulate the removal of the file from a node it has been cached

on, every time if the cost loss of removing the file from a
4.2. Implementation cache is smaller than the cache’s eviction cost, the file will
be evicted from the cache.

The caching scheme is implemented as follows. Each We simulate three caching schemes: the scheme us-
cachev containing a fileF” maintains information about the ing the optimal file placement on trees (but each time the
tree rooted av corresponding to the filé". The informa- file is only cached along a path) — which we shall call

tion consists of the tree topology and the parameférs), the tree schemethe Coordinated En-Route Web Caching
I(v") for every nodev’ andc(u,u’) for every edge(u, u’) scheme [10] which optimizes the file placement on paths
in the tree. Every time a request féris sent to the cache — which we shall call thepath schemeand the scheme

v, the nodes that the request passes through piggybacks tavhich caches the file in every cache the file passes through
the request-packet the information about the path that the— which we shall call thenode schemeExtensive experi-
request traverses; andmaintains the recent information. ments have been performed for a large number of randomly
Upon receiving the request, computes the optimal loca- generated tree networks (of reasonable characteristics) and
tions in the tree, and cachds on the path leading to the wide ranges of parameters. It turns out that the relative
node that issued the request, whiéris transmitted to that performance of the three schemes is quite similar for dif-
node. The information nodes piggyback to the request andferent network topologies and parameters. Therefore we
the information used for computing optimal locationsdy only show the results of two experiments as examples. Let
can be estimated from data for the fifeas well as for files ~ U(x,y) denote the uniform distribution betweenand y.

of sizes similar to that of'. For a network containing hun- Then the parameters of the two experiments are as shown in
dreds of thousands of web files (or more), such estimatedTable 1.

Table 1: Parameters of Two Experiments

In both experiments, we increase the request rate of
MAN nodes, and observe how the average access latency .
changes when the request rate increases (which means the
file becomes more and more popular). The performances
of the three schemes are shown in Fig. 3. It can be seen
that both the Tree schemeand the Path schenlgerform ®
much better than théNode schenigwhile the performance s
difference between thtee schenmiand the Path schenle
is comparatively smaller. The figures imply that tiRath
scheme is a big improvement on thidode scheme, and
the ‘Tree scheme further improves the performance by op-
timizing the file's placement even better.

o
o

w

6. Conclusions

N

Average Access Latency (second)
N
w

=
o

In this paper we show that existing file placement poli-
cies for en-route caching are all solving restricted partial
problem of the original file placement problem, thus give
only sub-optimal solutions. A low-complexity dynamic-
programming algorithm which outputs the optimal solution ~ °
is presented. It's shown that the optimal placement of web
files can be implemented without prefetching. And both
analysis and simulations show that the optimal file place-
ment solution perform better than other existing file place-
ment policies for en-route caching.

[

o
o

References
(7]

[1] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. Self-

organizing wide-area network caches. RBmoceedings of

IEEE INFOCOM’98 pages 600-608, 1998.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web

caching and zipf-like distributions: evidence and implica-

tions. InProc. IEEE INFOCOM’'99 pages 126-134, 1999.

K. L. Calvert, M. B. Doar, and E. W. Zegura. Modeling

internet topology.|[EEE Comm. Magazine85(6):160-163,

1997.

P. B. Danzig, R. S. Hall, and M. F. Schwartz. A case for

caching file objects inside internetworks. Pmoceedings of

the ACM SIGCOMMpages 239-243, 1993.

P. Krishnan, D. Raz, and Y. Shavitt. The cache location prob-

lem. IEEE/ACM Transactions on Networkin@(5):568—

582, 2000.

(8]
(2]

(3] 9]

(4] (10]

(11]
(5]

Parameter Experiment 1| Experiment 2
Total number of hodes 200 300
Ratio of WAN nodes 1:1 1:1
to MAN nodes 3,
Delay of WAN links | U(0.41,0.51) | U(0.41,0.51) g
second second é
Delay of MAN links | U/(0.06,0.08) | U(0.06,0.08) g,
second second g
Eviction cost U(1,1.2) U(1,1.2) §
2

1

0

* Tree scheme
O Path scheme
% Node scheme ||

Experiment 1

=) =
10 10
Average Number of Requests Issued by a MAN Node per Second (in logscale)

* Tree scheme
O Path scheme
x_Node scheme |

Experiment 2

> B
10 10
Average Number of Requests Issued by a MAN Node per Second (in logscale)

Figure 3. Average access latency vs. average
request rate

[6] L. Rizzo and L. Vicisano. Replacement policies for a proxy

cache.l[EEE/ACM Trans. Networkindg(2):158-170, 2000.

P. Rodriguez and S. Sibal. Spread: scalable platform for
reliable and efficient automated distributiddomputer Net-
works 33(1-6):33-49, 2000.

P. Rodriguez, C. Spanner, and E. W. Biersack. Analysis
of web caching architectures: hierarchical and distributed
caching|EEE/ACM Transactions on Networking(4):404—
418, 2001.

P. Scheuermann, J. Shim, and R. Vingralek. A case for
delay-conscious caching of web docume@smputer Net-
works and ISDN Systen29(8-13):997-1005, 1997.

X. Tang and S. T. Chanson. Coordinated en-route web
caching.|lEEE Trans. Computer$1(6):595-607, 2002.

S. Williams, M. Abrams, C. R. Standridge, G. Abdulla,
and E. A. Fox. Removal policies in network caches for
world wide web documents. IRroceedings of ACM SIG-
COMM’96, pages 293-305, 1996.

