
Error Scrubbing Codes for Flash Memories
Anxiao (Andrew) Jiang, Hao Li and Yue Wang

Computer Science and Engineering Department
Texas A&M University, College Station, TX 77843, USA

Email: {ajiang,hao,yuewang}@cse.tamu.edu

Abstract—Flash memories are the most widely used type of
non-volatile electronic memories. Every flash memory cell has q
discrete levels for storing information. A prominent property of
flash memories is that although it is easy to increase a cell level,
to decrease any cell level, a whole block of cells have to be erased
and reprogrammed. To minimize the number of expensive block
erasure operations and to maintain the data integrity, the data
needs to be stored with a strong error-correcting code that can
correct enough errors between two erasure operations.

In this paper, we introduce the concept of error scrubbing
codes. With this new type of error-correcting codes, the cell levels
are actively increased when errors appear, even if the errors
increase cell levels as well. We show that error-scrubbing codes
can outperform conventional error-correcting codes for multi-
level flash memories. We present two families of codes based on
the L1 metric and a modular construction.

I. INTRODUCTION

Flash memories have become the most widely used type of
non-volatile memories (NVMs). Every flash memory cell has
q ≥ 2 levels – level 0, 1, · · · , q− 1 – which can be increased
or decreased by charge injection or removal based on the
Fowler-Nordheim tunnelling mechanism or the hot-electron
injection mechanism [1]. To increase data density, multi-level
cells (MLCs) with greater values of q are actively developed.
Flash cells are organized as blocks, each containing about
105 cells. Although it is comparatively simple to increase a
cell level, it is very difficult to decrease one. To decrease
any cell level, the whole block of cells must be erased and
then reprogrammed. Block erasures significantly reduce the
longevity, reliability and speed of flash memories [1]. To
minimize the number of block erasure operations and to
maintain the data integrity, the data needs to be stored with
a strong error-correcting code that can correct enough errors
between two erasure operations. While errors may accumulate
in the codewords, with the next block erasure, the codewords
can be decoded and the original error-free codewords can be
written back into the block. This is called memory scrubbing,
a commonly used operation in storage systems [4].

In this paper, we introduce the concept of error scrubbing
codes. With this new type of error-correcting codes, the cell
levels are actively increased when errors appear, even if the
errors increase cell levels as well. The implementation is
simple: the memory constantly reads the cells of a codeword;
if a new error is detected, the memory increases the cell levels
to a new state. No block erasure is needed unless the cell levels
have reached the top. The key idea of error-scrubbing codes is
that through the active adjustment of cell levels, which we call

scrubbing, we can reduce the number of states that a given
number of errors can turn the cells into, thus allowing the
packing of more codewords for a higher rate. In this paper,
we show that the performance of error-scrubbing codes can
exceed that of conventional codes by presenting two families
of code constructions based on the L1 metric and a modular
technique, respectively, and show their asymptotic optimality.

II. NOTATIONS

Let c1, c2, · · · , cn denote the levels of n cells of q levels.
Here ci ∈ {0, 1, · · · , q − 1} denotes the i-th cell’s level,
for i = 1, 2, · · · , n. The vector ~c = (c1, c2, · · · , cn) is
called the cell state. Let Sn,q denote the set of all qn cell
states. Given two cell states ~cA = (c1, c2, · · · , cn) and
~cB = (c′1, c′2, · · · , c′n), if ∀ i we have ci ≥ c′i, we denote
it by ~cA ≥ ~cB and say that ~cA is above ~cB. If ~cA ≥ ~cB
and there exists some i such that ci > c′i, we denote it by
~cA >~cB and say that~cA is strictly above~cB. Here we consider
codes that correct errors between two block erasures, so the
memory controller can only increase cell levels, not decrease
them [3]. However, the errors (i.e., noise) may both increase
and decrease cell levels, unless they are asymmetric errors.

An error set ε is a set of integral vectors of length n. An er-
ror is a vector in the set ε. For convenience, we always assume
that (0, 0, · · · , 0) ∈ ε. Give an error ~e = (e1, e2, · · · , en) ∈ ε,
it can change a cell state ~c = (c1, c2, · · · , cn) to ~c +~e =
(c1 + e1, c2 + e2, · · · , cn + en). For example, if ε consists of
those errors that can increase some cell level by one, then
ε = {(e1, e2, · · · , en) | ∑

n
i=1 ei ≤ 1, ei = 0 or 1 for all i}.

A scrubbing function is a mapping f : Sn,q → Sn,q such
that ∀ ~c ∈ Sn,q, f (~c) ≥ ~c. The idea of the error-scrubbing
code is that when the cell state is ~c, the memory will update
it to f (~c) by charge injection.

Let t ≥ 1 be an integer. Let ~c ∈ Sn,q be a cell state,
and let ~e1,~e2, · · · ,~et ∈ ε be t errors. When the first error
~e1 changes the cell state from ~c to ~c + ~e1, the memory
will update the cell state to f (~c +~e1). When the second
error ~e2 changes the cell state to f (~c +~e1) +~e2, the mem-
ory will update the cell state to f (f (~c +~e1) +~e2). And
so on. In general, for i = 1, 2, · · · , t, define a function
g(~c;~e1, · · · ,~ei) as follows: g(~c;~e1) = ~c + ~e1; for i =
2, · · · , t, g(~c;~e1, · · · ,~ei) = f (g(~c;~e1, · · · ,~ei−1)) +~ei. Then,
when the initial cell state is ~c and t errors ~e1,~e2, · · · ,~et se-
quentially appear, the memory will sequentially change the cell
state to f (g(~c;~e1)), f (g(~c;~e1,~e2)), · · · , f (g(~c;~e1, · · · ,~et)).
(By default, we assume that g(~c;~e1), g(~c;~e1,~e2), · · · ,

978-1-4244-3401-5/09/$25.00 ©2009 IEEE 32

g(~c;~e1, · · · ,~et) all belong to Sn,q.) The set of cell
states trace(~c;~e1, · · · ,~et) = {~c} ∪ {g(~c;~e1, · · · ,~ei) | i =
1, 2, · · · , t} ∪ { f (g(~c;~e1, · · · ,~ei)) | i = 1, 2, · · · , t} are
called the trace caused by the initial cell state ~c and the t
errors ~e1,~e2, · · · ,~et.

We are now in a position to define error-scrubbing codes.

Definition 1 (ERROR-SCRUBBING CODE) Let C ⊆ Sn,q be
a subset of cell states. Let t ≥ 1 be an integer. Every vector
in C is called a codeword. For every codeword ~c ∈ C, the set
of cell states B~c =

⋃
~e1 ,··· ,~et∈ε trace(~c;~e1, · · · ,~et) is called the

“decoding sphere” of ~c. Every vector in B~c is decoded as the
data represented by the codeword~c. Then, C is called a t-error-
scrubbing code if ∀~c1 and~c2 in C, B~c1

∩ B~c2
= ∅.

It is simple to see that when data are stored as codewords
of a t-error-scrubbing code, any sequence of t or fewer errors
can be corrected. For a t-error-scrubbing code C, we define its
density as |C|

qn . Naturally, the higher the density is, the higher
the rate of the code is.

III. LINEAR ERROR SCRUBBING CODES

In this section, we consider symmetric errors, and as-
sume that the memory scrubs the codeword as soon
as a new error appears. That is, the error set ε =
{(e1, e2, · · · , en) | ∑

n
i=1 |ei| ≤ 1, ei ∈ Z for all i}. For

simplicity, we also assume that q → ∞. We will discuss the
case of finite q later in the section.

We first present a new linear code construction of its general
form, for n ≥ 4. We will show later how to set its parameters
to achieve optimal performance. Note that given two vectors
~a = (a1, a2, · · · , an) and ~b = (b1, b2, · · · , bn), ~a ·~b =
∑

n
i=1 aibi. Given an integer i, i ·~a = (ia1, ia2, · · · , ian).

Construction 2 (LINEAR ERROR-SCRUBBING CODE) Build
a t-error-scrubbing code C for n ≥ 4 cells as follows.
Let t ≥ 1 be an integer. Let ~a = (a1, a2, · · · , an) and
~b = (b1, b2, · · · , bn) be two vectors, where ai , bi are positive
integers for all i. Let

V = max
~e∈ε

~e ·~b −min
~e∈ε

~e ·~b + 1 = 1 + 2 max
i

bi .

For i = 0, 1, · · · , b~a·~bV c − 1, let Ci =
{(c1, c2, · · · , cn) | ∑

n
j=1 b jc j ≡ iV mod (t · ~a · ~b)}.

Let C =
⋃b~a·~b

V c−1
i=0 Ci.

The scrubbing function f : Sn,∞ → Sn,∞ is defined as
follows. Let ~s ∈ Sn,∞ be any cell state. If there exists a
codeword ~c ∈ C, an integer i ∈ {0, 1, · · · , t − 1} and an
error ~e ∈ ε such that ~s = ~c + i~a + ~e and ~c + i~a > ~s,
then f (~s) = ~c + i~a. If there exists a codeword ~c ∈ C, an
integer i ∈ {0, 1, · · · , t − 2} and an error ~e ∈ ε such that
~s = ~c + i~a +~e and~s > ~c + i~a, then f (~s) = ~c + (i + 1)~a. If~s
belongs to neither of the above two cases, then f (~s) =~s.

Lemma 3. Let C be the code of Construction 2. Let~c ∈ C be a
codeword. Then, the decoding sphere of~c is B~c = {~c + i ·~a +
~e | i ∈ {0, 1, · · · , t − 1}; ~e ∈ ε}.

The following theorem shows that the code C of Construc-
tion 2 is a t-error-scrubbing code.

Theorem 4 Let C be the code of Construction 2. Then, for any
two codewords~c1 and~c2 of C, we have B~c1

∩ B~c2
= ∅.

Proof: For any cell state ~s ∈ Sn,∞, let us define
its signature as sig(~s) = (~b ·~s mod t · (~a ·~b)). For any
codeword ~c ∈ C, let G(~c) denote the set of signatures of
the cell states in the decoding sphere of ~c. That is, G(~c) =
{sig(~s) | ~s ∈ B~c}. Let bmax = maxi bi. Construction 2 shows
that C =

⋃
i=0,1,··· ,b~a·~b

V c−1
Ci, where each Ci contains a set of

codewords. Then, it is simple to verify that if ~c ∈ Ci, then
G(~c) ⊆ {iV + j ·~a ·~b + k mod t ·~a ·~b | j ∈ {0, 1, · · · , t−
1}; k ∈ {−bmax,−bmax + 1, · · · , bmax}}.

Let ~c1 and ~c2 be two different codewords in C. If ~c1 ∈ Ci
and ~c2 ∈ C j for some i 6= j, then it is simple to see that
G(~c1)∩G(~c2) = ∅, so B~c1

∩ B~c2
= ∅. Now suppose that~c1 ∈

Ci and ~c2 ∈ Ci for some i. We will prove B~c1
∩ B~c2

= ∅ by
contradiction. Assume there exists a cell state ~s ∈ B~c1

∩ B~c2
.

It is simple to verify that for any codeword ~c ∈ C and any cell
state ~s0 ∈ B~c, sig(~s0)− sig(~c) mod t ·~a ·~b is a function of
~s0 −~c, and no two cell states in B~c have the same signature.
Since sig(~c1) = iV = sig(~c2), we get ~s −~c1 = ~s −~c2. So
~c1 = ~c2, which is not true. So B~c1

∩ B~c2
= ∅.

We now present a specific code construction.

Construction 5 Let~a = (1, 1, · · · , 1) and~b = (1, 2, · · · , n).
Then, use Construction 2 to build a t-error-scrubbing code C.

Theorem 6 Let C be the t-error-scrubbing code of Construc-
tion 5. Its density is

2b n(n+1)
2(2n+1) c

tn(n + 1)
= Θ(

1
tn

),

which is asymptotically optimal.

Proof: Let V and Ci be as defined in Construction 2.
Then for the code C of Construction 5, V = 2n + 1. A
cell state (c1, c2, · · · , cn) is in Ci if and only if ∑

n
j=1 jc j ≡

i(2n + 1) mod tn(n+1)
2 . Whatever values c2, c3, · · · , cn take,

the above equation produces c1 ≡ i(2n + 1)−∑
n
j=2 jc j mod

tn(n+1)
2 . So limq→∞ |Ci |

qn = 2
tn(n+1) . So the density of C is

limq→∞ |C|
qn = limq→∞ |⋃b n(n+1)

2 /(2n+1)c−1
i=0 Ci |

qn = b n(n+1)
2(2n+1) c ·

2
tn(n+1) = Θ(1

tn).
To prove that the density of C is asymptotically optimal (up

to a constant ratio), it is sufficient to show that for any t-error-
scrubbing code C ′, |B~c| = Ω(tn) for any codeword ~c ∈ C ′.
For i = 1, 2, · · · , n, let ~ei ∈ ε be the vector where the i-th
element is 1 and all other elements are 0. Let ~s0 = ~c; for i =

33

1, 2, · · · , t− 1, let~si = f (~si−1 +~e1). For i = 0, 1, · · · , t− 1,
let Si = {~si +~e j | 1 ≤ j ≤ n}. It is simple to see that ∀ i,
Si ⊆ B~c; also, ∀ i 6= j, Si ∩ S j = ∅ (because the cell states
in Si and S j have different values in terms of the summation
of cell levels). So |B~c| ≥ ∑

t−1
i=0 |Si| = tn = Ω(tn).

We can choose different values for the vector ~a =
(a1, a2, · · · , an) to further increase the code’s density. The
density shown in the above theorem is upper bounded by
1/t(2n + 1). The following theorem shows that the code den-
sity can reach this value through a different set of parameters.
The tradeoff is to increase some cell levels by more than one
in a scrubbing operation. We skip the proof of the following
theorem due to its similarity to the previous analysis.

Theorem 7 Let W be the smallest integer such that W ≥
n(n+1)

2 and W is a multiple of 2n + 1. There exists an integer
vector ~a = (a1, a2, · · · , an) such that ∑

n
i=1 iai = W and ∀ i,

ai = 1 or 2. Let~b = (1, 2, · · · , n). With the above parameter
vectors ~a and~b, we can use Construction 2 to build a t-error-
scrubbing code C. The density of C is 1

t(2n+1) .

The above codes are for n ≥ 4. When n = 1, 2, 3, we can
build t-error-scrubbing codes of density 1

t+2 , 1
3t+2 and 1

7t ,
respectively. We summarize them with the following theorem.

Theorem 8 When n = 1, 2, 3, there exist t-error-scrubbing
codes of density 1

t+2 , 1
3t+2 and 1

7t , respectively.

Proof: The proof is constructive. We skip the analysis
for n = 1 due to its simplicity. (Its codewords are cell
levels that are multiples of t + 2.) When n = 2, let the
code C = {(c1, c2) | c1 + 2c2 ≡ 0 mod (3t + 2)}. When
n = 3, let the code C = {(c1, c2, c3) | c1 + 2c2 + 4c3 ≡ 0
mod 7t}. For both codes, given a codeword (c1, c2) or
(c1, c2, c3) in C, for i = 0, 1, · · · , t − 1, call the cell state
(c1 + i, c2 + i) or (c1 + i, c2 + i, c3 + i) the “i-shift” of the
codeword. The decoding sphere of every codeword consists of
the cell states within L1 distance one from one of the t shifts
of the codeword. The scrubbing function f : Sn,∞ → Sn,∞
is defined as follows. If a cell state ~s is at L1 distance one
from the i-shift of a codeword for some i ∈ {0, 1, · · · , t− 1}
and that i-shift is above ~s, then f (~s) equals the i-shift of that
codeword. If ~s is at L1 distance one from the i-shift of a
codeword for some i ∈ {0, 1, · · · , t − 2} and ~s is above that
i-shift, then f (~s) equals the (i + 1)-shift of that codeword. If
neither of the above two cases is true, then f (~s) = ~s. It is
not difficult to verify that the decoding spheres of codewords
do not intersect. In fact, for both codes, the decoding spheres
form a perfect packing in the L1-metric space of dimension
n. It is not difficult to see that the densities of the two codes
are 1/(3t + 2) and 1/7t, respectively.

Construction 2 can be generalized to correct other types of
errors, including asymmetric errors, errors of large L1-metric
sizes, etc., by adjusting the parameters. Due to the space limit,
we skip the details.

The t-error-scrubbing codes can correct errors whose to-
tal size (in the L1 metric) is up to t. Let us compare
them to conventional error-correcting codes that can cor-
rect errors of the same size. For a conventional code, the
decoding sphere for a codeword (c1, c2, · · · , cn) is B =
{(s1, s2, · · · , sn) | ∑

n
i=1 |si − ci| ≤ t}. Since |B| = Ω(nt),

by the sphere-packing bound, the density of a conventional
error-correcting code is O(1

nt). The density of a t-error-
scrubbing code, Θ(1

tn), can be substantially better.
When q is finite, some codewords may not be able to scrub t

errors because their cell levels are too close to the maximum
value q − 1. In practice, the memory can read cells to see
how close they are to the limit of decodability, and adaptively
schedule block erasures for refreshing codewords.

IV. MODULAR CODES FOR LIMITED-MAGNITUDE ERRORS

In flash memories, errors in cell levels can be caused by
several mechanisms, including read disturbs, write disturbs,
charge leakage, etc. [1] They often change the cell levels in
one direction more significantly than the other. In this section,
we consider a more general form of errors, where at most
x ≤ n cell levels can have errors between two scrubbing
operations, and the errors make every cell level decrease by
at most dmin and increase by at most dmax. That is, the
error set is ε = {(e1, e2, · · · , en) | ei ∈ {−dmin,−dmin +
1, · · · , dmax} for all i; |{i|ei 6= 0}| ≤ x}. The error set
studied in the previous section is a special case with x = 1
and dmin = dmax = 1. For simplicity, we assume q → ∞.
The case of finite q can be processed the same way as before.

We first present a t-error-scrubbing code construction of its
general form based on the modular technique. The modular
technique has been proposed in [2], where strong codes for
correcting asymmetric limited-magnitude errors have been
presented. In this section, we use the modular technique for
error-scrubbing coding.

Construction 9 (MODULAR ERROR-SCRUBBING CODE)
Build a t-error-scrubbing code C as follows. Let ` = dmin +

dmax + 1. Let D ⊆ {0, 1, · · · , `− 1}n be an error-correcting
code of alphabet {0, 1, · · · , ` − 1} and length n, which can
correct x errors. (For code D, an error is the distortion of one of
its n symbols.) Then, a cell state~c is a codeword in C if and only
if there exists~s ∈ D and non-negative integers a1, a2, · · · , an
and b such that min{a1, a2, · · · , an} = 0 and ~c = ~s + ` ·
(a1, a2, · · · , an) + b · (t`, t`, · · · , t`).

The scrubbing function f : Sn,∞ → Sn,∞ is defined as
follows. Let~s = (s1, s2, · · · , sn) ∈ Sn,∞ be any cell state. If
there exists a codeword~c ∈ C, an integer i ∈ {0, 1, · · · , t− 1}
and an error ~e ∈ ε such that ~s = ~c + i · (`, `, · · · , `) +~e and
~c + i · (`, `, · · · , `) > ~s, then f (~s) = ~c + i · (`, `, · · · , `).
If there exists a codeword ~c = (c1, c2, · · · , cn) ∈ C, an
integer i ∈ {0, 1, · · · , t − 2} and an error ~e ∈ ε such that
~s = ~c + i · (`, `, · · · , `) + ~e and s j > c j + i` for some
j ∈ {1, 2, · · · , n}, then f (~s) = ~c + (i + 1) · (`, `, · · · , `).
If~s belongs to neither of the above two case, then f (~s) =~s.

34

We now show that the code built by Construction 9 is a
t-error-scrubbing code.

Theorem 10 Let C be the code of Construction 9. Then, for
any two codewords~c1 and~c2 of C, we have B~c1

∩ B~c2
= ∅.

Proof: Let ~c1 = ~s1 + ` · (a1, a2, · · · , an) + b ·
(t`, t`, · · · , t`) and ~c2 = ~s2 + ` · (a′1, a′2, · · · , a′n) + b′ ·
(t`, t`, · · · , t`). Here ~s1,~s2, ai , a′i , b, b′ are defined the way
as in Construction 9. Without loss of generality (WLOG),
assume that a j1 = a′j2 = 0. For every cell state ~v =
(v1, v2, · · · , vn), define its “signature” as sig(~v) = (v1
mod `, v2 mod `, · · · , vn mod `). Then sig(~c1) =~s1 and
sig(~c2) =~s2. To prove B~c1

∩ B~c2
= ∅, consider three cases.

• CASE ONE: sig(~c1) 6= sig(~c2). Let ~v be a cell state in
B~c1

. Then, ~v = ~c1 + i · (`, `, · · · , `) +~e for some i ∈
{0, 1, · · · , t − 1} and ~e ∈ ε. So sig(~v) = sig(~s1 +~e) is
a vector in {0, 1, · · · , ` − 1}n that is within Hamming
distance x from ~s1. Since D is an error-correcting code
that corrects any x errors, sig(~v) cannot be any vector
within Hamming distance x from ~s2. So ~v /∈ B~c2

. So
B~c1

∩ B~c2
= ∅.

• CASE TWO: sig(~c1) = sig(~c2), and b 6= b′. WLOG,
assume that b < b′. In this case, let ~s1 = ~s2 =
(s1, s2, · · · , sn). Then for any cell state in B~c1

, its j1-
th element is at most s j1 + bt` + (t − 1)` + dmax <
s j1 + b′t`− dmin, while the j1-th element of a cell state in
B~c2

is at least s j1 + a′j1` + b′t`− dmin. So B~c1
∩ B~c2

= ∅.
• CASE THREE: sig(~c1) = sig(~c2), b = b′, and

there exists some j3 such that a j3 6= a′j3 . WLOG,
assume that a j3 < a′j3 . In this case, let ~s1 =
~s2 = (s1, s2, · · · , sn). Let (d1, d2, · · · , dn) =
~s1 + ` · (a1, a2, · · · , an) + b · (t`, t`, · · · , t`) + α ·
(`, `, · · · , `) + ~e1 be a cell state in B~c1

, and let
(d′1, d′2, · · · , d′n) = ~s1 + ` · (a′1, a′2, · · · , a′n) + b ·
(t`, t`, · · · , t`) + α′ · (`, `, · · · , `) +~e2 be a cell state
in B~c2

. Here α,α′ ∈ {0, 1, · · · , t − 1}, and ~e1 =
(β1, β2, · · · , βn), ~e2 = (β′

1, β′
2, · · · , β′

n) are two errors
in ε. Consider two subcases.

– SUBCASE ONE: a j3 +α 6= a′j3 +α′. WLOG, assume
that a j3 + α < a′j3 + α′. Then, d j3 = s j3 + bt` +
(a j3 + α)` + β j3 ≤ s j3 + bt` + (a′j3 + α′ − 1)` +
dmax < s j3 + bt` + (a′j3 +α′)`− dmin ≤ d′j3 .

– SUBCASE TWO: a j3 +α = a′j3 +α′. Since a j3 < a′j3 ,
we get α > α′. Then, d j2 = s j2 + bt`+(a j2 +α)`+
β j2 ≥ s j2 + bt` + (α′ + 1)`− dmin > s j2 + bt` +
α′` + dmax ≥ d′j2 .

So in both subcases, (d1, d2, · · · , dn) 6= (d′1, d′2, · · · , d′n).
Therefore, B~c1

∩ B~c2
= ∅. The theorem is proved.

Theorem 11 Let C be the t-error-scrubbing code of Construc-
tion 9. Let D be the x-error-correcting code used in Construc-
tion 9. Let ` = dmin + dmax + 1. Then, the density of C is |D|

t`n .

Proof: For every cell state ~v = (v1, v2, · · · , vn), define
its “signature” as sig(~v) = (v1 mod `, v2 mod `, · · · , vn
mod `). For every codeword ~c ∈ C, we call ~c + i ·
(`, `, · · · , `) the i-shift of ~c. Then the 0-shift, 1-shift, · · · ,
(t − 1)-shift of ~c are all in B~c. Let ~d = (d1, d2, · · · , dn) be
a codeword of D. The density of cell states of signature ~d –
defined as the number of such cell states divided by qn – is
1/`n. We now show that every cell state of signature ~d must be
the i-shift of a codeword of C for some i ∈ {0, 1, · · · , t− 1}.

Let ~s = (d1 + k1`, d2 + k2`, · · · , dn + kn`) be a gen-
eral cell state of signature ~d. Let j be the integer in
{1, 2, · · · , n} such that k j = min{k1, k2, · · · , kn}. So ~s =
(d1 +(k1 − k j)`+ k j`, d2 +(k2 − k j)`+ k j`, · · · , dn +(kn −
k j)` + k j`) = (d1 + (k1 − k j)` + b k j

t ct` + (k j mod t)`, d2 +

(k2 − k j)` + b k j
t ct` + (k j mod t)`, · · · , dn + (kn − k j)` +

b k j
t ct` + (k j mod t)`). So ~s is the (k j mod t)-shift of

the codeword (d1 + (k1 − k j)` + b k j
t ct`, d2 + (k2 − k j)` +

b k j
t ct`, · · · , dn + (kn − k j)` + b k j

t ct`) ∈ C.
Since every codeword of C has exactly t shifts in its

decoding sphere, the density of C is |D|/t`n.
Let ` = dmin + dmax + 1. By the sphere-packing bound,

the density of a conventional error-correcting code that can
correct t errors in the error set ε is O(1

ntx(`−1)tx). So when
|D|
`n = Ω(1

nx(`−1)x), the t-error-scrubbing code can signifi-
cantly outperform the conventional code. For example, assume
n = 2m − 1, dmax = 1, dmin = 0, x = 1 and D is the
(2m − 1, 2m − m − 1) Hamming code. Then the density of
the t-error-scrubbing code is |D|

t`n = 1
t·2m = 1

t(n+1) , which is
asymptotically optimal in t and can be much higher than the
density of a conventional code, O(1

nt).

V. CONCLUSIONS

In this paper, we present the concept of error-scrubbing
codes for memory scrubbing in multi-level flash memories
without using block erasures. We present two code construc-
tions, and show that error-scrubbing codes can outperform
conventional codes because through the actively adjustment
of cell levels, the decoding sphere size can be minimized.

ACKNOWLEDGMENT

This work was supported in part by the NSF CAREER
Award CCF-0747415 and the NSF grant ECCS-0802107.

REFERENCES

[1] P. Cappelletti, C. Golla, P. Olivo and E. Zanoni (Ed.), Flash memories,
Kluwer Academic Publishers, 1st Edition, 1999.

[2] Y. Cassuto, M. Schwartz, V. Bohossian and J. Bruck, Codes for multilevel
flash memories: Correcting asymmetric limited-magnitude errors, in Proc.
IEEE International Symposium on Information Theory (ISIT), Nice,
France, June 2007, pp. 1176-1180.

[3] A. Jiang, V. Bohossian and J. Bruck, Floating codes for joint information
storage in write asymmetric memories, in Proc. IEEE International
Symposium on Information Theory (ISIT), Nice, France, June 2007, pp.
1166-1170.

[4] A. M. Saleh, J. J. Serrano and J. H. Patel, Reliability of scrubbing
recovery-techniques for memory systems, in IEEE Trans. Reliability, vol.
39, no. 1, pp. 114-122, 1990.

35

