
Optimized Cell Programming for Flash Memories
Anxiao (Andrew) Jiang and Hao Li

Computer Science and Engineering Department
Texas A&M University

College Station, TX 77843, USA
Email: {ajiang,hao}@cse.tamu.edu

Abstract—Flash memory cells use the charge they store to
represent data. The amount of charge injected into a cell is called
the cell’s level. Programming a cell is the process of increasing
a cell’s level to the target value via charge injection, and the
storage capacity of flash memories is limited by the precision
of cell programming. To optimize the precision of the final cell
level, a cell is programmed adaptively with multiple rounds of
charge injection. Due to the high cost of block erasure, when
cells are programmed, their levels are only allowed to increase.
Such a storage medium can be modelled by a Write Asymmetric
Memory model. It is interesting to study how well such storage
media can be programmed.

In this paper, we focus on the programming strategy that op-
timizes the expected precision. The performance criteria consid-
ered here include two metrics that are suitable for the multi-level
cell technology and the rank modulation technology, respectively.
Assuming that the charge-injection noise has a uniform random
distribution, we present an effective algorithm for finding the
optimal programming strategy. The optimal strategy can be used
to program cells efficiently.

I. INTRODUCTION

Flash memories use floating-gate cells to store informa-
tion. Charge (e.g., electrons) can be injected into a cell
using the hot-electron injection mechanism or the Fowler-
Nordheim tunneling mechanism, and the injected charge be-
comes trapped [3]. This is called programming or writing a
cell. The amount of charge in a cell determines its threshold
voltage, which is called its level. The more charge in a cell,
the higher its level. The cell level can be lowered by remov-
ing the stored charge using the Fowler-Nordheim tunneling
mechanism. However, in flash memories, cells are organized
as blocks, each containing about 105 cells. To remove charge
from any cell, the whole block needs to be erased (that
is, all cells in the block have their charge removed), and
then reprogrammed. Block erasures are very costly because
they significantly reduce the longevity and efficiency of flash
memories. Therefore, when a cell is being programmed, the
cell level is only allowed to increase (because lowering the
level would require the costly erasure operation) [3]. The
charge injection process is noisy, so usually multiple rounds
of charge injection are used to shift the cell level monoton-
ically and cautiously toward the target level [1]. In current
flash memories, two or more discrete cell levels are used
to represent data. (Cells with two discrete levels are called
single-level cells, or SLC. Cells with more than two levels
are called multi-level cells, or MLC.) In the rank-modulation
technology proposed recently [10], [11], [12], [14], instead of

using discrete cell levels (of fixed values), the relative order
of cell levels is used to represent data.

Since the cell levels monotonically increase during pro-
gramming, flash memories are a type of Write Asymmetric
Memory [5]. In [2], [4], [5], [6], [8], [9], [10], [13], [15],
coding schemes are studied on how to modify data or correct
errors by only increasing cell levels. It is clearly also interest-
ing to study how to program cells accurately, as the precision
of cell programming determines the storage capacity of flash
memories. In [7], an optimal programming strategy is explored
to achieve the zero-error capacity. The strategy considers the
worst-case performance of cell programming.

In this paper, we focus on the cell programming strategy
that optimizes the expected performance. The performance
criteria considered here include two metrics that are suitable
for the multi-level cell technology and the rank modulation
technology, respectively. Knowing how well cells can be
programmed on average is useful for studying the storage
capacity of cell ensembles. We present an effective algorithm
for finding the optimal programming strategy, which can in
turn be used to program cells efficiently.

II. THE CELL PROGRAMMING PROBLEM

Without loss of generality (w.l.o.g.), we assume that ini-
tially, the cell level is 0. A cell can be programmed using at
most t rounds of charge injection. The objective is to make the
final cell level be close to a target value θ ∈ [0,L], where L is
an upper bound determined by the physics of flash memories.
There is a cost C(x) associated with the final cell level x, and
the function C(x) monotonically increases with |x−θ|. Two
forms of C(x) will be introduced later.

We assume that in each round of charge injection, the flash
memory can choose the aimed increment of the cell level to be
iΔ for some i ∈ {0, 1, 2, 3, · · · }. Here Δ models the minimum
resolution of the programming circuit. Let ε ∈ (0, 1) and
δ > 0 be two parameters. To model the noisy charge-
injection process, we assume that if the aimed increment of
the cell level is iΔ, the actual increment of the cell level is
randomly distributed in the range [iΔ(1 − ε), iΔ(1 + δ)).1

For simplicity, in this paper, we assume the distribution is
a uniform random distribution. More practical noise models
can be studied in the future.

1The inclusion and exclusion of the boundary values are chosen for
mathematical convenience, and are easy to deal with in practice.

914

978-1-4244-4561-5/09/$25.00 ©2009 IEEE PACRIM’09

In this paper, we consider two families of cost functions.

Definition 1. (COST FUNCTION C(x) FOR MLC AND RANK

MODULATION) In the multi-level cell (MLC) technology, the
final cell level should be close to one of a set of discrete levels.
It is appropriate to define C(x) as

C(x) = |x−θ|p

for some positive integer p.
In the rank modulation technology [10], [11], [12], the ob-

jective is usually to shift the cell level above a certain value θ.
It is appropriate to define C(x) as

C(x) =

{
∞ , if x < θ

(x−θ)p , if x ≥ θ

for some positive integer p.

Let i1Δ, i2Δ, · · · , itΔ denote the aimed increment of the
cell level in the t rounds of charge injection, and let
x1, x2, · · · , xt denote the the actual cell level after each round.
After the j-th round, the flash memory can measure xj and
adaptively choose the aimed level increment i j+1Δ for the
next round. The objective of the cell programming problem is
to find the adaptive strategy of selecting i1, i2, · · · , it such
that the expected cost of the final cell level, E(C(xt)), is
minimized. (Here E(x) is the expectation of the random
variable x.)

III. ADAPTIVE CELL PROGRAMMING

Given that the cell level is xj after j < t rounds of charge
injection, how to choose the aimed level increment i j+1Δ

of the next round? We define two functions, A(x; i) and
α(x; i; j), for the computation.

Definition 2. (FUNCTIONS A(x; i) AND α(x; i; j))
A(x; i) is the minimum achievable expected cost of the final

cell level given that (1) the current cell level is θ + x, and (2)
we can program the cell with i more rounds of charge injection.

α(x; i; j) is the minimum achievable expected cost of the
final cell level given that (1) the current cell level is θ + x, (2)
we can program the cell with i more rounds of charge injection,
and (3) in the first round of the i rounds of charge injection, we
choose the aimed level increment to be jΔ.

It is simple to see that A(x; i) = min j=0,1,2···α(x; i; j).
For the cell programming problem, since the initial cell level
is 0 = θ + (−θ) and t rounds of charge injection can be used,
the objective is to find a strategy that makes the final cell
level’s expected cost be A(−θ; t). During the programming
process, given that the cell level is xj after j < t rounds of
charge injection, the flash memory should adaptively choose
i j+1Δ as the aimed level increment of the (j + 1)-th round
such that i j+1 minimizes the value of α(xj −θ; t− j; i j+1).

The cost function we consider is for MLC or rank modu-
lation, which is shown in Definition 1. Let us compute some
initial values of A(x; i) – particularly, A(x; 1) – for them.

A. When the cost function is for MLC

The cost function for MLC is C(x) = |x − θ|p. For
simplicity, we show how to compute A(x; 1) when p = 2.
The other values of p can be dealt with similarly.

When p = 2, we have

A(x; 1)
= min j=0,1,2··· α(x; 1; j)
= min{ α(x; 1; 0),

min j=1,2,3···
∫ θ+x+ jΔ(1+δ)
θ+x+ jΔ(1−ε)

1
jΔ(ε+δ) · |y−θ|2dy}

= min{ x2,
min j=1,2,3··· 1

jΔ(ε+δ)
∫ x+ jΔ(1+δ)

x+ jΔ(1−ε) y2dy}
= min j=0,1,2··· x2 + jΔ(2 + δ−ε)x + 1

3 j2Δ2(3+
3δ− 3ε + δ2 − δε +ε2)

To see which value of j minimizes the above equation,
define f (j) = x2 + jΔ(2 + δ − ε)x + 1

3 j2Δ2(3 + 3δ −
3ε + δ2 − δε + ε2). Since 0 < ε < 1 and δ > 0,
3 + 3δ − 3ε + δ2 − δε + ε2 > 0, so f (j) is convex. By
setting df (j)

dj = 0, we find that f (j) is minimized when

j = −3x(2+δ−ε)
2Δ(3+3δ−3ε+δ2−δε+ε2) (assuming that j does not have

to be an integer). We can see that the above value for j is
positive if and only if x is negative. Since j actually needs
to be a non-negative integer, we find that to minimize f (j), j
should take the following value j∗:

j∗ =

{
� −3(2+δ−ε)x

2Δ(3+3δ−3ε+δ2−δε+ε2) − 0.5� , if x < 0

0 , if x ≥ 0

Let γ = 2Δ(3+3δ−3ε+δ2−δε+ε2)
3(2+δ−ε) . Then when x < 0, j∗ =

�−x
γ − 0.5�. So for i = 1, 2, · · · , �θ

γ − 1.5�, when x ∈ [−(i +
0.5)γ,−(i− 0.5)γ), we have j∗ = i and

A(x; 1) = x2 + iΔ(2 + δ−ε)x
+ 1

3 i2Δ2(3 + 3δ− 3ε + δ2 − δε +ε2).

Similarly, when x ∈ [−0.5γ, 0), we have j∗ = 0 and
A(x; 1) = x2. When x ∈ [−θ,−(�θ

γ − 0.5� − 0.5)γ), we

have j∗ = �θ
γ − 0.5� and A(x; 1) = x2 + �θ

γ − 0.5�Δ(2 +
δ − ε)x + 1

3 �θ
γ − 0.5�2Δ2(3 + 3δ − 3ε + δ2 − δε + ε2).

When x ≥ 0, we have j∗ = 0 and A(x; 1) = x2.
Therefore, we can partition the domain of x, [−θ, ∞), into
�θ

γ + 0.5� regions, while in each region A(x; 1) is a degree-2
polynomial. So A(x; 1) is piecewise polynomial.

It is not hard to see that when p �= 2, A(x; 1) is also
piecewise polynomial. For simplicity we skip the details.

B. When the cost function is for rank modulation

The cost function for rank modulation is C(x) = ∞ if
x < θ and C(x) = (x − θ)p if x ≥ θ. For simplicity, we
show how to compute A(x; 1) when p = 1. The other values
of p can be dealt with similarly.

We have A(x; 1) = min j=0,1,2···α(x; 1; j). The value of j
that minimizes α(x; 1; j) is the minimum integer that satisfies

915

the constraint θ + x + jΔ(1−ε) ≥ θ, which is j = � −x
Δ(1−ε)�.

So if x < 0, we have

A(x; 1) =
∫ θ+x+� −x

Δ(1−ε) �Δ(1+δ)

θ+x+� −x
Δ(1−ε) �Δ(1−ε)

1
� −x

Δ(1−ε) �Δ(ε+δ) · (y−θ)dy

= x + � −x
Δ(1−ε)�Δ(1 + δ−ε

2)

If x ≥ 0, clearly A(x; 1) = x.
So for i = 1, 2, · · · , � θ

Δ(1−ε)� − 1, when x ∈ [−iΔ(1 −
ε),−(i − 1)Δ(1− ε)), A(x; 1) = x + iΔ(1 + δ−ε

2). When
x ∈ [−θ,−(� θ

Δ(1−ε)� − 1)Δ(1 − ε)), A(x; 1) = x +
� θ

Δ(1−ε)�Δ(1 + δ−ε
2). When x ≥ 0, A(x; 1) = x. So we

can partition the domain of x, [−θ, ∞), into � θ
Δ(1−ε)� + 1

regions, while in each region, A(x; 1) is a linear function. So
A(x; 1) is piecewise polynomial.

It is not hard to see that when p �= 1, A(x; 1) is also
piecewise polynomial. For simplicity we skip the details.

IV. COMPUTING A(x; i) AND α(x; i; j)

When i ≥ 2, we have

A(x; i) = min
j=0,1,2···

α(x; i; j)

and

α(x; i; j) =
∫ x+ jΔ(1+δ)

x+ jΔ(1−ε)

A(y; i− 1)
jΔ(δ +ε)

dy

for j ≥ 1. (We have α(x; i; 0) = A(x; i− 1).)
It will be interesting to find an effective approach to

compute the general functions A(x; i) and α(x; i; j) using
the above recursion. In this paper, we present an efficient
algorithm using the property that they are both piecewise
polynomials. (Note that this property of being piecewise
polynomial has been proved for A(x; 1). It will be shown
that it holds for A(x; i) and α(x; i; j) with i ≥ 2, too.)

Let us define some notations. Given integers i, j, let pi, j and

bi, j(−1) , bi, j(0) , bi, j(1) , · · · , bi, j(pi, j)

be the numbers with the following properties: (1) bi, j(−1) >
bi, j(0) > bi, j(1) > bi, j(2) > · · · > bi, j(pi, j); (2)
bi, j(−1) = ∞, bi, j(0) = 0, bi, j(pi, j) = −θ; (3) for
k = 0, 1, · · · , pi, j, the function α(x; i; j) is a polynomial of x
when x ∈ [bi, j(k), bi, j(k− 1)).

Given an integer i ≥ 1, let qi and

Bi(−1) , Bi(0) , Bi(1) , · · · , Bi(qi)

be the numbers with the following properties: (1) Bi(−1) >
Bi(0) > Bi(1) > · · · > Bi(qi); (2) Bi(−1) = ∞, Bi(0) = 0,
Bi(qi) = −θ; (3) for k = 0, 1, · · · , qi, the function A(x; i) is
a polynomial of x when x ∈ [Bi(k), Bi(k− 1)).

A. Computing α(x; i; j) with i ≥ 2
We first show how to compute α(x; i; j) with i ≥ 2.
Given a real number x ∈ [−θ, ∞) and an integer i ≥ 1,

we call the unique integer j ∈ {0, 1, · · · , qi} such that

x ∈ [Bi(j) , Bi(j− 1))

the “ (i)-index of x”, and denote it by

index(i; x).

Note that index(i; x) decreases as x increases. Let us use
I(i; x; j) to denote the set of (i)-indices of the real numbers
in the interval

[x + jΔ(1−ε) , x + jΔ(1 + δ)).

We get

I(i; x; j) = { index(i; x + jΔ(1−ε));
index(i; x + jΔ(1−ε))− 1;
index(i; x + jΔ(1−ε))− 2;
· · ·
limν→0+ index(i; x + jΔ(1 + δ)− ν) }

The last element in the above set is a limit, because the
interval [x + jΔ(1 − ε) , x + jΔ(1 + δ)) does not contain
the boundary value x + jΔ(1 + δ).

Let us define the set Si, j (for i ≥ 2) as

Si, j = { s ∈ (−θ, 0)| either s = Bi−1(k)− jΔ(1−ε)
for some 0 ≤ k ≤ qi−1 − 1, or
s = Bi−1(k)− jΔ(1 + δ)
for some 0 ≤ k ≤ qi−1 − 1}.

Then we have the following lemma.

Lemma 3. We denote the |Si, j| numbers in the set Si, j by

s1, s2, · · · , s|Si, j |
such that s1 > s2 > · · · > s|Si, j |. Also, let s0 = 0 and
s|Si, j |+1 = −θ. Then, for k = 1, 2, · · · , |Si, j|+ 1, for any two
numbers x1, x2 in the interval (sk, sk−1),

I(i− 1; x1; j) = I(i− 1; x2; j).

Proof: W.l.o.g., assume that x1 < x2. We just need to
prove that (1)

index(i− 1; x1 + jΔ(1−ε)) = index(i− 1; x2 + jΔ(1−ε))

and (2)

limν→0+ index(i− 1; x1 + jΔ(1 + δ)− ν)
= limν→0+ index(i− 1; x2 + jΔ(1 + δ)− ν).

Let us prove condition (1) by contradiction. Assume that
index(i − 1; x1 + jΔ(1 − ε)) �= index(i − 1; x2 + jΔ(1 −
ε)). Then there must be some Bi−1(k′) such that

x1 + jΔ(1−ε) < Bi−1(k′) ≤ x2 + jΔ(1−ε).

So
x1 < Bi−1(k′)− jΔ(1−ε) ≤ x2.

916

Since

Bi−1(k′)− jΔ(1−ε) ∈ Si, j = {s1, s2, · · · , s|Si, j |},

x1 and x2 cannot be in the same interval (sk, sk−1). That is a
contradiction. So index(i− 1; x1 + jΔ(1−ε)) = index(i−
1; x2 + jΔ(1−ε)).

Condition (2) can be proved similarly. For simplicity, we
skip the details.

Theorem 4. We denote the |Si, j| numbers in the set Si, j by

s1, s2, · · · , s|Si, j |
such that s1 > s2 > · · · > s|Si, j |. Also, let s0 = 0 and
s|Si, j |+1 = −θ. Then, for k = 1, 2, · · · , |Si, j|+ 1, the function
α(x; i; j) is a polynomial of x for x ∈ (sk, sk−1). Furthermore,
it can be computed as follows. Let

u = lim
ν→0+

index(i− 1; sk + jΔ(1−ε) + ν),

and let

v = lim
ν→0+

index(i− 1; sk−1 + jΔ(1 + δ)− ν).

Then,

α(x; i; j) =
∫ Bi−1(u−1)

x+ jΔ(1−ε)
A(y;i−1)
jΔ(ε+δ) dy+

∑u−1
k=v+1

∫ Bi−1(k−1)
Bi−1(k)

A(y;i−1)
jΔ(ε+δ) dy+∫ x+ jΔ(1+δ)

Bi−1(v)
A(y;i−1)
jΔ(ε+δ) dy

Proof: We know that

α(x; i; j) =
∫ x+ jΔ(1+δ)

x+ jΔ(1−ε)

A(y; i− 1)
jΔ(ε + δ)

dy.

Since x ∈ (sk, sk−1), by Lemma 3, index(i − 1; x +
jΔ(1 − ε)) = limν→0+ index(i − 1; sk + jΔ(1 − ε) +
ν) = u and limν→0+ index(i − 1; x + jΔ(1 + δ) − ν) =
limν→0+ index(i − 1; sk−1 + jΔ(1 + δ) − ν) = v. So in
the above integration, we can partition the domain for y into
smaller intervals, in each of which the function A(y; i − 1)
is a polynomial of y. So the way to compute α(x; i; j) in this
theorem is correct.
A(y; i − 1) is a polynomial of y for y ∈

[Bi−1(u), Bi−1(u− 1)) ⊇ [x + jΔ(1−ε), Bi−1(u− 1)) and
for y ∈ [Bi−1(v), Bi−1(v− 1)) ⊇ [Bi−1(v), x + jΔ(1 + δ)).

Also note that the value of ∑u−1
k=v+1

∫ Bi−1(k−1)
Bi−1(k)

A(y;i−1)
jΔ(ε+δ) dy

is independent of x ∈ (sk, sk−1). Since polynomials are
closed under integration and summation, we get that α(x; i; j)
is a polynomial of x for x ∈ (sk, sk−1).

The above theorem shows that α(x; i; j) is an integration
of A(x; i − 1). It is easy to see that if A(x; i − 1) is a
piecewise polynomial of degree d, then α(x; i; j) is a piecewise
polynomial of degree at most d + 1. As we will see, A(x; i)
is also a piecewise polynomial of degree at most d + 1.

Corollary 5. We denote the |Si, j| numbers in the set Si, j by
s1, s2, · · · , s|Si, j | such that s1 > s2 > · · · > s|Si, j |. Also,

let s−1 = ∞, s0 = 0 and s|Si, j |+1 = −θ. Then, for k =
0, 1, 2, · · · , |Si, j|+ 1, the function α(x; i; j) is a polynomial of
x for x ∈ [sk, sk−1).

Proof: Since the integration of a finite function is a con-
tinuous function, we get α(sk; i; j) = limν→0+ α(sk +ν; i; j).
With Theorem 4, it is not hard to see that the conclusion holds.

With the algorithm in Theorem 4, we can partition the
domain of x, [−θ, ∞), into the intervals

[−θ, s|Si, j |), [s|Si, j|, s|Si, j |−1), · · · , [s1, 0), [0, ∞)

and compute the polynomial α(x; i; j) for each interval. To
simplify the future computation, if the polynomials in adjacent
intervals happen to be the same, we merge them into one
interval.

B. Computing A(x; i) with i ≥ 2
In Section III, we have shown how to compute A(x; 1). We

now show how to compute A(x; i) for i ≥ 2.
It is easy to see that when j ≥ � −x

Δ(1−ε)�, α(x; i; j) ≥
α(x; i; � −x

Δ(1−ε)�) (because setting the aimed level increment
too high only increases the expected cost of the final cell level).
So when i ≥ 2, we have

A(x; i) =
� −x

Δ(1−ε) �
min
j=0

α(x; i; j) (1)

We first use the algorithm in Theorem 4 to compute the
functions

α(x; i; 0) , α(x; i; 1), · · · ,α(x; i; � θ

Δ(1−ε)
�).

(Note that when x ∈ [−θ, 0), � −x
Δ(1−ε)� ≤ � θ

Δ(1−ε)�.) Let Si, j

be as defined before. And denote the |Si, j| numbers in the set
Si, j by

si, j
1 , si, j

2 , · · · , si, j
|Si, j |

such that 0 > si, j
1 > si, j

2 > · · · > si, j
|Si, j | > −θ. We know that

α(x; i; j) is a polynomial of x for x in each of the following
intervals

[−θ, si, j
|Si, j |) , [si, j

|Si, j | , si, j
|Si, j |−1) , · · · , [si, j

1 , 0) , [0, ∞)

Given the integer i ≥ 2, let us define the set P as

P =
� θ

Δ(1−ε) �⋃
j=0

{si, j
1 , si, j

2 , · · · , si, j
|Si, j |}

Let us alternatively denote the elements in P by

p1, p2, · · · , p|P|
such that

p1 > p2 > · · · > p|P|.

Also let p−1 = ∞, p0 = 0 and p|P|+1 = −θ. We naturally
have the following conclusion.

917

Lemma 6. For k = 0, 1, 2, · · · , |P|+ 1, the function α(x; i; j)
is a polynomial of x for x ∈ [pk , pk−1). (Here i ≥ 2 and 0 ≤
j ≤ � θ

Δ(1−ε)�.)
With the above observation, we can easily compute the

function A(x; i) for x in each interval [pk, pk−1), where
k = 0, 1, · · · , |P|+ 1. That is because by Equation 1, A(x; i)
is the minimum of at most � θ

Δ(1−ε)�+ 1 known polynomials.
The method of computation should be clear, so we skip its
details. The only thing to note is that if these polynomials
intersect, the interval [pk , pk−1) may need to be partitioned
into more smaller intervals, such that in each smaller interval,
A(x; i) is still a polynomial of x.

As before, after the above computation, if the polynomials
for A(x; i) in adjacent intervals happen to be the same, we
merge them into one interval for a more succinct representa-
tion.

V. OPTIMAL CELL PROGRAMMING STRATEGY

In this section, we describe the cell-programming strategy
that minimizes the expected cost of the final cell level. Recall
that at most t rounds of charge injection can be used for
programming a cell. We use the algorithm described before
to compute the functions A(x; i) for i = 1, 2, · · · , t, and
compute the functions α(x; i; j) for i = 1, 2, · · · , t and
j = 0, 1, 2, . . . , � θ

Δ(1−ε)�. These functions are then stored in
the storage system, to be looked up during the actual cell-
programming process.2

For i = 1, 2, · · · , t, let xi denote the actual cell level
after the i-th round of charge injection. Let x0 = 0 denote
the initial cell level. The objective of cell programming is
to minimize the expectation of C(xt). The optimal cell-
programming strategy is as follows:

For i = 0, 1, · · · , t − 1, set the aimed level increment in
the (i + 1)-th round of charge injection to be j∗Δ such that

α(xi −θ; t− i; j∗) = A(xi −θ; t− i).

It should be noted that once the functions A(x; i) and
α(x; i; j) are stored, it is very efficient to look them up for
the actual programming of cells. Let us now analyze the time
complexity of computing these functions. For simplicity, we
use the cost function C(x) = (x − θ)2 for the multi-level
cell technology as an example, but the results can be easily
extended for both general cost functions in Definition 1.

When C(x) = (x−θ)2, the function A(x; 1) is a degree-
2 polynomial of x in O(θ

Δδ) intervals. By induction (for
simplicity we only present the conclusion and skip the detailed
analysis), for i = 2, 3, · · · , t and j = 0, 1, · · · , � θ

Δ(1−ε)�,
the function α(x; i; j) is a degree-(i + 1) polynomial of
x in O(1−ε

δ (2θ
Δ(1−ε))

i−1(θ
Δ(1−ε))

2(i−2)i!) intervals; for i =
2, 3, · · · , t, the functionA(x; i) is a degree-(i + 1) polynomial
in O(θ

Δδ (2θ
Δ(1−ε))

i−1(θ
Δ(1−ε))

2(i−1)(i + 1)!) intervals. So the
overall time complexity of computing all the functions is

2Since θ ≤ L, in the above computation, we let θ = L. Functions A(x; i)
and α(x; i; j) computed this way can be used for any θ ≤ L.

−6 −5 −4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

x

co
st

A(x;1)
A(x;2)
A(x;3)
A(x;4)
A(x;5)

Fig. 1. The functions A(x; 1), A(x; 2), A(x; 3), A(x; 4) and A(x; 5). Here
the cost function is for MLC, and Δ = 1,ε = 0.4, δ = 0.6.

O(1−ε
δ (2L3

Δ3(1−ε)3)t(t + 1)!). So when the number of rounds of
charge injection t is a constant, Δ is not arbitrarily small and
ε is not arbitrarily close 1, the complexity is upper bounded
by a polynomial of the parameters. We note that the above
complexity is derived based on a very pessimistic analysis.
The actual complexity is usually (significantly) lower.

VI. NUMERICAL COMPUTATION

We demonstrate the numerical computation of the functions
A(x; i) and α(x; i; j). We consider two cases for the cost
function: for MLC, and for rank modulation (see Definition 1).

A. Multi-level Cells

For MLC, we set the cost function as

C(x) = (x−θ)2

and set the parameters as Δ = 1,ε = 0.4, δ = 0.6.
The function A(x; i) is shown in Fig. 1, for x ∈ [−6, 1)

and i = 1, 2, · · · , 5. We can see that A(x; i) is piecewise
polynomial, and it monotonically decreases when i increases
(because more rounds of charge injection leads to more ac-
curate programming). We can also see that A(x; i) converges
quickly as i increases.

A(x; 3)
[-6,-5.56) 23.9 + 11.2x + 1.76x2 + 0.0917x3

[-5.56,-5.49) 16.4 + 8.37x + 1.43x2 + 0.0815x3

[-5.49,-5.39) 24.9 + 12.7x + 2.16x2 + 0.122x3

[-5.39,-4.76) 14.3 + 8.76x + 1.8x2 + 0.122x3

[-4.76,-4.18) 7.66 + 4.6x + 0.924x2 + 0.0611x3

[-4.18,-4.16) 15.5 + 10.6x + 2.42x2 + 0.183x3

[-4.16,-3.79) 8.84 + 5.8x + 1.27x2 + 0.0917x3

[-3.79,-3.77) 0.948 + 1.63x + 0.722x2 + 0.0917x3

[-3.77,-3.56) 1.55 + 0.771x + 0.107x2

[-3.56,-3.42) −6.75− 6.21x− 1.85x2 − 0.183x3

[-3.42,-3.39) −1.22− 0.743x− 0.1x2 − 1.49e− 08x3

[-3.39,-2.59) 5.91 + 5.57x + 1.76x2 + 0.183x3

[-2.59,-2.19) 7.1 + 7.92x + 2.97x2 + 0.367x3

[-2.19,-1.82) 1.84 + 3.1x + 1.87x2 + 0.367x3

[-1.82,-1.19) −0.259− 0.413x− 0.1x2

[-1.19,-0.588) 1.29 + 2.2x + x2

[-0.588,1) x2

Fig. 2. The function A(x; 3) for MLC.

918

α(x; 3; 3)
[-6,-5.99) −9.86− 4.78x− 0.761x2 − 0.0407x3

[-5.99,-5.49) 16.4 + 8.37x + 1.43x2 + 0.0815x3

[-5.49,-5.39) 24.9 + 12.7x + 2.16x2 + 0.122x3

[-5.39,-4.76) 14.3 + 8.76x + 1.8x2 + 0.122x3

[-4.76,-4.13) 7.66 + 4.6x + 0.924x2 + 0.0611x3

[-4.13,-3.99) 5.06 + 2.29x + 0.267x2 − 9.93e− 09x3

[-3.99,-2.99) 12.8 + 8.12x + 1.73x2 + 0.122x3

[-2.99,-2.39) 9.55 + 4.85x + 0.633x2

[-2.39,1) 11.6 + 6.6x + x2

Fig. 3. The function α(x; 3, 3) for MLC.

−6 −5 −4 −3 −2 −1 0 1
0

1

2

3

4

5

6

x

co
st

A(x;1)
A(x;2)
A(x;3)
A(x;4)
A(x;5)

Fig. 4. The functions A(x; 1), A(x; 2), A(x; 3), A(x; 4) and A(x; 5). Here
the cost function is for rank modulation, and Δ = 1,ε = 0.4, δ = 0.6.

As an example, we show the numerical functions of A(x; 3)
and α(x; 3; 3) in Fig. 2 and Fig. 3, respectively, for x ∈
[−6, 1). The left column of the table shows the domain for
x, and the right column shows the polynomial (A(x; 3) or
α(x; 3; 3)) in this domain.

B. Rank Modulation

For rank modulation, we set the cost function as

C(x) =

{
∞ , if x < θ

x−θ , if x ≥ θ

and set the parameters as Δ = 1,ε = 0.4, δ = 0.6.

A(x; 3)
[-6,-5.4) 4.76 + 1.5x + 0.138x2

[-5.4,-5.16) 3.42 + 1x + 0.0917x2

[-5.16,-4.8) 6.47 + 2.18x + 0.206x2

[-4.8,-4.77) 4.89 + 1.52x + 0.138x2

[-4.77,-4.56) 2.04 + 0.853x + 0.122x2

[-4.56,-4.2) 5.22 + 2.25x + 0.275x2

[-4.2,-3.6) 3.6 + 1.48x + 0.183x2

[-3.6,-3.5) 2.41 + 0.817x + 0.0917x2

[-3.5,-3.2) 4.08 + 1.94x + 0.275x2

[-3.2,-3) 2.32 + 1.38x + 0.275x2

[-3,-2.66) 1.08 + 0.56x + 0.138x2

[-2.66,-2.4) 4.02 + 2.76x + 0.55x2

[-2.4,-2.14) 2.43 + 1.44x + 0.275x2

[-2.14,-2.06) 1.25 + 0.89x + 0.275x2

[-2.06,-1.8) 4.77 + 4.3x + 1.1x2

[-1.8,-1.6) 2.99 + 2.32x + 0.55x2

[-1.6,-1.2) 1.23 + 1.22x + 0.55x2

[-1.2,-1.2) −0.88− 1.2x
[-1.2,-0.6) 0.44− 0.1x

[-0.6,0) 1.1 + x
[0,1) x

Fig. 5. The function A(x; 3) for rank modulation.

α(x; 3; 3)
[-6,-5.82) −1.99− 0.76x− 0.0458x2

[-5.82,-5.4) 1.64 + 0.487x + 0.0611x2

[-5.4,-4.8) 5.21 + 1.81x + 0.183x2

[-4.8,-4.56) 2.04 + 0.853x + 0.122x2

[-4.56,-4.2) 5.22 + 2.25x + 0.275x2

[-4.2,-3.6) 3.6 + 1.48x + 0.183x2

[-3.6,-3.26) 2.41 + 0.817x + 0.0917x2

[-3.26,-3) 5.35 + 2.61x + 0.367x2

[-3,-2.4) 3.7 + 1.51x + 0.183x2

[-2.4,-1.8) 2.64 + 0.633x
[-1.8,1) 3.3 + x

Fig. 6. The function α(x; 3, 3) for rank modulation.

The function A(x; i) is shown in Fig. 4, for x ∈ [−6, 1)
and i = 1, 2, · · · , 5. Again, we see that A(x; i) is piecewise
polynomial, it monotonically decreases with i, and it converges
quickly with i. For illustration, we also show the numerical
functions of A(x; 3) and α(x; 3; 3) in Fig. 5 and Fig. 6,
respectively, for x ∈ [−6, 1).

VII. CONCLUSIONS

To learn and achieve the storage capacity of flash memories,
it is necessary to understand how to program cells accu-
rately. Based on the iterative and monotonic cell-programming
method, a cell-programming strategy is presented in this paper
that optimizes the expected performance.

ACKNOWLEDGMENT

This work was supported in part by the NSF CAREER
Award CCF-0747415 and the NSF grant ECCS-0802107.

REFERENCES

[1] A. Bandyopadhyay, G. Serrano and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades using
a predictive method,” in Proc. IEEE International Symposium on Circuits
and Systems, 2005, pp. 2148-2151.

[2] V. Bohossian, A. Jiang and J. Bruck, “Buffer codes for asymmetric multi-
level memory,” in Proc. IEEE ISIT, 2007, pp. 1186-1190.

[3] P. Cappelletti, C. Golla, P. Olivo and E. Zanoni (Ed.), Flash memories,
Kluwer Academic Publishers, 1st Edition, 1999.

[4] H. Finucane, Z. Liu and M. Mitzenmacher, “Designing floating codes for
expected performance,” in Proc. 46th Annual Allerton Conference, 2008.

[5] A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint information
storage in write asymmetric memories,” in Proc. IEEE Int. Symp. on
Information Theory (ISIT), 2007, pp. 1166-1170.

[6] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” in Proc.
IEEE ISIT, 2008, pp. 1741-1745.

[7] A. Jiang and J. Bruck, “On the capacity of flash memories,” in Proc. Int.
Symp. Inform. Theory and Its Appl. (ISITA), 2008, pp. 94-99.

[8] A. Jiang, M. Langberg, M. Schwartz and J. Bruck, “Universal rewriting
in constrained memories,” to appear in Proc. IEEE ISIT, 2009.

[9] A. Jiang, H. Li and Y. Wang, “Error scrubbing codes for flash memories,”
in Proc. Canadian Workshop on Inform. Theory (CWIT), 2009, pp. 32-35.

[10] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation
for flash memories,” in Proc. IEEE ISIT, 2008, pp. 1731-1735.

[11] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation
for flash memories,” in IEEE Transactions on Information Theory, vol.
55, no. 6, pp. 2659-2673, June 2009.

[12] A. Jiang, M. Schwartz and J. Bruck, “Error-correcting codes for rank
modulation,” in Proc. IEEE International Symposium on Information
Theory (ISIT), 2008, pp. 1736-1740.

[13] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,”
Information and Control, vol. 55, pp. 1-19, 1982.

[14] Z. Wang, A. Jiang and J. Bruck, “On the capacity of bounded rank
modulation for flash memories,” to appear in Proc. IEEE International
Symposium on Information Theory (ISIT), Seoul, Korea, June-July 2009.

[15] E. Yaakobi, A. Vardy, P. H. Siegel and J. K. Wolf, “Multidimensional
flash codes,” in Proc. 46th Annual Allerton Conference, 2008.

919

