ISIT2007, Nice, France, June 24 — June 29, 2007

Buffer Coding for Asymmetric Multi-Level Memory

Vasken Bohossian
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125
vincent@paradise.caltech.edu

Abstract— Certain storage media such as flash memories use
write-asymmetric, multi-level storage elements. In such media,
data is stored in a multi-level memory cell the contents of which
can only be increased, or reset. The reset operation is expensive
and should be delayed as much as possible. Mathematically, we
consider the problem of writing a binary sequence inte write-
asymmetric g-ary cells, while recording the last r bits written. We
want to maximize ¢, the number of possible writes, hefore a reset
is needed. We introduce the term Buffer Code, to describe the
solution to this preblem. A buffer code is a code that remembers
the r most recent values of a variable. We present the construction
of a single-cell (n = 1) buffer code that can store a bhinary ({ = 2)
variable with ¢+ = LF%-IJI +r— 2 and a universal upper bound to
the number of rewrites that a single-cell buffer code can have: ¢ <
[2= | -r+|log; {[(g—1) mod (I" —1)]+1} |. We also show a binary

1
huffer code with arbitrary n, ¢, r, namely, the code uses 7 g-ary

cells to remember the » most recent values of cne hinary variable.
The code can rewrite the variable t = (¢— 1)(n—2r + 1) +r—1
times, which is asymptotically optimal in g and n. We then extend
the code construction for the case + = 2, and obtain a code that
can rewrite the variable { = (g—1)(n—2)+1 times. When q = 2,
the code is strictly optimal.

[. INTRODUCTION

We study asymmetric g-ary storage cells the content of
which can only be increased or erased (set to 0). The erase
operation is expensive and should be delayed as much as
possible. This model arises, in practice, in the context of flash
memories and similar storage devices that use an isolated
charge in order to record data [1]. Different processes {(e.g.
funneling vs. hot electron injection} are used to increase or
decrease the charge, giving rise to the asymmetry. Without a
scheme such as the cne presented in this paper, the process
of updating stored data requires large blocks of memory to be
reset and rewritien, even if only a small fraction of that data
needs to be updated. We consider the case of a set of g-ary cell
used to record a sequence of dafa bits, while stering the last
bits. Qur goal is to maximize ¢, the number of writes possible,
before the cells needs te be erased. Similar schemes have been
considered in the context of WOM codes, intreduced by Rivest
and Shamir [8] and extensively studied [2] [3] [4] [5] [6] [7]
[8] [9]. WOM codes mainly address the case ¢ = 2: binary
write-asymmetric cells. In this paper we consider arbitrary g.
We also introduce the notion of storing multiple consecutive
values of a variable.

Definition 1 (q-ary storage cell):

A g-ary cell contains an infeger value between 0 and g — 1.

1-4244-1429-6/07/$25.00 (€,2007 IEEE

Anxiao (Andrew} Jiang
Computer Science Department
Texas A & M University
College Station, TX 77843-3112
ajlang @cs.tamu.edun

Jehoshua Bruck
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125
bruck @paradise.caltech.edu

T

+1

Fig. 1. State machine for Example 1. It describes a {1, 4, 1,9 — 1) storage
scheme used to write a binary sequence into a g-ary cell, while storing only
the last bit written. The maximum number of writes is ¢ — 1 corresponding
to the worst case scenario of an altemating sequence of 1s and Os.

When writing a new value into a g-ary cell one must increase
its content, or if that is impossible, set it to 0.

In practice, g-ary cells can be found in flash memeories and
similar storage media [1].

Definition 2 {(n, q,r,t) Buffer Code):

A scheme that allows a sequence of bits to be writfen into
n g-ary cells. At any point of the writing sequence, the last
r bits written can be recovered. The code supperts at most ¢
writes, before the cells need to be reset.

Recording the last r values of a sequence is useful in
practice for the implementation of certain data structures such
as stacks, also in the context of memory pages for which the
state of the RAM is saved to disk at different points in time.
The above definition can be generalized to the case where [-
ary variables — instead of bits, where { = 2 — are written and
recovered.

In the case of a single cell (i.e. n = 1) the buffer code
can be represented by a table, or in mathematical terms, by a
surjective mapping f, from the set of integers {0,..,¢—1} to
the set of binary vectors of size v, {0,1}".

Fxample 1 {a simple (1,¢,1,¢ — 1) buffer code):

We want to store a single bit of data into a ¢-ary cell, with the
ability (o write as many times as possible. In the description
above, this corresponds to the case: r = 1, a single stored bit.
The soluticn is to encode the single bit as the parity of the
content of the cell. For example, let ¢ = 6:

cellvalue |O [1|2 |3 |4]|35
storedbit | O |1 |0 |1]|0]|1

Notice that if the bit to be stored is the same as the cne already
stored, the content of the cell does not need to be changed.
The number of possible writes is ¢ — 1, correspending to the
worst case scenario of alternating 1 and 0 bits. Figure 1 shows
the state machine used to write the content of the cell. Every

1186

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

ISIT2007, Nice, France, June 24 — June 29, 2007

transition in the input data corresponds (¢ a 41 increment in
the cell value.

In Sectien II we generalize the above example to ¥ > 1.
Section Il shows and upper bound to ¢ for single-cell buifer
codes. Sections IV and V show two asymptofically optimal
multi-cell buffer codes, one being strictly optimal when ¢ = 2.

II. A SINGLE-CELL CONSTRUCTION

In this section we present a (1, ¢, r, t) buffer code and show

that it achieves:
_| 4
t= [?_—IJ +r—-2

In other words, the code allows Ly—q_rj +r—2 bits to be written
into a g-ary cell before it needs to be reset (see Definition 1}.
After every write, the last + bits written can be recovered.

Code Construction 1:
The (1, ¢,r,t) buffer code is defined by a surjective mapping,
fr, from N to {0, 1}". Defined by induction:

fi{z) =2 mod 2
, if z mod 2"+ < 27

(0, f(2))

(L, fr ()

Fraz) =

, otherwise

Here fellow two examples using the above code for cells
of sizes 6 and 12. For each example we show a graphical
representation of the writing (encoding) process, i.e. a state
diagram that defines by how much one needs to increase the
value of the cell, as a function of the current stored bits,
and the new bit being written. We also show a table, used
fo read {decode} the content of the cell, i.e. the mapping f,
mentioned in Construction 1, abeove. Compare the tables of
examples 1 through 3 to gel an idea of the recursive definiticn
of Construction 1.

Example 2 {(1,6,2,3) buffer code):

We want to store 2 bits of data into a 6-ary cell, with the
ability to write 3 times, i.e. after every write, the last 2 bits
are recorded, and can be recovered. Figure 2 shows how fo
increase the value of the cell, as a function of the bit being
written. The starting state is 00. The following table shows
how to recover the last 2 bits, at any point of the writing
process.

cell value 0] 1 2 3 4 5
stored bits || 00 | C1 [11 [10 | 00 | C1

Notice that the above table can be generated by the state
machine of Figure 2 by following the arrows labeled +1. The
number of possible writes is 3, corresponding to the worst
case scenario of alternating 0 and 1 bits.

Example 3 ((1,12,3,4) buffer code):

In this example we use a 12-ary cell to store the last 3
bits. Censequently we get a guaranteed minimum of 4 writes.
Figure 3 shows the corresponding state machine. The function
f3 is shown in the table below.

Fig. 2. State machine for Example 2. This diagram shows by how much
one needs to increase the content of the cell, when writing a new bit. That
amoeunt is a function of the current stored bits {the start state), and the new
bit to be written (the end state}.

Fig. 3. State machine for Example 3. It implements a general (1, ¢, 3, L%J +
1) buffer code. In Example 3, ¢ = 12 resulting in ¢ = 4.

value | O 1 2 3 4 5

bits | 000 | 001 | 011 | 010G | 111 | 110
value | 6 7 8 9 10 | 11
bits | 100 | 101 | 000 | 001 | 011 | 010

Next, we show the main result of this section in the form
of a theorem. Without loss of generality, it assumes ¢ > 27.
Theorem 1:
The (1,q,,t) buffer code, defined in Censtruction 1 is such

that:
t=|L

FJ+T_2

Proof: 'We need to show that any binary sequence s of
length at most ¢ will bring the value of the cell to at most
g — 1. We first show that the worst case sequence, g;, is an
alternation of 1s and (s, namely the sequence:

s =(1,0,1,0,1,0...)

of length ¢. In the state machine of Figure 2, 8, corresponds to
alternating states (01) and (10). Each state transition increases
the value of the cell by 2, which is the maximum increase
for this state machine {r = 2). Similarly, in the ¥ = 3 state
machine, shown in Figure 3, s; corresponds to alternating
states (010) and (101), increasing the value of the cell by 4, for
each bit written. In the general case, as defined in Construction
1, any two consecutive eniries of the table f., for which
frlzo) = (0,1,...,0,1) and f.(z;) = (1,0,...,1,0) are such
that |21 —x0| = 2771, which happens to be the largest possible
increment of the f,. state machine, therefore the sequence s, is
the worst case sequence. 8, corresponds to + — 1 initial writes
to get from state (0,0, ...,0,0) to state (0,1, ..., 0, 1), followed
by an additional write for each 27! rows of the table f. (the
size of which depends on ¢). The + — 1 initial writes increase
the cell’s value respectively by 20, 2!, ... ,2"~2 each of which
is the maximum possible. Therefore ¢ = L?E-J +r—2 N

1187

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

ISIT2007, Nice, France, June 24 — June 29, 2007

[II. UPPER BOUND FOR SINGLE-CELL BUFFER CODES

In this section, we present an upper bound to ¢ for buffer
cades with n = 1 and arbitrary , ¢, r.

We first define some terms that will be used througheout the
rest of this paper. For 1 <1 < n, we use a; to denote the i-th
cell. We use {¢1, ¢, - -, ¢q) — called the cell state vector — (o
denote the states of the n cells, where ¢; (0 < ¢; < g—1}is the
state of the i-th cell. For a variable, we use (v1,va, -+, ¥)
— called the variable vecior — to denote the variable’s most
recent v values (0 < v; < —1 for all i}, with v, being the
most recent value and v; being the cldest among the most
recent r values.

By default, initially, all the cells are in the state 0, and
V1,2, +, v, are all 0. For writing, we cnly need to consider
those writes that do change the variable vector. {For example,
if ¥ = 2 and the current variable vector is (v; = 1,v2 = 1),
then the writing operation that updates the variable to be *1°
does not really change the variable vector. Consequenily, we
do not need to consider such a writing operation.) We define
the cell state vectors of the i-th generation (0 < i < t) to be
the set of cell state vectors reachable after exactly £ writing
operations from the beginning.

Theorem 2: Whenn=1,t < L;’%IIJ -+ [log {[(¢ — 1)
mod (1" — 1} + 11].

Proof: Suppoese that a buffer code guaranteeing ¢ writes
is given. Starting with a valid cell state vector, by performing
r or fewer writes, the variable vector (vy,vs,---,v,) can
reach any of the {" possible values. Those [" variable values
correspond to I different cell state vectors (possibly including
the starting cell state vector). Therefore, there is a sequence
of r consecutive writes that causes the cell’s state to increase
by at least I" — 1.

We choose the first set of + writes, the second set of »
writes, ..., the b-th set of # writes such that every such a set
of r writes increases the cell’s state by at least I" — 1. Let b
be as large as possible. After those by writes, select a set of
g writes after which no more write can be performed. Let y
be as small as possible. Clearly, y < ».

Since the maximum cell level is ¢ — 1, b < [l";__llj. Note
that [log,{[(g — 1) mod (I — 1] + 1}| < r. [b < | =],
then t < br+y < A=) r < |5] v+ logi{[(g— 1) mod
{I" —1)] + 1}]. Now censider the case that b = |_ﬁ.__11J. In
that case, the last y writes increase the cell’s level by at most
{¢ — 1) mod (I" — 1). As y or fewer writes lead the variable
value to {¥ possible values, with the same analysis as before,
we getl¥—1 < (g—1) mod (I"—1). So y < |log,{[(g—1) mad
(I"—1)]+1}|. So again, t < br+y < [f= |-r+[log{[{g—1)
mad (I" — 1)) + 1}]. So the theorem holds. []

I[V. ASYMPTOTICALLY OPTIMAL BUFFER CODE FOR{ = 2
AND GENERAL n, ¢,

¥

In this section, we present a buffer code for | = 2 and
general n,q,r where n > 2y. That is, the code uses n g-ary
cells to store the most recent r values of one binary variable
(a bit}. In lots of electrenic memories {e.g., flash memories},

the 16 bits of a word are stored separately in 16 parallel
blocks, using the same address. So the writing cperation for
a word becomes a write for a single bit in each block. For
this reasen, it is of particular inferest te study the storage of
binary variables.

The code we present in this section achieves t = {(g—1)(n—
2r+1)+r—1. Note that a buffer code can write a variable no
more than (¢ — 1)n — 1 times. Therefore, the code presented
here achieves a { value asymptetically optimal in both ¢ and
n.

A. Construction of The Code

For the buffer code, we first present its construction for
the special case ¢ = 2. We then naturally extend the code
construction for arbitrary ¢.

Code Construction 2: Buffer code for [= 2 and general
n,q, T, 0> 2

s Mapping cell state vectors to variable vectors: By valid
cell state vector, we mean a cell state vector that can be
reached by some writing operations. Every valid cell state
vector {¢1,¢2,- -, ¢y) of this code satisfies the following
property: For ¢ = 1,2, ---,n—r, for any cell state vector
of the i-th generation, there are exactly ¢ cells in the state
1 and n — ¢ cells in the state ; what’s more, all those ¢
cells in the state 1 belong to the set {ay,as, -, @iyeb
{namely, the first ¢ + r cells).

Clearly, a valid cell state vector {¢1,ca2, - -
(37, ¢i)-th generation.

A wvalid cell state vector {(¢1,¢a, -, ¢pn) in the i-th gen-
eration is mapped to the variable vector (vq,va, -, ¢y
as follows: For y = 1,2,---,r, v3 = ¢i45.

+ Writing: The code enables n —r writing operations. Let’s
say that the current cell state vector (e1,c¢a,---,¢,) 18
(#1,22, -, %y,) and it is in the i-th generation. (0 < i <
1. — r.} Say that the next writing operation is to change
the variable’s value to y. {By default, cnly the writing
operations that change the variable vector are considered.
[t means that if the current variable state is (0,0, ---,0) or
(1,1,- -, 1}, then y cannot be 0 or 1, respectively.} Then,
if y =0, find an integer j < ¢ + 1 such that z; =0, and
change ¢; — the state of the j-th cell —to be 1;if y =1,
then change ¢;y,41 from O to 1.

The following is an example of the code.

Example 4: Let | = 2,n = 9,¢ = 2, and r = 3.
If the n — r = 6 writing operations change the
variable wvector as (0,0,0) — (0,0,1) = (0,1,1)
- (1,1,0) — (1,0,0) — (0,0,1) — (0,1,0), then
the cell state vecter changes as (0,0,0,0,0,0,0,0,0)
- (0,0,0,1,0,0,0,0,00) — (0,0,0,1,1,0,0,0,0) —
(0,0,1,1,1,0,0,0,0) — {0,1,1,1,1,0,0,0,0) —
(0,1,1,1,1,0,0,1,0) — (0,1,1,1,1,1,0,1,0). We can
see that given a cell state vector, recovering the variable
vector is very simple: just read the (w + 1)-th, (w + 2)-th,
-+, {w + r)-th entries in the cell state vector, where w is the
number of 1’s in the vector.

-, ¢y) 1s in the

1188

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

ISIT2007, Nice, France, June 24 — June 29, 2007

We now extend the above code from ¢ = 2 to arbitrary g.
The code uses the cells “layer by layer.” Specifically, when ¢ >
2, for the first n — r writes, we use the cells as if ¢ = 2. That
is, the cells use only the two states 0 and 1. Then, let’s say that
the (n—r+1)-th writing operation changes the variable vector
fo {v1 = 21,02 = 22,---, 0y = 2). The (n—r+1)-th writing
operation is carried cut as follows: first, every cell raises its
state to 1, and we map this cell state vector — {(1,1,---,1)
— to the variable vector (0,0,---,0); from then on, treat the
cell state 1 (respectively, cell state 2) as the old cell state O
(respectively, cell state 1), including the way cell state vectors
are mapped to variable vectors and the way writing operations
are performed; perform r successive writing operations, where
the ¢-th writing operation {1 < ¢ < r) changes the variable to
z;. At this moment, the cell state vector corresponds to the
variable vector {(v; = z1,v2 = #22,--+,vr = 2,). Then the
cells use the two levels — level 1 and level 2 — to perform
more writes. Totally (n — 2r + 1) writes can be performed
by using the two states 1 and 2, after which the cells use the
states 2 and 3 for writing in the same way, and sc on.

For example, assume that | = 2,n = 9,¢ = 4,7 = 3. If
the current cell state vector is (0,1,1,1,1,1,0,1,0) {which is
in the (n — r)-th generation and correspends to the variable
vector (0,1,0)} and the next three writing operations change
the variable to 1, 0 and 1 successively, then the cell state vector
changes as {0,1,1,1,1,1,0,1,0) = {1,1,2,2,1,2,1,1,1) —
(1,2,2,2,1,2,1,1,1) = (1,2,2,2,1,2,1,2,1).

B. Analysis of The Code

Theorem 3: The buffer code presented in Code Construc-
tion 2 is correct.

Proof: First, assume ¢ = 2. To prove the correctness of
the code construction, we use induction to prove the following
assertion: For ¢ = 1,2,---,n — r, the i-th wrifing operaticn
leads the cells to a wvalid cell state vector that correctly
corresponds to the new variable vector.

Consider the case ¢ = 1. The first writing operation has
only cne possibility: to change the variable to 1. By Code
Construction 2, the cell state (e1,c¢a,---,¢,) becomes as
follows: ¢p41 = 1, and ¢; = O for all j # r+1. That cell state
is valid and corresponds to the variable vecter (0,0, ---,0,1).
So the asseriion holds when ¢ = 1. That serves as the base
case.

Assume that the asserzion holds for all i < p, where p <
n. — r. Now consider the case ¢ = p. Say that the p-th writing
operation changes the variable to y, where y = 0 or 1. By the
induction assumption, after the {p — 1)-th write, p — 1 cells
are in the state 1, and they all belong to the first p — 1 + ¢
cells (namely, cells a1,as2,- -, ap—14r); therefore, among the
first p cells, at least one of them is in state 0. If y = 0, the
p-th write changes such a cell in state G to state 1, so the
number of cells in state 1 becomes p; if y = 1, the (p+7)-
th cell is changed from C to 1, so the number of cells in
state 1 also becomes p. Clearly, after the p-th write, all these
cells in state 1 are among the first p + r cells. Therefore, the
cell state vector after the p-th write is valid. Say that after

the (p — 1)-th write, the cell state vector is {e1,¢a3,--,¢xn).
Its corresponding variable vector is simply (v = ¢p,v2 =
€pt1s 5 Ur = Cppr_1). After the p-th write, the state of the
{p—+r)-th cell becomes y, so the corresponding variable vector
is (01 = epy1, V2 = Cpya, + Vo1 = €pypr_1,Ur = ¥), Which
is the correct variable vector. So the assertion holds when
i = p. This completes the induction. Therefore, the thecrem
holds when ¢ = 2.

When ¢ > 2, the code uses the cell levels in a simple “layer
by layer” way, which is clearly also correct. |

The number of writes ¢ guaranteed by the buffer code can
be directly derived from Code Construction 2. Thus we have
the fellowing conclusicn.

Theorem 4: For the buffer code presented in Code Coen-
struction 2, t= (¢ — 1}{(n —2r+ 1) +r — L.

V. ENHANCED BUFFER CODE FOR [= 2,7 = 2 AND
(GENERAL 1, g

The code presented in Code Censtruction 2 has a ¢ that
is asymptotically optimal in n,g. When r = 2, it gives £ =
(¢ — 1)(n —3) + 1. In this section, we present a better code
with ¢ = (¢ — 1){n — 1). In particular, when ¢ = 2, this code
is strictly optimal.

We first present the new code censtruction for the case ¢ =
2, and analyze its properties. The construction is then extended
for general ¢ using the “layer-by-layer” approach.

A. Optimal Buffer Code for ¢ = 2

The new buffer code enhances Code Construction 2. When
g = 2, it has t = n — 1. So the code allows 1 — 1 writing

operations.
The new code uses the same method as Cede Construction 2
to map cell state vectors of the Ist, 2nd, ---, (n — 2)-th

generations to variable vectors. It adds the following specifi-
cation to Code Construction 2 te handle the first n — 2 writing
operations:

o Writing: Let’s say that the current cell state vector
(e1,¢0,-+,¢5) 18 (@1, 22, -+, 2,) and it is in the i-th
generation, where 0 < § < n — 2. {(The corresponding
variable vector is (v; = ®11,v2 = Xg2).) Say that the
next writing operation is to change the variable’s value
to y. The write is performed as follows:

D If y =0 and (2541, 2e02) = (0.1), then change
¢iy1 — the state of the (¢ + 1)-th cell — to 1.

2y If y = 0 and {z;,1,2i42) = (1,0), then find the
integer § < i such that 2; = 0, and change ¢; fo 1.

3) Ify = 0 and (2511, 2i42) = (1,1), then find the
integer § < i such that “z; =0 and (i +3) — j is
an even integer”, and change ¢; o 1.

4) Ify =1, change ¢;, 3 from G to 1.

The mapping from the cell state vectors in the (n — 1)-th

generation to the variable vectors is as follows:

o Mapping from cell state vectors to varigble vectors:
Every valid cell state vector in the (n — 1)-th generation
satisfies this property: Among the n cells, n — 1 of them
are in state 1 and one of them is in state 0.

1189

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

Given a valid cell state vector in the (n—1)-th generation,
let’s say that a; — the ¢-th cell — is the unique cell in state
(. The cell state vector is mapped to the variable vector
{(v1,v2) in the following way:
1y Ifi <n—2andn—iis even, then (vy.v2) = (1,0).
2) Ifi <n—2andn—iis odd, then (v1,v2) = (0,0).
3) [fi=n—1, then (vq,v2) = (1,1).
4y If { = n, then (vy,vsz) = (0, 1).

The (n — 1)-th writing operation is performed in the fol-

lowing way:

e The (n — 1)-th write: Let’s say that after the (n —
2)-th write, the cell state vector {¢y,c,---,¢p) 1is
{#1,%2,---,2,). (The corresponding variable vector is
(v = &p_1,v2 = &,).) Say that the {(n — 1)-th write
is to change the variable’s value to y. [t is performed as
follows:

D If “y=0and {x,_1.2,) = (0,1)” or “yg = 1 and
{xn_1,2n) = (0,0}, then change ¢, 1 from 0 to

1.
2y If y =0 and (2y_1,2,) = (1,0), then change ¢,
from C to 1.

3) Fy=0and (&,_1,2,) = (1,1), then let § <n—2
be the integer such that “x; = 0 and n — j is odd”,
and change ¢; from 0 to 1.

4y If y = 1 and (2p_1.2,) = (0,1) or (1,0), then
let j < n — 2 be the integer such that 2z; = 0, and
change ¢; from 0 te L.

Example 5: Letl=2,n=6,g=2,r =2.Ifthen—-1=35
writing operaticns change the variable vector as (0,0) —
0,1y - (1,0) — (0,1) = (1,1) = (1,0), then the cell
state vector changes as (0,0,0,0,0,0) — (0,0,1,0,0,0) —
(0,1,1,0,0,0) — (0,1,1,0,1,0) — (0,1,1,0,1,1) —
{1,1,1,0,1,1).

B. Analysis of The Code

The new code has a special structural property, as the
following lemma shows.

Lemma 1: For the new coede constructed in this section, for
i =0,1,---,n—2, let (e1,c2,---,cn) be a valid cell state
vector in the -th generation. By the code construction, among
the first 7 + 2 cells — a1, a2,---. a2 — exactly two of them
are in the state 0. Let a, and ay be those two cells. Then,
between p and ¢, one is odd and the other is even.

Proof: The proof is by induction on i. When ¢ = (,
ey = ¢ = 0, 80 p=1 and ¢ = 2. So the lemma holds when
i = 0. This serves as the base case.

Assume that when § < 2z < n — 2, the lemma holds. Now
consider the case ¢ = z. The proof for this induction step
is a straightforward check using the rule on writing in the
code construction. For example, consider the following case:
after » — 1 writes, the states of a, and .4 are O and 1,
respectively, and the z-th write changes the variable to 0. In
this case, the code construction changes the state of @, to 1.
By the induction assumption, after = — 1 writes, there is a cell
aj {j < 2+ 1) whose state is 0 such that between j and z,

ISIT2007, Nice, France, June 24 — June 29, 2007

one is odd and one is even. Affer the z-th write, both a; and
@40 are in the state 0, so wecan let p =4 and g = 2 + 2;
then between p and ¢, one is odd and the other is even; so the
lemma holds. All the other cases can be checked similarly; for
simplicity, we skip the details. That completes the inducticn.
So the lemma helds for all 0 <4 <n — 2. |

Theorem 5: The new code constructed in this section is
correct. And it has { =n — L.

Proof: Iiis easy to verify that the new code deals with the
first 7 — 2 writes and the 0-th, Ist, - - -, (n — 2)-th generations
of cell state vectors in the same way as Code Consfruction 2
does, except that the n — 2 writes are performed in a more
specific way. For succinctness, we omit the details of this
simple verification. Now consider the (n — 1)-th write. Based
on Lemma 1, any cell state vector in the (n — 2)-th generation
has exactly two cells a,,, ay whose states are 0, while between
p and ¢ one is odd and the other is even. By using this
observation, and by the way the code construction performs
the {n — 1)-th write and maps the (n — 1)-th generation of
cell state vectors to variable vectors, we can easily use a case
by case verification to see that the (n — 1)-th write always
leads the cells to a valid cell state vector that corresponds to
the correct variable vector. So the code is correct. It directly
follows from the code construction that t =n — 1. |

The above cede construction and analysis are for ¢ = 2.
When ¢ > 2, we can use the cells “level by level” in the
same way as the code in Section [V does. For such a code, ¢
becomes (¢ — 1)(n — 2) + L.

ACKNOWLEDGEMENTS

This work was supported in part by the Lee Center for Ad-
vanced Networking at the California Institute of Technelogy.

REFERENCES

[1] P. Capelletti, C. Golla, P. Olivic and E. Zanoni, (Ed.}, Fiash Memories,
Kluwer Academic Publishers, 1st edition, 1999,

[2] A. Fiat and A. Shamir, “Generalized ’write-once’ memories,” IFEE
Transactions on Information Theory, vol. IT-30, pp 470-480, May 1984.

[3] E Fu and A. J. Han Vinck, “On the capacity of generalized, write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Transactions on Information Theory, vol. 43, no. 1, pp
308-313, 16496,

[4] S. Gregori, A. Cabrini, O. Khouri and G. Torelli, “On-chip errer correct-
ing techniques for new-generation flash memories,” Proceedings of the
IEEFE, vol. 91, no. 4, April 2003.

[3] C. Heegard, “On the capacity of permanent memory,” IEEE Transacfions
on Information Theory, vol. IT-31, pp 34-42, January 1985.

[6] A.V.Kuznetsov and A. J. H. Vinck, “On the the general defective channel
with informed encoder and capacities of some constrained memeories,”
IEFEE Transactions on Information Theory, vol. 40, nc. 6, pp 1866-1871,
November 19%4.

[7] F. Merkx, “WOMcodes constructed with projective geometries,” Traife-
ment du signaf, vol. 1, no. 2-2, pp 227-231, 1984.

[8] RL. Rivest and A. Shamir, “How to reuse a 'write-once’ memory,”
Information and Contrel, 55:1-19, 1982.

[9] I. K. Wolf, A. D. Wyner, I. Ziv and J. Komer, “Coding for a write-once
memory,” AT&T Bell Labs. Tech. 1., vol. 63, no. &, pp. 1089-1112, 1984.

1190

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

