
On the Capacity of Bounded Rank Modulation
for Flash Memories

Zhiying Wang
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125, USA
Email: zhiying@paradise.caltech.edu

Anxiao (Andrew) Jiang
Computer Science Department

Texas A&M University
College Station, TX 77843, USA

Email: ajiang@cs.tamu.edu

Jehoshua Bruck
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125, USA
Email: bruck@caltech.edu

Abstract—Rank modulation has been recently introduced
as a new information representation scheme for flash memo-
ries. Given the charge levels of a group of flash cells, sorting
is used to induce a permutation, which in turn represents
data. Motivated by the lower sorting complexity of smaller
cell groups, we consider bounded rank modulation, where
a sequence of permutations of given sizes are used to
represent data. We study the capacity of bounded rank
modulation under the condition that permutations can
overlap for higher capacity.

I. INTRODUCTION

Flash memory is an important non-volatile storage
technology of wide applications. In flash memories,
floating-gate cells use their charge-levels to store data [2].
For higher capacity, multi-level cells (MLCs) with an
increasing number of levels are being developed. To
increase a cell level, charge is injected into the cell by
the Fowler-Nordheim tunneling mechanism or the hot-
electron injection mechanism. This programming process
is iterative to avoid over-injection. To lower any cell
level, one must erase a whole cell block (typically 512K
cells) and reprogram them starting at the lowest level.
This asymmetric property caused by block erasure is
a prominent feature of flash memories and presents a
bottleneck of flash memories in terms of speed and
reliability. There has been a number of recent works
using the information theoretic approach to develop new
storage schemes for flash memories. They include coding
schemes for rewriting data [1] [4] [5] [6] [10], codes
for correcting limited-magnitude errors [3], and the new
rank modulation scheme for efficient and reliable cell
programming and data storage [7] [8]. In this paper, we
focus on and extend the rank modulation scheme.

Rank modulation is a new data representation scheme
that uses the relative order of cell levels to represent
data [7] [8]. Let (c1, c2, · · · , cm) denote the charge levels
of m cells, where each ci (for 1 ≤ i ≤ m) is an analog
number and ∀ i 6= j, ci 6= c j. Let I(c1, c2, · · · , cm) =
(a1, a2, · · · , am) be a function that induces from the
charge levels a permutation, where for i = 1, 2, · · · , m,
ai = |{ j|a j ≤ ai , j = 1, 2, · · · , m}|. For example, if
m = 4 and (c1, c2, c3, c4) = (0.2, 0.3, 1.2, 0.5), then the
induced permutation is (a1, a2, a3, a4) = (1, 2, 4, 3). A

group of m cells can store log2(m!) bits of information.
Since rank modulation uses permutations to represent
data, the charge levels can take analog values instead of
discrete values, making the programming process much
more robust to over-injection and the stored data more
robust to asymmetric errors.

In this paper, we study the capacity of rank modulation
with bounded permutation sizes. To induce a permutation
from a group of cells, a sorting algorithm of complexity
O(m log m) is needed. Reducing the sorting complexity
is important for the efficient hardware implementation
of rank modulation. To study the capacity under this
constraint, we propose a discrete model. Normalize the
gap between the minimum and maximum charge levels
of the memory to 1, and let δ denote the minimum charge
difference to distinguish two levels. Then the largest pos-
sible size for a permutation is D = b 1

δ c+ 1. However,
in practice the permutation size should be smaller than
D not only to reduce the sorting complexity, but also to
make cell programming efficiently implementable. In this
paper, we let m ≤ D denote the given permutation size
(which is also the number of cells in a group), and study
the achievable capacity. Each cell level is denoted by an
integer in the set {1, 2, · · · , D}. It should be noted that
these D discrete numbers do not mean that in practice
the charge levels are to be discrete instead of analog.
They are used to derive the theoretical capacity under
the considered constraints. When more constraints are
introduced, the model can certainly be generalized.

An important observation is that by allowing cell
groups to have overlaps (i.e., shared cells), the capacity
can be improved. In this paper, we study this model, and
explore the corresponding capacity. We present compu-
tational techniques and bounds for capacity and compare
the capacities of different schemes.

Due to the limited space, we skipped some details in
this paper. Interested readers please refer to [11].

II. BOUNDED RANK MODULATION

In this section, we define the basic concepts of
bounded rank modulation. For convenience, ∀ integers
a ≤ b, define [a, b] = {a, a + 1, · · · , b}.

Let m and D be integers such that m ≤ D. A block
is a set of m cells whose levels are from the set [1, D]
and are all distinct. Let (c1, c2, · · · , cm) denote those
m cell levels. Then by definition, ci ∈ [1, D] for i ∈
[1, m] and ∀ i 6= j, ci 6= c j. For convenience, we call
(c1, c2, · · · , cm) a block, too, and call I(c1, c2, · · · , cm)
the induced permutation. (I is as defined in the previous
section.) If a block B induces a permutation P, then B
is called a realization of P. Note that a permutation may
have multiple realizations. For example, if m = 6 and
P = (1, 4, 3, 2), then both (1, 6, 4, 3) and (2, 5, 4, 3) are
realizations of P.

Let (c1, c2, · · · , cn) be the levels of n cells.
Let v < m be an integer and for convenience,
let (n − v)/(m − v) be an integer as well. For
i = 1, 2, · · · , n−v

m−v , let Bi denote the block
(c(i−1)(m−v)+1, c(i−1)(m−v)+2, · · · , c(i−1)(m−v)+m).
Note that the last v cell levels of Bi are also the first v cell
levels of Bi+1, so we say these two blocks overlap by v.
We say (c1, c2, · · · , cn), or (B1, B2, · · · , B(n−v)/(m−v)),
is a cell-level sequence consisting of blocks that overlap
by v. For i = 1, 2, · · · , n−v

m−v , let the m levels in Bi
be all distinct and Pi = I(Bi). Then the sequence
induces n−v

m−v permutations (P1, P2, · · · , P(n−v)/(m−v)),
called the induced permutation sequence. And we call
(B1, B2, · · · , B(n−v)/(m−v)) its realization. Again, a
permutation sequence may have multiple realizations.

Definition 1 (BOUNDED RANK MODULATION
C(n, m, D, v)) In a bounded rank modulation (BRM)
code C(n, m, D, v), every codeword is a permutation
sequence (P1, P2, · · · , P(n−v)/(m−v)) that has at least
one realization. Let |C(n, m, D, v)| denote the number of
codewords in code C. Then, the capacity of the code is

cap(C) = lim
n→∞ log |C(n, m, D, v)|

n
.

In general, allowing overlap between permutations
can increase capacity. When there is no overlap (i.e.,
v = 0), the BRM code has capacity log m!

m . When v > 0,
the capacity may increase because every permutation
consumes just m− v cells on average.

III. BRM CODE WITH ONE OVERLAP AND
CONSECUTIVE LEVELS

In this section, we study a special BRM code that
allows efficient computation of its capacity. First, we
present a computational method based on constrained
systems. Detailed definitions are shown in [11].

Since ci ∈ [1, D] for i ∈ [1, m], the BRM code is a
constrained system. Let G = (V, E, L) be a deterministic
labeled graph representing C(n, m, D, v), where V, E
and L are the state set, the edge set, and the edge
labeling, respectively. L(u, v) = l is denoted by u l→ v,
l ∈ Sm (the symmetric group). If A1, A2, · · · , Ak are

the adjacency matrices of the irreducible components in
G, then

cap(C(n, m, D, v)) =
max1≤i≤k log λ(Ai)

m− v
(1)

where λ(A) is largest positive eigenvalue of A [9].

Example 2 A BRM code C(n, 2, 3, 1) can be represented
by the deterministic graph G in Figure 1 (a). Each state
represents the current cell level. S2 = {12, 21}, V =
{1, 2, 3}, and E = {(i, i + 1)|i = 1, 2} ∪ {(i, i− 1)|i =
2, 3}. The labeling is L(i, i + 1) = 12, ∀ i = 1, 2 and
L(i, i− 1) = 21, ∀ i = 2, 3. For example, the path along
the states 1, 2, 3, and 2 is a realization of the permutation
sequence (12, 12, 21). The adjacency matrix of G is

A =

 0 1 0
1 0 1
0 1 0

By (1), the capacity is log(λ(A)) = 0.5.

Notice in Example 2, every block Bi = (ci , ci+1)
consists of two consecutive integers, i.e., |ci− ci+1| = 1.
If we generalize this idea to arbitrary D ≥ 2 but keep
m = 2, and v = 1, we get the constrained system in
Figure 1 (b), and the capacity is log(2 cos(π

D+1)) [9].
We now formally define this type of BRM code.

Definition 3 (BRM CODE WITH ONE OVERLAP
AND CONSECUTIVE LEVELS CI(n, m, D, 1)) For
the BRM code CI(n, m, D, 1), every codeword
(P1, P2, · · · , P(n−1)/(m−1)) needs to satisfy the
following additional constraint: the codeword has
a realization (B1, B2, · · · , B(n−1)/(m−1)) such
that for i = 1, 2, · · · , n−1

m−1 , the m cell levels
in the block Bi form a set of m consecutive
numbers. That is, if Bi = (c′1, c′2, · · · , c′m), then
{c′1, c′2, · · · , c′m} = [minm

j=1 c′j, maxm
j=1 c′j].

In a labeled graph for CI(n, m, D, 1), each state cor-
responds to the charge level of an overlapped cell, so
there are D states, 1, 2, · · · , D. And each edge represents
a permutation in a block (c′1, · · · , c′m). The first (or
last) digit in an edge labeling corresponds to the initial
(or terminal) state of the edge. Let (a1, · · · , am) =
I(c′1, · · · , c′m), then ∀ k, l ∈ [1, m], c′k − c′l = ak − al .
For example, the labeled graph for CI(n, 3, 4, 1) is shown
in Figure 1 (c).

The construction of the adjacency matrix for code
CI(n, m, D, 1) is presented in the following theorem.

Theorem 4 The adjacency matrix A = (Ai j) for
CI(n, m, D, 1) has

Ai j = (m− 2)! min{m− |i− j|, i, j, D− i + 1,
D− j + 1, D−m + 1} (2)

if 1 ≤ |i− j| ≤ m− 1, and Ai j = 0 otherwise.

1
12 12

21 21

2 3 1
12 12

21 21

2 D

12

21

….
.. 1

132 132

231 231

2 3

213

312

4
213
312

(a) (b)

123

321321

123

(c)

Fig. 1. Labeled graphs for CI . (a) CI(n, 2, 3, 1); (b) CI(n, 2, D, 1) and D is arbitrary; (c) CI(n, 3, 4, 1).

Proof: Ai j indicates the number of permutations
with c′1 = i, c′m = j. For fixed a1 and am, there are
(m− 2)! choices for (a2, · · · , am−1). Notice i→ j only
if |a1− am| = |c′1− c′m| ∈ [1, m− 1]. So |{(a1, am)}| ≤
m− |i− j|, if |i− j| ∈ [1, m− 1]. And |{(a1, am)}| = 0
otherwise. If i ∈ [1, m], min1≤k≤m c′k = c′1 − (a1 −
1) = i − a1 + 1 ≥ 1, which implies a1 ∈ [1, i],
or |{a1}| = i. And we have similar results for other
values of i. Hence, |{a1}| = min{i, D − i + 1, D −
m + 1, m}. This argument also works for the terminal
state j. Therefore, if 1 ≤ |i − j| ≤ m − 1, then
Ai j = (m− 2)!|{(a1, am)}| = (m− 2)! min{m− |i−
j|, i, j, D− i + 1, D− j + 1, D−m + 1}.

The capacity of CI is cap(CI) = log λ(A)
m−1 . Some values

of cap(CI) and the capacity of the non-overlap code
C(n, m, D, 0) (for comparison) are shown in Figure 2.

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

m

C
ap

nonoverlap

Fig. 2. Capacity for CI (stars) and for the non-overlap code (solid
line). The stars in each vertical line correspond to the same permutation
size m, and D = m, m + 1, · · · , m + 4 from bottom to top.

It is clear that the capacity of CI(n, m, D, 1) increases
with D. And if D→ ∞, cap(CI(n, m, D, 1))→ log m!

m−1 ,
which is larger than the capacity of the non-overlap code.
We now present a more general result.

Theorem 5 For any m ≥ 2 and D ≥ m + 2,

cap(CI(n, m, D, 1)) > cap(C(n, m, D, 0))

Proof: Notice cap(C(n, m, D, 0)) = log m!/m, ∀
D ≥ m, so we need to prove cap(CI(n, m, m + 2, 1)) >
log m!/m. When m = 2, 3, the theorem is trivial. When

m ≥ 4, D = m + 2, by (2), A is

(m− 2)!

0 1 1 1 . . . 1 0 0
1 0 2 2 . . . 2 1 0
1 2 0 3 . . . 3 2 1
1 2 3 0 . . . 3 2 1
...

...
...

...
. . .

...
...

...
1 2 3 3 . . . 0 2 1
0 1 2 2 . . . 2 0 1
0 0 1 1 . . . 1 1 0

(m+2)×(m+2)

Let B = 1
(m−2)! A, I be the identity matrix and x be

an indeterminate variable. det(B − xI) = 0 implies
(−x − 3)m−3(x2 + x − 1) f (x) = 0, where f (x) =
−x3 + (3m− 8)x2 + (7m− 10)x + 3m− 3. Thus λ(B)
is the largest positive root of f (x). It can be proven that
λ(B) > 3m− 6, and λ(A) > (3m− 6)(m− 2)!. Now
we are left to show log λ(A)

m−1 >
log(3(m−2)(m−2)!)

m−1 ≥
log m!

m , which is equivalent to 3m(m−2)m(m−2)!
mm−1(m−1)m−1 ≥ 1.

Notice
(

1− 1
m

)m
≥ 1

e , and Stirling’s Approximation,

thus 3m(m−2)m(m−2)!
mm−1(m−1)m−1 ≥ 1

2e

(
3
e

)m√
2π(m− 1) ≥ 1.

IV. BRM CODE WITH ONE OVERLAP

We now consider the general BRM code with one
overlap, C(n, m, D, 1), which does not have the addi-
tional constraint of code CI(n, m, D, 1).

The cell levels of a block, {c′1, · · · , c′m}, can be any
set Q such that Q ⊆ {1, 2, · · · , D} and |Q| = m. The
labeled graph H generated is not deterministic in general.
However, we are able to find a deterministic graph G that
is equivalent to H [9]. Here is an example.

Example 6 The labeled graph H of C(n, 2, 4, 1) is shown
in Figure 3 (a). This is not deterministic since state 1 has
3 outgoing edges labeled 12. Let G be the deterministic
representation of C, then the states V(G) are subsets of
V(H). And for u, v ∈ V(G), u l→ v if ∀ j ∈ v, ∃ i ∈
u and i l→ j. The resulting graph G is shown in Figure
3 (b). States {2}, {3}, {1, 3}, etc., have only outgoing
edges, so their capacities are 0. Therefore the irreducible
component of G maximizing λ(Ai) is as in Figure 3 (c).
Hence by (1) cap(C(n, 2, 4, 1)) = log λ(Ai) = 0.8791.

In general, suppose the deterministic graph G
represents C(n, 2, D, 1), and Ai is the adjacency matrix

Fig. 3. Labeled graphs for C(n, 2, 4, 1). (a) Labeled graph; (b) deterministic graph; (c) irreducible graph.

for the irreducible component of G that has the largest
eigenvalue. Then λ(Ai) is the largest positive root of
−xD + 2xD−1 − 1 = 0. It can be seen that cap(C)
tends to 1 faster than cap(CI) from the following table:

D 3 5 7 9 11
cap(CI(n, 2, D, 1)) .5000 .7925 .8858 .9276 .9500
cap(C(n, 2, D, 1)) .6942 .9468 .9881 .9971 .9993

The construction in the above example can be naturally
extended to the case m > 2.

Encoder/decoder for BRM codes can be con-
structed using sliding-block finite-state permutation en-
coder/decoder, cell-level encoder/decoder, and flash pro-
gramming/reading. And the encoding rate can be arbitrar-
ily close to the capacity. For example, a rate 3 : 4 block-
decodable encoder can be constructed for C(n, 2, 4, 1).
More details are shown in [11].

V. LOWER BOUND FOR CAPACITY

In this section, we present a lower bound to the
capacity of the BRM code. To derive this, we first present
a new form of rank modulation called the star BRM.

A. Star BRM

A Star BRM code uses n + v cells. For convenience,
let n be a multiple of m − v. v of these n + v cells
are called anchors, and we denote their cell levels by
(`1, `2, · · · , `v). The other n cells are called storage
cells, and we denote their cell levels by c1, c2, · · · , cn.
For i = 1, 2, · · · , v, `i ∈ [1, D]; for i = 1, 2, · · · , n,
ci ∈ [1, D]. We call (`1, `2, · · · , `v, c1, c2, · · · , cn) a
cell-level sequence. For i = 1, 2, · · · , n

m−v , define block
Bi as (`1, `2, · · · , `v, c(i−1)(m−v)+1, c(i−1)(m−v)+2, · · · ,
ci(m−v)). These n

m−v blocks share the anchor cells.
For i = 1, 2, · · · , n

m−v , we require that the m cell
levels in Bi are all different, and let Pi = I(Bi). Bi
is a realization of Pi. Again, a permutation sequence
(P1, P2, · · · , Pn/(m−v)) may have multiple realizations.

Definition 7 (STAR BRM CODE S(n, m, D, v)) In a
Star BRM code S(n, m, D, v), every codeword is a per-
mutation sequence (P1, P2, · · · , Pn/(m−v)) that has at

least one realization. Let |S(n, m, D, v)| denote the num-
ber of codewords in code S . Then, the capacity is

cap(S) = lim
n→∞ log |S(n, m, D, v)|

n + v
.

To derive the capacity of Star BRM, we first
show how the anchors (`1, `2, · · · , `v) affect the per-
mutation sequences. For fixed (`1, `2, · · · , `v), de-
fine Z(`1, `2, · · · , `v) as the total number of per-
mutations that can be induced by the cell levels
(`1, `2, · · · , `v, c′1, c′2, · · · , c′m−v), where the m cell lev-
els are all different and all belong to the set [1, D].
When we permute the v anchor levels, the value of
Z(`1, `2, · · · , `v) remains the same. For example, when
v = 3 and D = 6, Z(2, 3, 6) = Z(3, 2, 6) = Z(6, 2, 3).
So without loss of generality, assume `1 < `2 <
· · · < `v. Let β(`1, `2, · · · , `v) denote the number of
solutions for the variables x1, x2, · · · , xv+1 such that
(1) ∑

v+1
i=1 xi = m − v; (2) x1 ∈ [0, `1 − 1], xi ∈

[0, `i − `i−1 − 1] for i ∈ [2, v], and xv+1 ∈ [0, D− `v].

Lemma 8. Given D ≥ m > v, we have
Z(`1, `2, · · · , `v) = (m− v)! ·β(`1, `2, · · · , `v).

Sketch of the proof: A permutation induced by
(`1, `2, · · · , `v, c′1, c′2, · · · , c′m−v) can be uniquely de-
termined by the relative order of the m − v cell levels
(c′1, c′2, · · · , c′m−v) and their relative values compared to
`1, `2, · · · , `v.

Lemma 9. Z(`1, `2, · · · , `v) is maximized when the
numbers in the following set differ by at most one: {`1 −
1, D − `v} ∪ {`i − `i−1 − 1|i = 2, 3, · · · , v}. (Every
number in the above set is either bD−v

v+1 c or dD−v
v+1 e.)

Please see [11] for detailed proofs of Lemma 8
and 9. Let `∗1 < `∗2 < · · · < `∗v be the v an-
chor levels that satisfy the condition in Lemma 9. and
Z∗ = Z(`∗1 , `∗2 , · · · , `∗v). Z∗ can be computed using an
algorithm of time complexity O(D2) (see [11]). The
following theorem presents the capacity of the Star BRM.

Theorem 10. The capacity of S(n, m, D, v) is

cap(S) =
log Z∗

m− v
.

Sketch of the proof: |S(n, m, D, v)| is no less than
the number of codewords induced by (`∗1 , `∗2 , · · · , `∗v ,
c1, c2, · · · , cn), or (Z∗)

n
m−v . On the other

hand, by Lemma 9, |S(n, m, D, v)| is no
more than (Z∗)

n
m−v times the number of

choices for (`1, `2, · · · , `v), or v!(D
v). Therefore,

log Z∗
m−v ≤ cap(S) = limn→∞ log |S(n,m,D,v)|

n+v ≤

limn→∞ log(v!(D
v)(Z∗)

n
m−v)

n = log Z∗
m−v . So the theorem is

proved.
The above proof leads to the following corollary.

Corollary 11 The Star BRM code S(n, m, D, v)
achieves its capacity even if the v anchor cell levels are
fixed as (`∗1 , `∗2 , · · · , `∗v).

The capacity of the Star BRM code S(n, m, D, v) is
non-decreasing in D. However, when D = (m − v +
1)v + (m− v), the capacity reaches its maximum value.
Further increasing D will not increase the capacity. That
is because when D ≥ (m − v + 1)v + (m − v), Z∗

reaches its maximum value m!/v!.

B. Lower Bound for The Capacity of BRM

We now derive a lower bound for the capacity of the
bounded rank modulation code C(n, m, D, v).

Theorem 12. For the BRM code C(n, m, D, v), when
m ≥ 2v, its capacity

cap(C) ≥ log Z∗ + log v! + log(m− 2v)!
2(m− v)

.

Proof: Let S(n, m, D, v) be a Star BRM code
such that every codeword has a realization in which
the v anchors are (`∗1 , `∗2 , · · · , `∗v). By Corollary 11, S
achieves capacity.

For a codeword s ∈ S , let (`∗1 , `∗2 , · · · , `∗v , c1, c2, · · · ,
cn) = (B1, B2, · · · , Bn/(m−v)) be its realization. For
i = 1, 2, · · · , n/(m− v), corresponding to block Bi, we
build two blocks B′i and B′′i of length m as follows. Say
Bi = (`∗1 , `∗2 , · · · , `∗v , c′1, c′2, · · · , c′m−v). The first v cell
levels of B′i take values from the set {`∗1 , `∗2 , · · · , `∗v}
(we have v! choices), and the next m− v cell levels of
B′i are the same as (c′1, c′2, · · · , c′m−v). The first v cell
levels of B′′i overlap the last v cell levels of B′i . We pick
m− 2v ≤ D− 2v values different from the first v and
the last v cell levels of B′i , and assign them to the next
m− 2v cell levels of B′′i (we have (m− 2v)! choices).
The final v cell levels of B′′i take values again from
the set {`∗1 , `∗2 , · · · , `∗v}. Then we construct a cell-level
sequence (B′1, B′′1 , B′2, B′′2 , · · · , B′n/(m−v), B′′n/(m−v)),
where every two adjacent blocks overlap by v.
Corresponding to every codeword s ∈ S , there are
at least (v!(m − 2v)!)

n
m−v such cell-level sequences,

which we denote by Qs. No two cell-level sequences
in Qs induce the same permutation sequence. And
when s 6= s′, every pair of cell-level sequences

from Qs and Qs′ , respectively, also induce different
permutation sequences. Besides, every cell-level
sequence constructed above induces a codeword in the
code C(2n + v, m, D, v).

So corresponding to the |S(n, m, D, v)| codewords
of the Star BRM code S(n, m, D, v), we can
find at least |S(n, m, D, v)|(v!(m − 2v)!)

n
m−v

codewords of the BRM code C(2n + v, m, D, v).
So the capacity of code C(n, m, D, v) is cap(C) ≥
limn→∞ log |S(n,m,D,v)|+(log v!+log(m−2v)!)· n

m−v
2n+v =

log Z∗+log v!+log(m−2v)!
2(m−v) . So the theorem is proved.

Corollary 13 Let C(n, m, D, v) be a BRM code, and let
S(n, m, D, v) be a Star BRM code. Then, when m ≥ 2v,

cap(C) ≥ 1
2
· cap(S).

In particular, if v > 1 or m > 2v, cap(C) > 1
2 · cap(S).

Define An
k = (n

k)k! = n!/(n− k)!. Suppose m < 2v
and v = k(m − v) + s, where k ∈ N+ and 1 ≤ s ≤
m − v. Let r = m − v − s. Define a constant M =
Am−v

s (A2(m−v)−s)
m−v)k−1(m− v)!. Similar to Theorem 12,

we have the following lower bound for the BRM code
when m < 2v (see [11] for proof).

Theorem 14 For the BRM code C(n, m, D, v), when
m < 2v and D ≥ m + r, its capacity

cap(C) ≥ log(Z∗ ·M · r!)
m + r

ACKNOWLEDGMENT

This work was supported in part by the NSF CAREER
Award CCF-0747415, the NSF grant ECCS-0802107,
and the Caltech Lee Center for Advanced Networking.

REFERENCES

[1] V. Bohossian, A. Jiang and J. Bruck, “Buffer codes for asymmetric
multi-level memory,” Proc. IEEE ISIT, 2007, pp. 1186-1190.

[2] J. E. Brewer and M. Gill, Nonvolatile memory technologies with
emphasis on flash, Chapter 12, Wiley-IEEE, 2007.

[3] Y. Cassuto, M. Schwartz, V. Bohossian and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multi-
level flash memories,” Proc. IEEE ISIT, 2007.

[4] H. Finucane, Z. Liu and M. Mitzenmacher, “Designing floating
codes for expected performance,” Proc. of the 46th Annual Allerton
Conference, 2008.

[5] A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint
information storage in write asymmetric memories,” Proc. IEEE
ISIT, 2007, pp. 1166-1170.

[6] A. Jiang and J. Bruck, “Joint coding for flash memory storage,”
Proc. IEEE ISIT, 2008, pp. 1741-1745.

[7] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modula-
tion for flash memories,” Proc. IEEE ISIT, 2008, pp. 1731-1735.

[8] A. Jiang, M. Schwartz and J. Bruck, “Error-correcting codes for
rank modulation,” Proc. IEEE ISIT, 2008, pp. 1736-1740.

[9] B. H. Marcus, R. M. Roth and P. H. Siegel, An introduction to
coding for constrained systems, 5th Edition, 2001, available at
http : //www.math.ubc.ca/ marcus/Handbook/index.html.

[10] E. Yaakobi, A. Vardy, P. H. Siegel and J. Wolf, “Multidimensional
flash codes,” Proc. of the 46th Annual Allerton Conference, 2008.

[11] Z. Wang, A. Jiang, and J. Bruck, On the capacity of
bounded rank modulation for flash memories, available at http :
//www.paradise.caltech.edu/etr.html

