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Data storage technologies

Storage technologies have revolutionized the way we create,
manipulate, and use data.

1950-1960s: Punch cards and
magnetic tape

1970-1980s: Optical recording
(DVDs), floppy disks

1990-2000s: Hard disk drives

2010+: Era of Flash drives
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Non-volatile memories (NMVs) are increasingly ubiquitous
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Non-volatile memories (NMVs) today

NVMs are solid state memory devices that
need not be periodically refreshed

SSDs have 20x faster read than HDDs due
to negligible seek time and consume up to
90% less power

Market size over 70 billion USD worldwide.

Key NVM technologies

Flash
Phase Change Memories
STTRAMs, Memristors

With the on-going data revolution, applications from
consumer electronics to data centers abound.
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NVMs today

NVMs are solid state memory devices that
need not be periodically refreshed.

SSDs have 20x faster read than HDDs due
to negligible seek time and consume up to
90% less power.

Market size over 70 billion USD worldwide.

Key NVM technologies

Flash Memories
Phase Change Memories
STTRAMs, Memristors
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NVMs of the future

Data revolution demands NVMs with

Increased density at reduced size,

Improved reliability at increased noise
levels,

Improved endurance and retention,

Faster read/write access time,

Compact cross-layer architectures.

What the Future May
Bring:

Novel coding methodologies hold promise to address all
these challenges.
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What is this tutorial about ?

Today we will learn about

Physical characteristics of emerging non-volatile memories,

Channel models associated with these technologies,

Various recent developments in coding for memories, and

Open problems and future directions in communication
techniques for memories.
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1 Channel Models

2 Error Correcting Codes

3 Codes for Rewriting Data

4 Rank Modulation

5 Constrained Coding

6 Summary and Future Directions
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Part I
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Flash technology

A flash memory block is an array of 220 ∼ million cells.

A cell is a floating-gate transistor

Cell array in a flash memory A flash memory cell 
(Floating gate) 
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Flash technology

Terminology

Single level cell (SLC) stores 1 bit per cell (2 levels)
Multiple level cell (MLC) stores 2 bit per cell (4 levels)
Triple level cell (TLC) stores 3 bit per cell (8 levels)

Cell levels correspond to the voltage induced by the number of
electrons stored on the gate.
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Flash programming – example 1

Flash block Initial state

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

13 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Flash programming – example 1

Flash block Final state

0 1 2 1
1 1 1 1
2 2 0 1
3 3 2 1
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Flash programming – example 2

Flash block Initial state

0 1 2 1
1 1 1 1
2 2 0 1
3 3 2 1
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Flash programming – example 2

Flash block Final state

0 1 3 2
2 1 1 1
2 2 0 1
3 3 3 2
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Flash programming – example 3

Flash block Initial state

0 1 2 1
1 1 1 1
2 2 0 1
3 3 2 1
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Flash programming – example 3

Flash block Intermediate state

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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Flash programming – example 3

Flash block Final state

0 1 2 1
1 1 1 1
2 2 0 1
3 1 2 1
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Flash endurance

Frequent block erases cause so-called “wearout” due to charge
loss on the gates.

Flash memory lifetime is commonly expressed in terms of the
number of program and erase (P/E) cycles allowed before
memory is deemed unusable.

Lifetime:

SLC: ≈ 106 P/E cycles
MLC: ≈ 105 P/E cycles
TLC: ≈ 104 P/E cycles

With frequent writes 2GB TLC lasts less than 3 months!
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Flash inter-cell interference

Floating gate to floating gate inter-cell coupling

Change in charge in one cell
affects voltage threshold of a
neighboring cell.

During write/read, stressed
(victim) cell appears weakly
programmed.

Santa Clara, CA  USA
August 2007 17

Program Disturb
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Cells not being programmed receive 
elevated voltage stress
Stressed cells

• Are always in the block being 
programmed

• Can either be on pages not 
selected, or in a selected page 
but not supposed to be 
programmed

Charge collects on the floating gate 
causing the cell to appear to be 
weakly programmed 
Does not damage cells; ERASE 
returns cells to undisturbed levels
Disturbed bits are effectively 
managed with error correction codes 
(ECC)
Partial-page programming 
accelerates disturbance
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Figure: Courtesy Micron, Flash Memory
Summit Presentation, 2007.
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Phase change memories (PCM) model

Pros

Erases on the cell level

Faster access

More P/E cycles, longer
lifetime

Cons

Not nearly as dense

Resistance and voltage drift

Higher processing cost

Two states

Amorphous – high resistance

Polycrystalline – low
resistance

Outline Introduction Channel modeling and coding techniques Rewritable Channel Theory

A PRIMER ON PCM

! PCM is in essence a programmable variable
resistor with a very large dynamic range
103Ω − 106Ω.

! Similar material used in rewritable DVDs.

! PCM is organized in an array of cells.

! Cells in the same row are accessed
simultaneously during a read/write operation.

! Multiple bits/cell (multiple levels) are feasible
and key to PCM’s expected success.

! There are no fundamental restrictions on what
we might write onto individual cells in a row.

! This is a fundamental advantage over FLASH.
! We may chose not to overwrite existing content

on individual cells.

amorphous
GST

polycrystalline

bottom
electrode

top electrode

The memory cell may be
seen as a composite of
material in two phases:
amorphous (high
resistance) and crystalline
(low resistance).
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Issues

Delay onset of errors

Improve reliability

Improve write access

Increase storage capacity

Reduce interference

Techniques

Error correction codes

Codes for rewriting data

Rank modulation

Constrained coding
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Further reading (1/2)

Modeling of Flash

L. M. Grupp et al. “Beyond the datasheet: using test beds to
probe non-volatile memories’ dark secrets,” IEEE Globecom,
2010.

L. M. Grupp et al. “Characterizing flash memory: anomalies,
observations, and applications,” IEEE/ACM MICRO, 2009.

Inter-cell Interference

J-D. Lee, S-H Hur, and J-D. Choi, “Effects of floating-gate
interference on NAND flash memory cell operation”, IEEE
Electron Device Letters, 2002.
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Further reading (2/2)

PCM Model

M. Franceschini et al., “A Communication-theoretic approach
to phase change storage,” IEEE ICC, 2010.

L. Lastras-Montaño et al., “On the lifetime of multilevel
memories,” IEEE ISIT, 2009.

Cross-Technology Comparisons

G. W. Burr et al., “Overview of candidate device technologies
for storage-class memory,” IBM J. on R&D, 2008.

Resources at the Annual Flash Memory Summit Page
http://www.flashmemorysummit.com/
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Error Correcting Codes
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Issues

Delay onset of errors

Improve reliability

Improve write access

Increase storage capacity

Reduce interference

Techniques

Error correction codes

Codes for rewriting data
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Error correction is a must for memories

Conventional error correcting codes are in widespread use

Early SLC technologies used basic Hamming codes

Simple to implement but offer limited protection

BCH codes have become increasingly popular

Excellent algebraic codes but increasingly inadequate for NVM
channels

LDPC codes are now being actively investigated

Excellent graph-based codes but no performance guarantees in
general
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Raw error rate for TLC flash

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Error Rates for TLC Flash

 

 

LSB
CSB
MSB
Symbol Error Rate

Student Version of MATLAB

LSB: least significant bit
CSB: center significant bit
MSB: most significant bit

Table: Mapping between Voltage
Levels and Triple-bit Words

Voltage Level Triple-bit Word
0 111
1 110
2 100
3 101
4 001
5 000
6 010
7 011

Data collected in Swanson Lab, UCSD.
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Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors

1 0.9617
2 0.0314
3 0.0069

Standard error-correction codes are designed to correct all
symbol errors.

Usage of standard codes: overkill in terms of redundancy.

Instead, design codes for the observed intracell variability.

30 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors

1 0.9617
2 0.0314
3 0.0069

Standard error-correction codes are designed to correct all
symbol errors.

Usage of standard codes: overkill in terms of redundancy.

Instead, design codes for the observed intracell variability.

30 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Error patterns within a TLC cell

Number of bits in symbol that err Percentage of errors

1 0.9617
2 0.0314
3 0.0069

Standard error-correction codes are designed to correct all
symbol errors.

Usage of standard codes: overkill in terms of redundancy.

Instead, design codes for the observed intracell variability.

30 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Channel coding preliminaries

A code C is defined over the alphabet A of size q = 2m,
where m is a positive integer and q is the number of levels in
a flash cell.

A Flash cell value is represented by a symbol in GF (2)m.

A block of n flash cells is represented by a codeword c in C,
taking value in (GF (2)m)n.

An example:

m = 3, A = GF (8), n = 5

(45702) → (100 101 111 000 010)
Flash block → codeword
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Bit-error patterns

Definition (Bit-Error Vector)

Given positive integers t and `, the vector
e = (e1, . . . , en) ∈ (GF (2)m)n is a [t; `]2m -bit-error vector when

1 The number of non-zero symbols ei ’s, 1 ≤ i ≤ n, is at most t.

2 For each symbol ei , 1 ≤ i ≤ n, there are at most ` non-zero
bits.
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Bit-error example

Suppose the vector x of length 6 with 3-bit symbols was
transmitted (stored):

x = (000 110 010 101 000 111)

Suppose the vector y was received (retrieved):

y = (101 110 000 101 000 011) .

Then [3; 2]23-bit-errors are said to have occurred since there
are 3 symbols in error and for each symbol at most 2 bits
are in error.
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Graded bit-error patterns

Definition (Graded Bit-Error Vector)

Given positive integers t1, t2, `1 and `2, `1 < `2, the vector
e = (e1, . . . , en) ∈ (GF (2)m)n is a [t1, t2; `1, `2]2m -graded bit-error
vector when

1 The number of non-zero symbols ei ’s, 1 ≤ i ≤ n, is at most
t1 + t2.

2 For each symbol ei , there are at most `2 non-zero bits.

3 There are at most t2 symbols that have more than `1

non-zero bits each.
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Graded bit-error example

Suppose the vector x of length 6 with 3-bit symbols was
transmitted (stored):

x = (000 110 010 101 000 111)

Suppose the vector y was received (retrieved):

y = (101 110 000 101 000 011) .

Then [2, 1; 1, 2]23-graded-bit-errors are said to have occurred
since there are 2 + 1 symbols in error where there are at
most 2 bits in error for each symbol and there is only 1
symbol that has more than 1 bit in error.
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Error-correcting codes

Definition (Bit-Error-Correcting Code)

A 2m-ary linear code C is a [t; `]2m-bit-error-correcting code if it
can correct every [t; `]2m -bit error vector.

Definition (Graded Bit-Error-Correcting Code)

A 2m-ary code C is a [t1, t2; `1, `2]2m-graded-bit-error-correcting
code if it can correct every [t1, t2; `1, `2]2m -graded bit error vector.
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Recall: tensor product

Definition (Tensor Product)

Let A ∈ GF (q)m×n, B ∈ GF (q)p×r . Then the tensor product of A
and B is defined as the matrix

A⊗ B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ GF (q)mp×nr

Example:

A =
(

1 1 1 0
)
,B =

(
1 0
1 1

)
A⊗ B =

(
1 0 1 0 1 0 0 0
1 1 1 1 1 1 0 0

)
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Tensor product codes [1]

Theorem (Construction 1)

Let H1 be the parity check matrix of a [m, k1, `]2 code C1

(standard [n, k , e] notation).

Let H2 be the parity check matrix of a [n, k2, t]2m−k1 code C2

defined over the alphabet of size GF (2)m−k1 .

Then, HA = H2 ⊗ H1 is the parity check matrix of a
[t; `]2m -bit-error-correcting code CA of length n.

[1] J.K. Wolf, ”On codes derivable from the tensor product of check matrices,” IEEE Trans. On Information

Theory, vol. 8, pp. 163-169, April 1965.
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Example of a tensor product code

Consider the parity check matrix H1 of a [3, 1, 1]2 code C1:

H1 =

(
1 0 1
0 1 1

)

Consider the parity check matrix H2 of a [4, 2, 1]4 code C2

where α is a primitive element of GF (4):

H2 =

(
1 1 α α2

0 1 α2 α

)
Map

0→
(

0
0

)
1→

(
1
0

)
α→

(
0
1

)
α2 →

(
1
1

)
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Example of a tensor product code

Consider the parity check matrix H1 of a [3, 1, 1]2 code C1:

H1 =
(

1 α α2
)

Consider the parity check matrix H2 of a [4, 2, 1]4 code C2

where α is a primitive element of GF (4):

H2 =

(
1 1 α α2

0 1 α2 α

)

The parity check matrix of a [1; 1]8-bit-error-correcting code
CA of length n = 4 with 3-bit symbols is:

H2⊗H1 =

(
1 α α2 1 α α2 α α2 1 α2 1 α
0 0 0 1 α α2 α2 1 α α α2 1

)
.
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Decoding algorithm

Suppose c ∈ CA was transmitted, and y = c + e was received
where e is a [t; `]2m -bit error vector.

Two-step syndrome decoding:
1 Decoder for C2: input is the scaled syndrome s of y, output is

decoded string r.
2 Decoder for C1: input is the vector of syndromes r, output is

the error-vector e.
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Construction of a [t1, t2; `1, `2]-graded bit-error-correcting
code

Suppose H1 is the parity check matrix of a [m, k1, `2]2 code C1

such that H1 is

[
H
′
1

H”
1

]
where H

′
1 itself is the parity check

matrix of a [m,m − r ′, `1]2 code (here r ′ < m − k1).

H
′
1 is a r ′ by m matrix, H”

1 is a r” by m matrix for r” = r − r ′.

One choice for H1 is a BCH matrix.
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Construction of a [t1, t2; `1, `2]-graded bit error-correcting
code

Suppose H2 is the parity check matrix of a [n, k2, t1 + t2]2r′

code.

Suppose H3 is the parity check matrix of a [n, k3, t2]2r” code.

Theorem (Construction 2)

Then HB is the parity check matrix of a [t1, t2; `1, `2]2m -graded bit
error correcting code, where

HB =

(
H2 ⊗ H

′
1

H3 ⊗ H”
1

)
.
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Discussion

Using sphere-packing bound argument, it follows that the
excess redundancy of CB is about t2 log(n). The code is
asymptotically optimal.

Construction 1 is also a graded-bit-error correcting code.
Construction 2 offers better redundancy than Construction 1
when (`2 − `1)t1/t2 > log(n)/ log(m).

Further simplifications are possible for special cases of the
code parameters.
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Evaluation

We compared the following rate-0.86 codes:
1 Three binary [212, 3531, 47]2 codes with the same error

correction capability for the LSB, CSB, and MSB pages,
2 Three binary codes with different error correction capability

for the LSB, CSB, and MSB pages: codes [212, 3351, 62]2,
[212, 3339, 63]2, and [212, 3915, 15]2,

3 A non-binary [212, 3338, 84]4 code over GF (4) applied to the
CSB and LSB sharing the same physical cells and a binary
[212, 3915, 15]2 code applied to the MSB (scheme A),

4 A non-binary [212, 3534, 80]8 code over GF (8) which corrects
errors in a group of LSB, CSB, and MSB pages sharing the
same physical cells, and

5 A graded bit-error-correcting [212, 3302, 88]4, [2
12, 4011, 7]2

code.
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Coding can extend lifetime
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Issues

Delay onset of errors

Improve reliability

Improve write access

Increase storage capacity

Reduce interference

Techniques

Error correction codes

Codes for rewriting data

Rank modulation

Constrained coding
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Extracting soft information

Recall: Bit-level distribution

1 read compares against a single threshold

!!
! !! !

0 1 
!!! ! !

0 1 

! !

0 1 
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Extracting soft information

Idea: multiple word line reads

2 reads compare against two thresholds

!!
! !! !

0 1 
!!! ! !

0 1 

! !

0 1 

0 0

1 1

e

p1

p1

p2
p3

p2

p3

00
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p2
p3

p2

p3

01

11

p4

p4

0

1

(a) Two reads (b) Three reads

Fig. 3. Equivalent discrete memoryless channel models for SLC with (a) two reads and (b) three reads with distinct word-line

voltages.

A. PAM-Gaussian Model

This subsection describes how to select word-line voltages to achieve MMI in the context of

a simple model of the flash cell read channel as PAM transmission with Gaussian noise. MMI

word-line voltage selection is presented using three examples: SLC with two reads, SLC with

three reads, and 4-level MLC with six reads.

For SLC flash memory, each cell can store one bit of information. Fig. 2 shows the model of

the threshold voltage distribution as a mixture of two identically distributed Gaussian random

variables. When either a “0” or “1” is written to the cell, the threshold voltage is modeled as a

Gaussian random variable with variance N0/2 and either mean −√
Es (for “1” ) or mean +

√
Es

(for “0” ).

For SLC with two reads using two different word line voltages, which should be symmetric

(shown as q and −q in Fig. 2), the threshold voltage is quantized according to three regions

shown in Fig. 2: the white region, the black region, and the union of the light and dark gray

regions (which essentially corresponds to an erasure). This quantization produces the effective

discrete memoryless channel (DMC) model as shown in Fig. 3 (a) with input X ∈ {0, 1} and

output Y ∈ {0, e, 1}.

Assuming X is equally likely to be 0 or 1, the MI I(X; Y ) between the input X and output

Maximize mutual information of the induced channel to
determine the best thresholds (here q and −q)
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the threshold voltage distribution as a mixture of two identically distributed Gaussian random

variables. When either a “0” or “1” is written to the cell, the threshold voltage is modeled as a

Gaussian random variable with variance N0/2 and either mean −√
Es (for “1” ) or mean +

√
Es

(for “0” ).

For SLC with two reads using two different word line voltages, which should be symmetric

(shown as q and −q in Fig. 2), the threshold voltage is quantized according to three regions

shown in Fig. 2: the white region, the black region, and the union of the light and dark gray

regions (which essentially corresponds to an erasure). This quantization produces the effective

discrete memoryless channel (DMC) model as shown in Fig. 3 (a) with input X ∈ {0, 1} and

output Y ∈ {0, e, 1}.

Assuming X is equally likely to be 0 or 1, the MI I(X; Y ) between the input X and output

Maximize mutual information of the induced channel to
determine the best thresholds (here q and −q)
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Coding can improve reliability [1]

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of
length n = 9100.
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Fig. 13. FER vs. SNR simulation results using the Gaussian channel model for SLC comparing LDPC Code 2 with varying

levels of soft information and a BCH code with hard decoding. Both codes have rate 0.9021. The BCH theory curve and the

LDPC 1-read curve correspond to hard decoding.

Fig. 15 provides a similar plot for the Gaussian model of four-level MLC. With four levels,

three reads are required for hard decoding. Similar to the discussion above, using six reads

recovers more than half of the gap between hard decoding (three reads) and full soft-precision

decoding.

The principle of closing the gap by more than half with the first additional read (or first three

additional reads in the MLC case) and diminishing returns for subsequent reads can also be

observed by examining the vertical dashed lines showing the Shannon limits corresponding to

varying levels of soft information in Figs. 13-15.

C. Performance of BCH and the three LDPC designs

This subsection looks more closely at performance differences between the various codes

studied. Since the BCH decoder is limited to using hard decisions from the comparator, we first

compare LDPC code performance to the BCH code using only hard decisions in order to make

a fair baseline comparison. The BCH and LDPC hard-decoding curves in Figs. 14 and 15 (the

red curves) show that the LDPC codes outperform the BCH code in this range of frame error

Caution: AWGN-optimized LDPC codes may not be the best
for the quantized Flash channel !

[1] Wang et al., “LDPC Decoding with Limited-Precision Soft Information in Flash Memories,” preprint, 2012.
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Coding can accelerate write access

Recall Flash programming

In practice incremental pulse
programming is used, a.k.a.
guess and verify.

Latency increases with number
of levels.
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If one allows for “dirty writes”, it suffices to correct errors in
only one direction.
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Asymmetric limited-magnitude error-correcting codes [1]

Definition (ALM Code)

Let C1 be a code over the alphabet Q1. The code C over the
alphabet Q (with |Q| > |Q1| = q1 = `+ 1) is defined as
C = {x = (x1, x2, . . . , xn) ∈ Qn | x mod q1 ∈ C1}.

Theorem

Code C corrects t asymmetric errors of limited magnitude ` if code
C1 corrects t symmetric errors.

New construction inherits encoding/decoding complexity of
the underlying code.
Connections with additive number theory (Varshamov 1970s).

[1] Y. Cassuto et al., “Codes for asymmetric limited-magnitude errors with application to multilevel flash
memories, ”IEEE Trans. on Information Theory, 2010.
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Further reading (1/2)

Algebraic codes

R. Gabrys et al., “Graded bit error correcting codes with
applications to flash memory,” preprint, 2012.

Y. Cassuto et al., “Codes for asymmetric limited-magnitude
errors with application to multilevel flash memories,” IEEE
Trans. on Information Theory, 2010.

T. Kløve et al., “Systematic, single limited magnitude error
correcting codes for flash memories,” IEEE Trans. on
Information Theory, 2011.

T. Kløve et al., “Some codes correcting asymmetric errors of
limited magnitude,” IEEE Trans. on Information Theory, 2011.
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Further reading (2/2)

Graph-based codes

J. Wang at al., “The Cycle Consistency Matrix Approach to
LDPC Absorbing Sets in Separable Circulant-Based Codes,”
preprint, 2012 (available on ArXiv).

J. Wang et al., “LDPC Decoding with Limited-Precision Soft
Information in Flash Memories,” preprint, 2012 (available on
ArXiv).

B. Amiri et al., “Quantization, Absorbing Regions and
Practical Message Passing Decoders,” Asilomar 2012.

F. Sala et al., “Dynamic Threshold Schemes for Multi-Level
Nonvolatile Memories,” Asilomar 2012.
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Codes for Rewriting Data
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Issues

Delay onset of errors

Improve reliability

Improve write access

Increase storage capacity

Reduce interference

Techniques

Error correction codes

Codes for rewriting data

Rank modulation

Constrained coding
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Write-once-memories (WOMs)

The memory cells represent bits that are irreversibly
programmed from “0” to “1”.
What is the total number of bits that is possible to write over
n cells in t writes?
WOM codes were introduced by Rivest and Shamir “How to
reuse a write-once memory”, Information and Control, 1982.
WOM codes were originally proposed for punch cards and
optical disks.
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Rivest-Shamir WOM code

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011
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Encoding example 1

Rivest-Shamir WOM code:

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011

Write-1: 01 → Encode: 001.

Write-2: 10 → Encode: 101.
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Encoding example 2

Rivest-Shamir WOM code:

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011

Write-1: 01 → Encode: 001.

Write-2: 01 → Encode: 001. No change.
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System model

Definition (WOM Model)

The memory state is modeled as a vector yj of length n where j is
the current write (or generation). Each element y j

i , 1 ≤ i ≤ n,
takes values in the set {0, 1, . . . q − 1}. On write j , the encoder
writes one of Mj messages to the memory by updating yj−1 to yj

while satisfying the WOM-constraint yj ≥ yj−1.

Definition (Sum rate)

If Mj codewords can be represented at generation j , then
generation j has rate 1

n log(Mj). The sum rate is the sum of rates
across generations.
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WOM capacity

Achievable rate-region computed by Fu and Han Vinck in
1999.

The capacity (maximum achievable sum-rate)using t writes
and q-ary cells is

log

(
t + q − 1

q − 1

)
.

Popular setting: binary 2-write WOM, the capacity is

log 3 ≈ 1.58.

Random coding achieves capacity - the bound is tight.
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Early results on binary WOM codes

Rivest-Shamir WOM code:

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011

Recall that the capacity is 1.58.

Rivest-Shamir WOM code already achieves sum rate of
(log 4 + log 4)/3 = 4/3 with M1 = 4, M2 = 4, and n = 3.
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Early results on binary WOM codes

Here is another example from Rivest and Shamir

10 RIVEST AND SHAMIR 

TABLE 3 

A ((26>2/7)-Womcode 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3  
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

O A H G G F Y L  w E Z  Y r  X f  p n D W V z  U d j  o T w k e  l t d u  
1 C S R  c Q i o z P p  i h u e x y O z  s j s n i w v e q g f k b m  
2 B N M z L b g m K u  t b n g f w J w r  h k v x y m j p s o q e i  
3 l k m  q l e k u w t e o s d j v u b d f g e t p y x n l h r z a 

The random womcodes of  the theorem will have an asymptotic rate of  
2/1.29 . . . .  1.5458 .... much better than the rate 1.33... womcode of  Lemma 1. 
However, we could not construct by hand a (2k)Z-womcode of  rate higher 
than 1.33 .... Lemma 4 implies that such a scheme must have k = 7, n = 10 or 
k ~> 9. Using a computer we found a slightly more efficient method with rate 
1 . 3 4  .... 

The new scheme is a (26)2/7-womcode (rate = 1.3429...). So a seven-track 
paper tape is "reusable" for writing just letterst Row i, column j of  Table 3 
gives the value (a letter) of  the 7-bit string with binary value i • 32 + j .  The 
first-generation is in upper case. Thus a "T"  (0011000) is made into an "h"  
by changing bits 1, 2, and 5 (to obtain 1111100). We were unable to find a 
(27)2/7-womcode or to prove one does not exist, although we can prove that 
a (29)2/7 womcode does not exist. 

IV.II. W h a t  is P ( t ) ?  

By reasoning similar to that of  the proof  of  Theorem 1, we derived the 
following estimates for P ( t ) .  Note how closely the estimates are to t / l o g ( t ) .  

TABLE 4 

P(t)(est.) vs. t/log(t) 

t P(t)  (est.) t/Iog(t) 

1 1 . 0 0 0  - -  
2 1.294 2.000 
3 1.549 1.893 
4 1.783 2.000 
5 2.003 2.153 

10 2.983 3.010 
20 4.668 4.628 
50 8.960 8.859 

100 15.191 15.051 
200 26.346 26.164 

Symbol X in position (i , j) is encoded as the number
32× i + j over GF (2)7.
First generation is in UPPER CASE.
Example:

Write-1: symbol “Q” → Encode 32× 1 + 4 in binary :
(0, 1, 0, 0, 1, 0, 0).
Write-2: symbol “b” → Encode 32× 1 + 30 in binary :
(0, 1, 1, 1, 1, 1, 0).

Rate ≈ 1.34.
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0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

O A H G G F Y L  w E Z  Y r  X f  p n D W V z  U d j  o T w k e  l t d u  
1 C S R  c Q i o z P p  i h u e x y O z  s j s n i w v e q g f k b m  
2 B N M z L b g m K u  t b n g f w J w r  h k v x y m j p s o q e i  
3 l k m  q l e k u w t e o s d j v u b d f g e t p y x n l h r z a 

The random womcodes of  the theorem will have an asymptotic rate of  
2/1.29 . . . .  1.5458 .... much better than the rate 1.33... womcode of  Lemma 1. 
However, we could not construct by hand a (2k)Z-womcode of  rate higher 
than 1.33 .... Lemma 4 implies that such a scheme must have k = 7, n = 10 or 
k ~> 9. Using a computer we found a slightly more efficient method with rate 
1 . 3 4  .... 

The new scheme is a (26)2/7-womcode (rate = 1.3429...). So a seven-track 
paper tape is "reusable" for writing just letterst Row i, column j of  Table 3 
gives the value (a letter) of  the 7-bit string with binary value i • 32 + j .  The 
first-generation is in upper case. Thus a "T"  (0011000) is made into an "h"  
by changing bits 1, 2, and 5 (to obtain 1111100). We were unable to find a 
(27)2/7-womcode or to prove one does not exist, although we can prove that 
a (29)2/7 womcode does not exist. 

IV.II. W h a t  is P ( t ) ?  

By reasoning similar to that of  the proof  of  Theorem 1, we derived the 
following estimates for P ( t ) .  Note how closely the estimates are to t / l o g ( t ) .  

TABLE 4 

P(t)(est.) vs. t/log(t) 

t P(t)  (est.) t/Iog(t) 

1 1 . 0 0 0  - -  
2 1.294 2.000 
3 1.549 1.893 
4 1.783 2.000 
5 2.003 2.153 

10 2.983 3.010 
20 4.668 4.628 
50 8.960 8.859 

100 15.191 15.051 
200 26.346 26.164 

Symbol X in position (i , j) is encoded as the number
32× i + j over GF (2)7.
First generation is in UPPER CASE.
Example:

Write-1: symbol “Q” → Encode 32× 1 + 4 in binary :
(0, 1, 0, 0, 1, 0, 0).
Write-2: symbol “b” → Encode 32× 1 + 30 in binary :
(0, 1, 1, 1, 1, 1, 0).

Rate ≈ 1.34.
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Sufficient conditions for achieving capacity

Suppose there are q total symbols and t rewrites.

Let αt−j ,q,m be Pr(y j
i = m) and let

Pr(y
t−(j+1)
i = m|y t−j

i = r) be denoted as αt−i ,q,m|r .

Then, as n→∞, the symbol distributions for a random
capacity achieving code are given by the expressions [1]:

αt−0,q,0 = t
t−1+q

αt−0,q,m =
αt−0,q,0

(q+t−2
t−1 )

(q+t−m−2
t−1

)
αt−i ,q,m|r = α(t−1)−(i−1),q−r ,m−r

We refer to the resulting code as a random recursive (RR) code.

[1] F. Fu and A.J. Han Vinck, “On the capacity of generalized write-once memory with state transitions described

by an arbitrary directed acyclic graph,” IEEE Trans. Inform. Theory, 1999.
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An illustration

Distributions conditioned on the previous level.
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Capacity achieving RR code exhibits regularity.
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Coset Coding [1]

Consider an error correction code C with parity check matrix
H.

Construct a 2-write WOM code as follows:
1 First write: Encode message m1 into codeword c1 such that

Hc1 = m1 and c1 is “low-weight”.
2 Second write: Encode message m2 into codeword c2 = c1 + c ′2

such that Hc ′2 = m1 + m2 and c ′2 � c1.

“Low-weight” means less than the minimum distance. Large
minimum distance implies large first generation codebook.

[1] G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write- once memories,” IEEE Trans. Inform.
Theory, vol. 32, no. 5, Oct. 1986, pp. 697-700.
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Rivest-Shamir code interpretation via coset coding

Let’s consider a 3-repetition code with parity check matrix

H =

[
1 1 0
1 0 1

]

On first write: Hc1 = m1

Information (m1) First Generation (c1)
00 000
01 001
10 010
11 100
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Rivest-Shamir code interpretation via coset coding

Let’s consider a 3-repetition code with parity check matrix

H =

[
1 1 0
1 0 1

]

On second write: Find c ′1 such that Hc ′1 = (m1 + m2) and
c ′1 � c1.

Hc ′1=(11) → c ′1=(100) → c1 + c ′1=(100)+(001)

Information (m2) Second Generation (c2)
00 111
01 110
10 101
11 011
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Recent results on binary WOM codes

Coset coding idea was recently generalized by Wu [1] and
Yaakobi et al. [2].

Using first-order [16, 5, 3] Reed-Muller code as the error
correcting code yields sum-rate of 1.4566. (capacity is 1.58!)

Yields a recursive construction of high-rate t-write binary
WOM codes.

Coset coding idea was further refined by Shpilka [3]: instead
of one fixed matrix, choose an appropriate element from an
ensemble of matrices...capacity achieving scheme!

[1] Y. Wu, Low complexity codes for writing write-once memory twice, Proc. IEEE Int. Symp. Inform. Theory
(ISIT), Austin, Texas, June 2010.
[2] E. Yaakobi et al., “Codes for Write-Once Memories,” IEEE Trans. on Information Theory, Sept. 2012.
[3] A. Shpilka, “New constructions of WOM codes using the Wozencraft ensemble,” LATIN, April 2012.
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Constructing high-rate non-binary WOM codes

1 Begin with good t-write WOM codes over smaller alphabets.

2 Define a mapping into a code with a larger alphabet.

3 Construct a new non-binary code based on these constituents.
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Construction I

Consider q = 2m.

Every cell value is converted into an m-bit binary vector using
binary representation.

For 1 ≤ i ≤ m, the ith bits in each cell compromise a binary
t-write WOM code.

These m binary WOM codes update values independently.

Since each constituent code obeys the WOM constraint,
resultant code also obeys the WOM constraint.
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Construction I

Lemma

If q = 2m and there exists a binary t-write WOM code of sum rate
R, then there exists a q-ary t-write WOM code of sum rate mR.

Immediate extension to the case when q = sm for s > 2.
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An example of Construction I using Rivest and Shamir
write-twice code for q = 8 and n = 3

Rivest-Shamir WOM code

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011

Construction I

Write no. Data bits Encoding by RS code Encoded values

1 (11, 01, 10) (100,001,010) (4,1,2)

2 (00, 11, 01) (101,111,110) (5,7,6)
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Construction II

Assume 3 | q and partition the cell levels into three groups:
{0, . . . q/3− 1}, {q/3, . . . , 2q/3− 1}, {2q/3, . . . 3q − 1}, each
of size q/3.
Let C be a binary two-write WOM code of length n.
First write – write two words:

A binary codeword u ∈ {0, 1}n according to the first write in C.
A message word w ∈ {0, . . . , q/3− 1}n.
For each i , 1 ≤ i ≤ n, if ui = 0 write wi ; if ui = 0 write
wi + q/3.

Second write – write two words:
A binary codeword u ∈ {0, 1}n according to the second write
in C.
A message word w ∈ {0, . . . , q/3− 1}n.
For each i , 1 ≤ i ≤ n, if ui = 0 write wi + q/3; if ui = 0 write
wi + 2q/3.
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Construction II

Lemma

If q = m(t + 1) and there exists a binary t-write WOM code of
sum rate R, then there exists a q-ary t-write WOM code of sum
rate R + t log(m).

Immediate extension to the case when q = m(s + t − 1)
where there exists a s-ary t-write WOM code for s > 2.
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An example of Construction II using Rivest and Shamir
write-twice code for q = 9 and n = 3

Rivest-Shamir WOM code

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011

Construction II

Write no. Information RS code + info Encoded values

1 (0,1),(0,1,2) (001),(012) (0,1,5)

2 (0,0),(2,1,2) (111),(212) (8,7,8)
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Results and comparison

In general, Construction I gives better results for smaller q,
Construction II gives better results for larger q.

q Achieved sum-rate Capacity

4 2.9856 (I) 3.3219
8 4.4784 (I) 5.1699

16 6.3083 (I) 7.0875
32 8.9684 (II) 9.0444
64 10.3083 (II) 11.0244

128 12.3083 (II) 13.0112

Very high rate two-write non-binary WOM codes (outperform
[1,2]).

[1] E. Yaakobi et al., “Efficient two-write WOM codes,” ITW 2010.

[2] Q. Huang, S. Lin and A. S. Abdel-Ghaffar, “Error-correcting codes for flash coding,” Trans. Info. Theory, 2011.
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Facets of WOM and rewriting codes

Reduction of write amplification with a help of WOM code
(Luijie et al., 2012)

WOM codes robust to inter-cell interference (Li, 2011)

Error correction/detection in conjunction with WOM property
e.g., polar codes (Burshtein and Strugatski, 2012)

Codes that maximize the number of writes between
subsequent erases (cf. Floating codes invented by A. Jiang et
al., 2007)
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Further Reading (1/2)

Early Capacity and Code Construction Results

R. L. Rivest and A. Shamir, “How to reuse a “write-once”
memory,” Information and Control, 1982.

J. Wolf et al., “Coding for write-once memory,” IEEE Trans.
on Information Theory, 1984.

C. Heegard, “On the capacity of permanent memory,” IEEE
Trans. on Information Theory, 1985.

F. Fu and A. J. Han Vinck, “On the capacity of generalized
write-once memory with state transitions described by an
arbitrary directed acyclic graph,” IEEE Trans. on Information
Theory,1999.
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Further Reading (2/2)

Recent Works

Q. Huang et al., “Error-correcting codes for flash coding,”
IEEE Trans. on Information Theory, 2011.

E. Yaakobi et al., “Multiple error-correcting WOM-codes,”
IEEE Trans. Info. Theory, 2012.

B. Kurkoski, “Asymptotic rates for lattice-based WOM codes,”
Non-Volatile Memories Workshop, 2012.

R. Gabrys and L. Dolecek, “Bounds and simple constructions
of non-binary write once codes for multilevel flash memories,”
preprint, 2012.

See also WOM Codes Session at IEEE ISIT 2012 as well as papers
at ISIT 2007+.
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Part II
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Rank Modulation
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Difficulties with Flash Memories

Cell array in a flash memory A flash memory cell 
(Floating gate) 

To program (i.e., write) cells, we can only increase cell levels
due to the high cost of block erasure.

Charge injection is a noisy random process.
Thousands of cells are programmed in parallel sharing the
same programming voltage. The worse behavior of cells
determines performance.
There are various mechanisms for noise: Read/Write disturbs,
charge leakage, inter-cell interference, random noise.
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Challenges to Flash Memories

How to program cells reliably? Can we remove the risk of
overshooting (i.e., injecting too much charge into cells)?

When errors appear, can we physically correct cell levels
(instead of just finding out what the errors are via ECC
decoding) without block erasures?

Can we rewrite data easily without block erasures?

Can we balance the cell levels in the same page by adaptively
setting the gaps between adjacent cell levels, during writing
and rewriting?
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Difficulties and Challenges to Phase Change Memories

Increasing and decreasing cell levels have
different cost.

The change of cell levels during programming is
a random process.

Thousands of cells are programmed in parallel
sharing the same programming voltage. The
worst behavior of cells determines performance.

Cell levels drift toward the amorphous state after
programming, which is a serious problem.

How to program cells reliably, fast, and
adaptively?

Outline Introduction Channel modeling and coding techniques Rewritable Channel Theory

A PRIMER ON PCM

! PCM is in essence a programmable variable
resistor with a very large dynamic range
103Ω − 106Ω.

! Similar material used in rewritable DVDs.

! PCM is organized in an array of cells.

! Cells in the same row are accessed
simultaneously during a read/write operation.

! Multiple bits/cell (multiple levels) are feasible
and key to PCM’s expected success.

! There are no fundamental restrictions on what
we might write onto individual cells in a row.

! This is a fundamental advantage over FLASH.
! We may chose not to overwrite existing content

on individual cells.

amorphous
GST

polycrystalline

bottom
electrode

top electrode

The memory cell may be
seen as a composite of
material in two phases:
amorphous (high
resistance) and crystalline
(low resistance).
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Abstract—Resistance drift is one of the most important chal-
lenges for phase-change memories (PCM) to achieve reliable
multi-level cells. Errors occur when resistance drifts across
threshold. A natural idea for achieving drift-resilient is to refresh
cell levels periodically by correcting errors, namely memory
scrubbing. This paper proposes a new multi-phase scrubbing
scheme for PCM. Different from the basic scheme which refreshes
all cells simultaneously during each scrubbing, our scheme
refreshes the cells holding one segment of a codeword at one
time. Errors are corrected at an earlier stage in our scheme
than in the basic scheme without increasing the number of writes
that increases cell erasures. We extend the multi-phase scheme by
storing errors found in the other segments as metadata. Metadata
are used to correct errors before the next segment is scrubbed.
Theoretical analysis and extensive simulations demonstrate that
the multi-phase scheme makes bit error rates stay at a substan-
tially lower level than the basic scheme does. The multi-phase
scheme with metadata outperforms the basic scheme by 3 orders
on the bit error rates measured at the end of the simulations.

I. INTRODUCTION

Phase-change memories (PCM) have drawn significant at-
tention from the data storage community [1]. The resistance
of PCM cell varies with different phases. Data are read by
comparing cell resistance with predetermined thresholds. The
large resistance gap between the crystalline and the amor-
phous phases helps realize multi-level cells (MLC) [2] [3].
However, to achieve reliable MLC for PCM still presents
important challenges. One obstacle is caused by resistance
drift. Cell resistance Rt drifts over time materials, following
Rt = Rt0(

t
t0

)v where Rt0 is the initial cell resistance at
time t0 [1] (and references therein). Resistance distribution
thus shifts and broadens gradually. When resistance drifts
across threshold, errors will occur. An illustrative example of
resistance drift is shown in Fig. 1.

(a) Distributions before drift (b) Distributions after drift

Fig. 1. An illustrative example of resistance drift using 4-level PCM cells.
Horizontal axis: the logarithmic values of resistance; Solid curves: the
resistance distributions of the cell levels; Dotted vertical lines: the resistance
thresholds for distinguishing two adjacent cell levels.

Memory scrubbing—an error checking feature—has been
widely implemented for commodity memories such as RAM
and Flash memories. In a basic scheme, information bits are

encoded with error correcting codes (ECC), the codeword is
periodically read and corrected with decoding. All the cells of
the codeword are cleansed simultaneously at each scrubbing.
The idea of memory scrubbing can be naturally applied to
solve the resistance drift problem.

This paper proposes a new multi-phase memory scrubbing
scheme as an improvement to the basic scheme. In our scheme,
cells holding a codeword are partitioned into segments. During
each phase, the codeword is decoded while only one segment
of cells is refreshed. Moreover, errors found in the other seg-
ments can be stored as metadata. Metadata are used to correct
errors in the next segment before the segment is scrubbed.
Theoretical analysis and extensive simulations demonstrate
that the multi-phase scheme substantially outperforms the
basic scheme on bit error rates.

Due to space limitation, interested readers can refer to [4]
for more details of this paper.

II. MEMORY SCRUBBING

We describe the basic scheme and the multi-phase scheme
with or without metadata. We analyze their theoretical perfor-
mance and do a comparison in a case study.
The basic scheme encodes k information bits with an n-
bit ECC codeword. A codeword is decoded in period t. The
corrected codeword is written to the cells. The resistance of
each cell drifts for the same amount of time before decoding.
The redundancy of this scheme is n − k. Block error occurs
when the number of errors in a codeword exceeds the ECC’s
correction capability c. The block error rate of decoding is
estimated as: Pblk = ∑n

i=c+1 (n
i ) B(t)i(1 − B(t))n−i, where

B(t) is the bit error rate before decoding given scrubbing
period t (see [4] for the formulae expression of B(t)).
The multi-phase scheme partitions cells holding a codeword
into segments. One segment is cleansed during each scrubbing.
More specifically, let the total number of segments be s
and the time interval between two adjacent scrubbings be
t, the ( j mod s)-th segment is refreshed at time j · t for
j = 0, 1, 2 . . . . This scheme has redundancy n − k. Cells
from different segments thus drift for different amount of
time before decoding. The block error rate follows Pblk =
∑n

i=c+1 (n
i )B(t)i(1 − B(t))n−i, where B(t) = 1

s ∑s
i=1 B(i · t)

computes the average bit error rate of all cells.
The multi-phase scheme with metadata extends the multi-
phase scheme by further storing the correct values of the
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Definition of Rank Modulation [1-2]

Rank Modulation:

We use the relative order of cell
levels (instead of their absolute
values) to represent data.

[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for Flash Memories,” in Proc. IEEE
International Symposium on Information Theory (ISIT), pp. 1731–1735, July 2008.

[2] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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Examples and Extensions of Rank Modulation

Example: Use 2 cells to store 1 bit.

Relative order: (1,2)
Value of data: 0

cell 1 cell 2

Relative order: (2,1)
Value of data: 1

cell 1 cell 2

Example: Use 3 cells to store log2 6 bits. The relative orders
(1, 2, 3), (1, 3, 2), · · · , (3, 2, 1) are mapped to data 0, 1, · · · , 5.
In general, k cells can represent log2(k!) bits.
Extensions: (1) We can partition cells into groups, and apply rank
modulation to each group. (2) We can let each rank contain
multiple cells, namely, to extend permutations to multi-set
permutations.
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Advantages of Rank Modulation

Reliable and fast cell programming: No risk of overshooting.

More tolerance of asymmetric noise and cell-level drifting.

Ability to remove errors and balance cell levels by physically
adjusting cell levels: Only the relative order of the cell levels
matters, so we can adaptively increase cell levels.

In the following, we consider “Codes for Rewriting” and
“Error-Correcting Codes”, in the framework of flash memories.
(But many of the concepts can be applied to phase-change
memories, too.)
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Rewriting Codes for Rank Modulation

Issues

Delay onset of errors

Improve reliability

Improve write access

Increase storage capacity

Reduce interference

Techniques

Error correction codes

Codes for rewriting data

Rank modulation (with
rewriting)

Constrained coding

93 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Rewriting Codes for Rank Modulation

Issues

Delay onset of errors

Improve reliability

Improve write access

Increase storage capacity

Reduce interference

Techniques

Error correction codes

Codes for rewriting data

Rank modulation (with
rewriting)

Constrained coding

93 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Rewriting Codes for Rank Modulation

We can change the relative order of cell levels by only increasing
cell levels, and therefore rewrite data.

Example: Use 3 cells to store data of 6 possible values: 0, 1, · · · , 5.
When the data change as 0→ 1→ 2→ 5→ 3→ · · · , the cell
state changes as:

Cell state: (1,2,3)

Data: 0

(1,3,2)

1

(2,1,3)

2

(3,2,1)

5

(2,3,1)

3

94 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Prefix Codes with Push-to-Top Operation

Push-to-Top operation: Each time, we push one cell’s level to be
higher than all the other cells’ levels. (It is easy to implement.)

Example: Say we need to change the permutation from (1, 2, 3, 4)
to (4, 3, 1, 2).

(1,2,3,4) (3,1,2,4) (4,3,1,2)

Cost of Rewriting: The number of cells that are pushed. (It
represents by how much the highest cell level is increased.)
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Prefix Codes with Push-to-Top Operation

Prefix Code: We use the prefixes of the permutations to represent
data. Those prefixes cannot be prefixes of each other.

Intuitive reason: When we push cells to the top, we are changing
the prefix of the permutation.

Example: We use 3 cells to represent data of 6 values. Use prefixes
of length 2: (1,2, 3), (1,3, 2), (2,1, 3), (2,3, 1), (3,1, 2), (3,2, 1).
The maximum rewriting cost is 2.

Example: Use 3 cells to represent data of 3 values. Use prefixes of
length 1: (1, ∗, ∗), (2, ∗, ∗), (3, ∗, ∗). Maximum rewriting cost is 1.

There is a tradeoff between code rate and rewriting cost.
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State Diagram for Permutations

State Diagram: Vertices are permutations. There is a directed
edge (u, v) from u to v if the cost of changing u to v is 1, with
the push-to-top operation.

In general, the cost of changing u to v equals the length of the
shortest path from u to v in the state graph.

Example: 3 cells. The state diagram is:

(1,2,3) (3,1,2) (2,3,1)

(2,1,3) (1,3,2) (3,2,1)
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Mapping Permutations to Data Values

By mapping permutations to data values appropriately (with
dominating set type of partitions in the state diagram), we can
minimize the maximum rewriting cost.

Example: Use 3 cells to store data of 3 values. With the following
mapping, the maximum rewriting cost is 1.

(1,2,3) (3,1,2) (2,3,1)

(2,1,3) (1,3,2) (3,2,1)

0

0

2

2

1

1

98 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Mapping Permutations to Data Values

By mapping permutations to data values appropriately (with
dominating set type of partitions in the state diagram), we can
minimize the maximum rewriting cost.

Example: Use 3 cells to store data of 3 values. With the following
mapping, the maximum rewriting cost is 1.

(1,2,3) (3,1,2) (2,3,1)

(2,1,3) (1,3,2) (3,2,1)

0

0

2

2

1

1

98 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Basic Concepts

n: The number of cells.

Sn: The set of n! permutations.

d(u, v): The distance from u ∈ Sn to v ∈ Sn in the state graph.

We define the ball Br (u) as Br (u) = {v ∈ Sn | d(u, v) ≤ r}.
V : The set of values of the stored data.

The rate of the code is define as log2 |V |
log2(n!) .

Since for any u, v ∈ Sn, |Br (u)| = |Br (v)|, let |Br | , |Br (u)|.
Fact 1: |Br | = n!

(n−r)! , which equals the number of prefixes of
length r .

Fact 2: If maximum rewrite cost = r , code rate ≤ log2 |Br |
log2(n!) .
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Optimal Code That Minimizes Maximum Rewrite Cost

Given n and |V |, how to build a rewriting code that minimizes the
maximum (i.e., worst-case) rewrite cost?

Let ρ be the smallest integer such that |Bρ| ≥ |V |.
Fact: The maximum rewrite cost is at least ρ.

Construction (Optimal Prefix Code)

Choose |V | prefixes (of permutations) of length ρ. Map
permutations of the same prefix to the same data value.
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Optimal Code That Minimizes Maximum Rewrite Cost

Example: Say we are given 4 cells to store log2 10 bits. Since there
are only 4 prefixes of length 1 but 12 ≥ 10 prefixes of length 2, we
should choose prefixes of length 2, and the maximum rewrite cost
is 2.

We can map prefixes to data values as follows:
Prefix (1,2) (1,3) (1,4) (2,1) (2,3)

Data 0 1 2 3 4

Prefix (2,4) (3,1) (3,2) (3,4) (4,1)

Data 5 6 7 8 9

All permutations with the same prefix represent the same data. For
example, (1, 2, 3, 4) and (1, 2, 4, 3) represent the same data 0.

101 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Optimal Code That Minimizes Maximum Rewrite Cost

Example (continued): Now consider rewriting. Say the current cell
state (permutation) is (1, 2, 3, 4), which represents data 0. We
want to change the data to 7. How to do it?

Solution: Choose a permutation such that: (1) Its prefix represents
7; (2) The remaining numbers have the same order as in the
original permutation (1, 2, 3, 4). So we choose (3, 2, 1, 4) as the
new permutation. Then the process of cell programming with
push-to-top operations is as follows:

(1,2,3,4) (2,1,3,4) (3,2,1,4)
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want to change the data to 7. How to do it?

Solution: Choose a permutation such that: (1) Its prefix represents
7; (2) The remaining numbers have the same order as in the
original permutation (1, 2, 3, 4). So we choose (3, 2, 1, 4) as the
new permutation. Then the process of cell programming with
push-to-top operations is as follows:

(1,2,3,4) (2,1,3,4) (3,2,1,4)
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Rewriting Codes for Average-case Performance

Model: The sequence of rewritten data are i.i.d., with a known
distribution. We want to minimize the expected cost of rewriting.

Let n denote the number of cells, and |V | denote the number of
data values. We will present a prefix code with the following
performance:

Construction (Prefix Code for Expected Rewriting Cost)

We present a prefix code with this performance: For every rewrite
(not just for a sequence of rewrites), when |V | ≤ n!

2 , its expected
rewrite cost is at most 3 times the optimal expected cost; when
n ≥ 4 and |V | ≤ n!

6 , it is at most 2 times the optimal.
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Observation: The n! permutations can be represented by a tree. Their

prefix-free prefixes can be represented by the leaves of a subtree.

Example: The tree for permutations of length n = 4 is:

!""!#!

!

$#"$!$!

#

#

#

$#"#$"!"$#$!

"

#"

!
#"

$

$

#!!##!!

"$!"$!#

"

"$

!
#"

$%&'

%('

!

!"#$#%&!"#$#'&

!"#%&!"#'&!$#"&!$#%&!$#'&

!%&!'&

$ "

#"$

# ! $ $"

"$#"$$"

!"#$%& ') *+,!- +(./ 01234(561. 712, 81+ n = 4 (.2 q = 9) %(' 9:, 8344
;,+035(561. 5+,, T) %&' < ;+,!- 712, +,;+,=,.5,2 &> ( =3&5+,, C 18 T) 9:,
4,(?,= +,;+,=,.5 5:, 712,@1+2=A @:67: (+, 5:, 4(&,4= &,=62, 5:, 4,(?,=)

B1+ i ∈ QA 4,5 ci 2,.15, 5:, 712,@1+2 +,;+,=,.56.C iA (.2
4,5 |ci| 2,.15, 65= 4,.C5:) %9:, 712,@1+2= 6. B6C) "%&' :(?,
06.6030 4,.C5: 18 1 (.2 0(-6030 4,.C5: 18 3)' D3+ 1&E,756?,
6= 51 !"#"!"$% &'% ()%*(+% ,-.%/-*. 0%#+&'A ∑q

i=1 pi |ci|A
@:67: 3;;,+ &13.2= 5:, ,-;,75,2 71=5 18 ,(7: +,@+65,)
9:, 1;560(4 ;+,!- 712, 7(..15 &, 71.=5+375,2 @65: ( C+,,2>

(4C1+65:0 46/, 5:, F3880(. 712, (.2 65= ,-5,.=61.=A &,7(3=,
5:, ?,+5,- 2,C+,,= 6. 5:, 712, 5+,, C (+, 3./.1@. 6.656(44>) G,
;+,=,.5 ( 2>.(067 ;+1C+(006.C (4C1+65:0 18 560, 710;4,-65>
O(nq4) 51 71.=5+375 5:, 1;560(4 712,)
9:, (4C1+65:0 710;35,= ( =,5 18 83.7561.= opti(!, m)A

81+ i = 1, 2, . . . , n − 1A ! = 0, 1, . . . , qA (.2 m =
0, 1, . . . , min{q, n!/(n − i)!}) G, 6.5,+;+,5 5:, 0,(.6.C 18
opti(!, m) (= 81441@=) G, 5(/, ( =3&5+,, 18 T 5:(5 71.5(6.=
5:, +115) 9:, =3&5+,, :(= ,-(754> ! 4,(?,= 6. 5:, 4(>,+=
i, i + 1, . . . , n − 1) H5 (4=1 :(= (5 01=5 m ?,+567,= 6. 5:, 4(>,+ i)
G, 4,5 5:, ! 4,(?,= +,;+,=,.5 5:, ! 6.;35 ?(43,= 8+10 Q @65: 5:,
41@,=5 ;+1&(&64656,= pjI 5:, 83+5:,+ 5:, 4,(8 6= 8+10 5:, +115A 5:,
41@,+ 5:, 71++,=;1.26.C ;+1&(&6465> 6=) 9:1=, 4,(?,= (+, (4=1 !
712,@1+2=A (.2 @, 7(44 5:,6+ @,6C:5,2 (?,+(C, 4,.C5: %@:,+,
5:, ;+1&(&64656,= pj (+, @,6C:5=' 5:, )(01% 18 5:, =3&5+,,) 9:,
06.6030 ?(43, 18 =37: ( =3&5+,, %(01.C (44 =37: =3&5+,,='
6= 2,!.,2 51 &, opti(!, m)) J4,(+4>A 5:, !"#"!1! ()%*(+%
,-.%/-*. 0%#+&' 18 ( ;+,!- 712, ,K3(4= opt1(q, n))
G65:135 41== 18 C,.,+(465>A 4,5 3= (==30, 5:(5 p1 ! p2 !

· · · ! pq) H5 6= ,(=64> =,,. 5:(5 5:, 81441@6.C +,73+=61.
:142=I %$' optn−1(!, m) = (n − 1) ∑!

k=1 pk 81+ m " ! >
0L %"' opti(0, m) = 0 81+ i > 1L %#' opti(!, m) =
min0! j!min{!,m}{opti+1(! − j, min{q, (m − j)(n − i)}) +

∑!
k=!− j+1 ipk} 81+ i < n − 1, ! > 0, m > 0) 9:, 4(=5
+,73+=61. :142= &,7(3=, ( =3&5+,, @65: ! 4,(?,= 6. 4(>,+=
i, i + 1, . . . , n − 1 (.2 (5 01=5 m ?,+567,= 6. 4(>,+ i 7(. :(?,
0, 1, . . . , min{!, m} 4,(?,= 6. 4(>,+ i)
9:, (4C1+65:0 710;35,= optn−1(!, m)A optn−2(!, m)A · · · A

opt1(q, n) 3=6.C 5:, (&1?, +,73+=61.=) M6?,. 5:,6+ ?(43,=A
65 6= =5+(6C:581+@(+2 51 2,5,+06., 6. 5:, 1;560(4 712,A :1@
0(.> 712,@1+2= (+, 6. ,(7: 4(>,+A (.2 5:,+,81+, 2,5,+06.,
5:, 1;560(4 712, 65=,48) B1+ +,@+656.C &(=,2 1. 5:, 712,A 51
7:(.C, 5:, =51+,2 ?(43, 51 i ∈ QA @, =60;4> ;3=: 5:, |ci| 7,44=
6. 65= 712,@1+2 ci 51 5:, 51; =,K3,.56(44>)

()&*%&+ ,-. G:,. q ! n!/2A 81+ %)%*2 +,@+65,A 5:, ,-;,75,2
+,@+656.C 71=5 18 (. 1;560(4 ;+,!- 712, 6= (5 01=5 5:+,, 560,=

5:(5 18 (#2 +(./ 01234(561. 712,) G:,. n " 4 (.2 q ! n!/6A
5:6= +(561 6= (5 01=5 5@1)

3*--45 G, ;+,=,.5 5:, 67%&,' -4 &'% 8*--4 81+ 5:, 7(=,
q ! n!/2) %9:, 7(=, n " 4 (.2 q ! n!/6 7(. &, (.(4>N,2
=6064(+4>)' B1+ 5:, 2,5(64,2 ;+118A ;4,(=, +,8,+ 51 OPQ) R,5 i ∈ Q
%+,=;)A si ∈ Sn' 2,.15, 5:, =51+,2 2(5( %+,=;)A 7,44 =5(5,' (5
( C6?,. 010,.5) R,5 s1, · · · , si−1, si+1, · · · , sq 2,.15, 5:,
q − 1 7,44 =5(5,= @:1=, 26=5(.7, 8+10 si 6. 5:, &*(#6"&"-#
+*(8'A d(si , s j)A (+, 5:, =0(44,=5 1.,=) GRDMA (==30, 5:(5
p1 " · · · " pi−1 " pi+1 " · · · " pqA (.2 5:(5
d(si , s1) ! · · · ! d(si , si−1) ! d(si , si+1) ! · · · ! d(si , sq))
91 06.606N, 5:, ,-;,75,2 +,@+656.C 71=5A 5:, 62,(4 =143561. 6= (
712, 5:(5 2,712,= s j (= j 81+ j ∈ Q) S,.15, &> α 5:, ,-;,75,2
+,@+656.C 71=5 18 5:6= 62,(4 =143561.) T,-5A @, 2,=6C. ( ;+,!-
712, B @65: 5:6= ;+1;,+5>I ∀ j ∈ QA 68 j $= iA 65= 71++,=;1.26.C
712,@1+2 4,.C5:A yjA 6= (5 01=5 3d(si , s j)L 68 j = iA 5:,.
yj = 1) H5 7(. &, ;+1?,2 5:(5 =37: ( ;+,!- 712, B ,-6=5=)
T,-5A 4,5 A &, (. 1;560(4 ;+,!- 712,A (.2 81+ j ∈ QA 4,5 xj
2,.15, 5:, 71++,=;1.26.C 712,@1+2 4,.C5:) R,5 β 2,.15, 5:,
,-;,75,2 +,@+656.C 71=5 18 A) U> 2,!.6561.A ∑1! j!q p jx j !
∑1! j!q p j y j) V6.7, xi " 1 = yiA β ! ∑1! j!q, j $=i p jx j !
∑1! j!q, j $=i p j y j ! ∑1! j!q, j $=i 3pjd(si , s j) = 3α) V1 5:,
,-;,75,2 +,@+656.C 71=5 18 (. 1;560(4 ;+,!- 712, 6= (5 01=5
5:+,, 560,= 5:(5 18 (. 62,(4 +(./ 01234(561. 712,)

W) JDTJRXVHDT
H. 5:6= ;(;,+A @, ;+,=,.5 ( .1?,4 2(5( =51+(C, =7:,0,A *(#7

!-.10(&"-#A 81+ "(=: 0,01+6,=) G, ;+,=,.5 =,?,+(4 M+(> 712,
71.=5+37561.= 81+ +(./ 01234(561.A (= @,44 (= 65= 2(5( +,@+656.C
=7:,0,=) 9:, ;+,=,.5,2 7126.C =7:,0,= (+, 1;5606N,2 81+ 7,44
;+1C+(006.C 71=5 6. =,?,+(4 2688,+,.5 (=;,75=)

YZBZYZTJZV
O$Q <) U(.2>1;(2:>(>A M) [) V,++(.1A (.2 *) F(=4,+A \*+1C+(006.C (.(41C

710;35(561.(4 0,01+> ,4,0,.5= 51 ])"^ (773+(7> 1?,+ #)_ 2,7(2,=
3=6.C ( ;+,26756?, 0,5:12À 6. 3*-,%%."#+6 -4 &'% 9::: 9#&%*#(&"-#(0
;2!8-6"1! -# <"*,1"&6 (#. ;26&%!6A "]]_A ;;) "$!ab"$_$)

O"Q *) J(;;,44,556 (.2 <) c12,446A \B4(=: 0,01+> +,46(&6465>À 6. =0(6'
>%!-*"%6A *) J(;;,44,556A J) M144(A *) D46?1A (.2 Z) d(.1.6A Z2=)
e43@,+A $fffA ;;) #ffb!!$)

O#Q U) Z65(. (.2 <) Y1>A \U6.(+> (.2 034564,?,4 "(=: 7,44=À 6. =0(6'
>%!-*"%6A *) J(;;,44,556A J) M144(A *) D46?1A (.2 Z) d(.1.6A Z2=)
e43@,+A $fffA ;;) f$b$_")

O!Q B) M+(>A \*34=, 712, 71003.67(561.À X)V) *(5,.5 "g#"]_aA c(+7: $f_#)
O_Q c) M+1==6A c) R(.N1.6A (.2 U) Y677h1A \*+1C+(0 =7:,0,= 81+ 034564,?,4

"(=: 0,01+6,=À 3*-,%%."#+6 -4 &'% 9:::A ?14) f$A .1) !A ;;) _f!bg]$A
"]]#)

OgQ <) [6(.CA W) U1:1==6(.A (.2 [) U+37/A \B41(56.C 712,= 81+ E16.5 6.81+0(i
561. =51+(C, 6. @+65, (=>00,5+67 0,01+6,=À 6. 3*-,? 9::: 9;9@A "]]PA
;;) $$ggb$$P])

OPQ <) [6(.CA Y) c(5,,=73A c) V7:@(+5NA (.2 [) U+37/A \Y(./ 01234(561.
81+ "(=: 0,01+6,=À J(4681+.6( H.=56535, 18 9,7:.141C>A 9,7:) Y,;)A
"]]a) OD.46.,Q) <?(64(&4,I :55;Ijj@@@);(+(26=,)7(45,7:),23j,5+):504

OaQ <) [6(.CA c) V7:@(+5NA (.2 [) U+37/A \Z++1+i71++,756.C 712,= 81+ +(./
01234(561.À 6. 3*-,? 9::: 9;9@A "]]a)

OfQ F) T1&3/(5( ,5 (4)A \< $!!ic&A ,6C:5i4,?,4 T<TS "(=: 0,01+>
@65: 1;5606N,2 ;34=,@625: ;+1C+(006.CÀ 9::: A? ;-0".B;&(&% <"*,1"&6A
?14) #_A .1) _A ;;) ga"bgf]A "]]])

O$]Q J) S) V(?(C,A \< =3+?,> 18 710&6.(51+6(4 M+(> 712,=À ;9C> D%)?A
?14) #fA .1) !A ;;) g]_bg"fA $ffP)

O$$Q Y) V,2C,@67/A \*,+035(561. C,.,+(561. 0,5:12=À <-!81&"#+ ;1*)%26A
?14) fA .1) "A ;;) $#Pb$g!A $fPP)

And the following subtree represents a prefix code of 9 codewords:!""!#!
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!"#$%& ') *+,!- +(./ 01234(561. 712, 81+ n = 4 (.2 q = 9) %(' 9:, 8344
;,+035(561. 5+,, T) %&' < ;+,!- 712, +,;+,=,.5,2 &> ( =3&5+,, C 18 T) 9:,
4,(?,= +,;+,=,.5 5:, 712,@1+2=A @:67: (+, 5:, 4(&,4= &,=62, 5:, 4,(?,=)

B1+ i ∈ QA 4,5 ci 2,.15, 5:, 712,@1+2 +,;+,=,.56.C iA (.2
4,5 |ci| 2,.15, 65= 4,.C5:) %9:, 712,@1+2= 6. B6C) "%&' :(?,
06.6030 4,.C5: 18 1 (.2 0(-6030 4,.C5: 18 3)' D3+ 1&E,756?,
6= 51 !"#"!"$% &'% ()%*(+% ,-.%/-*. 0%#+&'A ∑q

i=1 pi |ci|A
@:67: 3;;,+ &13.2= 5:, ,-;,75,2 71=5 18 ,(7: +,@+65,)
9:, 1;560(4 ;+,!- 712, 7(..15 &, 71.=5+375,2 @65: ( C+,,2>

(4C1+65:0 46/, 5:, F3880(. 712, (.2 65= ,-5,.=61.=A &,7(3=,
5:, ?,+5,- 2,C+,,= 6. 5:, 712, 5+,, C (+, 3./.1@. 6.656(44>) G,
;+,=,.5 ( 2>.(067 ;+1C+(006.C (4C1+65:0 18 560, 710;4,-65>
O(nq4) 51 71.=5+375 5:, 1;560(4 712,)
9:, (4C1+65:0 710;35,= ( =,5 18 83.7561.= opti(!, m)A

81+ i = 1, 2, . . . , n − 1A ! = 0, 1, . . . , qA (.2 m =
0, 1, . . . , min{q, n!/(n − i)!}) G, 6.5,+;+,5 5:, 0,(.6.C 18
opti(!, m) (= 81441@=) G, 5(/, ( =3&5+,, 18 T 5:(5 71.5(6.=
5:, +115) 9:, =3&5+,, :(= ,-(754> ! 4,(?,= 6. 5:, 4(>,+=
i, i + 1, . . . , n − 1) H5 (4=1 :(= (5 01=5 m ?,+567,= 6. 5:, 4(>,+ i)
G, 4,5 5:, ! 4,(?,= +,;+,=,.5 5:, ! 6.;35 ?(43,= 8+10 Q @65: 5:,
41@,=5 ;+1&(&64656,= pjI 5:, 83+5:,+ 5:, 4,(8 6= 8+10 5:, +115A 5:,
41@,+ 5:, 71++,=;1.26.C ;+1&(&6465> 6=) 9:1=, 4,(?,= (+, (4=1 !
712,@1+2=A (.2 @, 7(44 5:,6+ @,6C:5,2 (?,+(C, 4,.C5: %@:,+,
5:, ;+1&(&64656,= pj (+, @,6C:5=' 5:, )(01% 18 5:, =3&5+,,) 9:,
06.6030 ?(43, 18 =37: ( =3&5+,, %(01.C (44 =37: =3&5+,,='
6= 2,!.,2 51 &, opti(!, m)) J4,(+4>A 5:, !"#"!1! ()%*(+%
,-.%/-*. 0%#+&' 18 ( ;+,!- 712, ,K3(4= opt1(q, n))
G65:135 41== 18 C,.,+(465>A 4,5 3= (==30, 5:(5 p1 ! p2 !

· · · ! pq) H5 6= ,(=64> =,,. 5:(5 5:, 81441@6.C +,73+=61.
:142=I %$' optn−1(!, m) = (n − 1) ∑!

k=1 pk 81+ m " ! >
0L %"' opti(0, m) = 0 81+ i > 1L %#' opti(!, m) =
min0! j!min{!,m}{opti+1(! − j, min{q, (m − j)(n − i)}) +

∑!
k=!− j+1 ipk} 81+ i < n − 1, ! > 0, m > 0) 9:, 4(=5
+,73+=61. :142= &,7(3=, ( =3&5+,, @65: ! 4,(?,= 6. 4(>,+=
i, i + 1, . . . , n − 1 (.2 (5 01=5 m ?,+567,= 6. 4(>,+ i 7(. :(?,
0, 1, . . . , min{!, m} 4,(?,= 6. 4(>,+ i)
9:, (4C1+65:0 710;35,= optn−1(!, m)A optn−2(!, m)A · · · A

opt1(q, n) 3=6.C 5:, (&1?, +,73+=61.=) M6?,. 5:,6+ ?(43,=A
65 6= =5+(6C:581+@(+2 51 2,5,+06., 6. 5:, 1;560(4 712,A :1@
0(.> 712,@1+2= (+, 6. ,(7: 4(>,+A (.2 5:,+,81+, 2,5,+06.,
5:, 1;560(4 712, 65=,48) B1+ +,@+656.C &(=,2 1. 5:, 712,A 51
7:(.C, 5:, =51+,2 ?(43, 51 i ∈ QA @, =60;4> ;3=: 5:, |ci| 7,44=
6. 65= 712,@1+2 ci 51 5:, 51; =,K3,.56(44>)

()&*%&+ ,-. G:,. q ! n!/2A 81+ %)%*2 +,@+65,A 5:, ,-;,75,2
+,@+656.C 71=5 18 (. 1;560(4 ;+,!- 712, 6= (5 01=5 5:+,, 560,=

5:(5 18 (#2 +(./ 01234(561. 712,) G:,. n " 4 (.2 q ! n!/6A
5:6= +(561 6= (5 01=5 5@1)

3*--45 G, ;+,=,.5 5:, 67%&,' -4 &'% 8*--4 81+ 5:, 7(=,
q ! n!/2) %9:, 7(=, n " 4 (.2 q ! n!/6 7(. &, (.(4>N,2
=6064(+4>)' B1+ 5:, 2,5(64,2 ;+118A ;4,(=, +,8,+ 51 OPQ) R,5 i ∈ Q
%+,=;)A si ∈ Sn' 2,.15, 5:, =51+,2 2(5( %+,=;)A 7,44 =5(5,' (5
( C6?,. 010,.5) R,5 s1, · · · , si−1, si+1, · · · , sq 2,.15, 5:,
q − 1 7,44 =5(5,= @:1=, 26=5(.7, 8+10 si 6. 5:, &*(#6"&"-#
+*(8'A d(si , s j)A (+, 5:, =0(44,=5 1.,=) GRDMA (==30, 5:(5
p1 " · · · " pi−1 " pi+1 " · · · " pqA (.2 5:(5
d(si , s1) ! · · · ! d(si , si−1) ! d(si , si+1) ! · · · ! d(si , sq))
91 06.606N, 5:, ,-;,75,2 +,@+656.C 71=5A 5:, 62,(4 =143561. 6= (
712, 5:(5 2,712,= s j (= j 81+ j ∈ Q) S,.15, &> α 5:, ,-;,75,2
+,@+656.C 71=5 18 5:6= 62,(4 =143561.) T,-5A @, 2,=6C. ( ;+,!-
712, B @65: 5:6= ;+1;,+5>I ∀ j ∈ QA 68 j $= iA 65= 71++,=;1.26.C
712,@1+2 4,.C5:A yjA 6= (5 01=5 3d(si , s j)L 68 j = iA 5:,.
yj = 1) H5 7(. &, ;+1?,2 5:(5 =37: ( ;+,!- 712, B ,-6=5=)
T,-5A 4,5 A &, (. 1;560(4 ;+,!- 712,A (.2 81+ j ∈ QA 4,5 xj
2,.15, 5:, 71++,=;1.26.C 712,@1+2 4,.C5:) R,5 β 2,.15, 5:,
,-;,75,2 +,@+656.C 71=5 18 A) U> 2,!.6561.A ∑1! j!q p jx j !
∑1! j!q p j y j) V6.7, xi " 1 = yiA β ! ∑1! j!q, j $=i p jx j !
∑1! j!q, j $=i p j y j ! ∑1! j!q, j $=i 3pjd(si , s j) = 3α) V1 5:,
,-;,75,2 +,@+656.C 71=5 18 (. 1;560(4 ;+,!- 712, 6= (5 01=5
5:+,, 560,= 5:(5 18 (. 62,(4 +(./ 01234(561. 712,)

W) JDTJRXVHDT
H. 5:6= ;(;,+A @, ;+,=,.5 ( .1?,4 2(5( =51+(C, =7:,0,A *(#7

!-.10(&"-#A 81+ "(=: 0,01+6,=) G, ;+,=,.5 =,?,+(4 M+(> 712,
71.=5+37561.= 81+ +(./ 01234(561.A (= @,44 (= 65= 2(5( +,@+656.C
=7:,0,=) 9:, ;+,=,.5,2 7126.C =7:,0,= (+, 1;5606N,2 81+ 7,44
;+1C+(006.C 71=5 6. =,?,+(4 2688,+,.5 (=;,75=)

YZBZYZTJZV
O$Q <) U(.2>1;(2:>(>A M) [) V,++(.1A (.2 *) F(=4,+A \*+1C+(006.C (.(41C
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Rewriting Codes for Average-case Performance [1]

Construction (Prefix Code for Expected Rewriting Cost)

Build a prefix code that minimizes the expected length of the codewords
(i.e., prefixes). The code construction has time complexity O(n|V |4), and
achieves approximation ratios as introduced previously (compared to any
code, not just prefix code).

Example: Let n = 4, |V | = 9. Let the probabilities and a code be as
follows. Then the expected codeword length is:
p0 + p1 + 2p2 + 2p3 + 2p4 + 2p5 + 2p6 + 3p7 + 3p8.

Data 0 1 2 3 4 5 6 7 8
Probability p0 p1 p2 p3 p4 p5 p6 p7 p8
Codewords (1) (2) (3, 1) (3, 2) (3, 4) (4, 1) (4, 2) (4, 3, 1) (4, 3, 2)

[1] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for Flash Memories,” in IEEE

Transactions on Information Theory, vol. 55, no. 6, pp. 2659–2673, June 2009.
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Rewriting Codes for Average-case Performance

Idea of Proof: Consider a rewrite. Ideally, which code will minimize the
expected rewrite cost for this rewrite?

Assume the data before rewriting is i ∈ {0, 1, · · · , |V | − 1}. Without loss
of generality, assume

p0 ≥ p1 ≥ · · · ≥ p|V |−1.

Then the following “ideal code” minimizes the expected rewrite cost for
this rewrite:

Let u ∈ Sn denote the permutation before the rewrite. Sort the n!
permutations as v0, v1, · · · , vn!−1 such that the rewrite cost

d(u, v0) ≤ d(u, v1) ≤ · · · ≤ d(u, vn!−1).

Map v0, v1, · · · , v|V |−1 to data i , 0, 1, · · · , i − 1, i + 1, · · · , |V | − 1,
respectively.
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Rewriting Codes for Average-case Performance

Idea of Proof (continued): Consider the case |V | ≤ n!
2 . By the

Kraft-McMilan Inequality, there exists a subtree of the tree for
permutations, where the |V | data values are mapped to its leaves, such
that:

The codeword for data i has length 1.

For every other data value i ∈ {0, 1, · · · , |V | − 1} − {i}, its
codeword’s length is at most 3 times of its corresponding “ideal
codeword length”.

This subtree is a “specific code” for this rewrite.
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Rewriting Codes for Average-case Performance

Idea of Proof (continued): We have:

Expected rewrite cost of the constructed prefix code

≤ Expected codeword length of the constructed prefix code, but
excluding data i

≤ Expected codeword length of the “specific prefix code” in the
previous slide, but excluding data i

≤ 3 × Expected rewrite cost of the “ideal code.”

When n ≥ 4 and |V | ≤ n!
6 , similar proof applies.
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Rewriting Codes with Minimal-Push-Up Operation [1]

Push-to-top is simple, but not necessary optimal (in minimizing
rewrite cost).

Minimal-Push-Up operation: Each time, we push one cell’s level
to be higher than those cells that should be below it in the final
permutation (instead of higher than all the other cells).

Note: For both push-to-top and minimal-push-up, cells are pushed
in the same order. The difference is by how much cell levels are
pushed.

[1] E. En Gad, A. Jiang and J. Bruck, “Compressed Encoding for Rank Modulation,” in Proc. IEEE International

Symposium on Information Theory (ISIT), pp. 849–853, St. Petersburg, Russia, August 2011.
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Rewriting Codes with Minimal-Push-Up Operation

Example: We want to change the permutation from (2, 1, 3, 4) to
(2, 1, 4, 3).

(2,1,3,4) (4,2,1,3) (1,4,2,3) (2,1,4,3)

Push-to-Top:

(2,1,3,4) (2,1,4,3)

Minimal-Push-Up:
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Rewriting Codes with Minimal-Push-Up Operation

To measure rewrite cost, we use discrete “virtual levels.”

Example: Changing (2, 1, 3, 4) to (2, 1, 4, 3).

(2,1,3,4) (2,1,4,3)

Since highest virtual level increases by 1, rewrite cost = 1.
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Rewriting Codes with Minimal-Push-Up Operation

Definition (Ball of Radius r)

Given u ∈ Sn and non-negative integer r , let Br (u) be the set of
permutations such that changing u to them has rewrite cost at
most r .

With push-to-top operations, |Br (u)| = n!
(n−r)! .

Example: When r = 1, |Br (u)| = n.

With minimal-push-up, |Br (u)| = r !(r + 1)n−r .
Example: When r = 1, |Br (u)| = 2n−1.

So minimal-push-up can improve performance significantly.
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Example of Specific Rewriting Code with Minimal-Push-Up Operation [1]

Given Parameters: Use n = 4 cells to store data of |V | = 6 values, and
maximum rewrite cost= 1.

In the rewrite code, the mapping from permutations to data is:
Permutations (1,2,3,4) (1,2,4,3) (1,3,2,4) (1,3,4,2) (1,4,2,3) (1,4,3,2)

(2,3,4,1) (2,4,3,1) (3,2,4,1) (3,4,2,1) (4,2,3,1) (4,3,2,1)
(3,4,1,2) (4,3,1,2) (2,4,1,3) (4,2,1,3) (2,3,1,4) (3,2,1,4)
(4,1,2,3) (3,1,2,4) (4,1,3,2) (2,1,3,4) (3,1,4,2) (2,1,4,3)

Data 0 1 2 3 4 5

Proof of correctness: Each coset of permutations is a dominating set.

In comparison, with push-to-top operations, when n = 4 and r = 1, the
stored data can have at most 4 values. So minimal-push-up can achieve
higher rate. But currently, relatively less is known about its codes than
push-to-top coding.

[1] E. En Gad, A. Jiang and J. Bruck, “Compressed Encoding for Rank Modulation,” in Proc. IEEE International

Symposium on Information Theory (ISIT), pp. 849–853, St. Petersburg, Russia, August 2011.
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Further reading (1/3)
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A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank
Modulation for Flash Memories,” Proc. ISIT, pp. 1731–1735, 2008.

A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank
Modulation for Flash Memories,” IEEE Transactions on Information
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Error-Correcting Codes for Rank Modulation

Issues

Delay onset of errors

Improve reliability

Improve write access

Increase storage capacity

Reduce interference

Techniques

Error correction codes

Codes for rewriting data

Rank modulation (with error
correction)

Constrained coding
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Error Models and Distance between Permutations

Based on the error model, there are various reasonable choices for
the distance between permutations:

Kendall-tau distance. (To be introduced in detail.)

L∞ distance.

Gaussian noise based distance.

Distance defined based on asymmetric errors or inter-cell
interference.

We should choose the distance appropriately based on the type and
magnitude of errors.
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Kendall-tau Distance for Rank Modulation ECC [1]

When errors happen, the smallest change in a permutation is the local
exchange of two adjacent numbers in the permutation. That is,

(a1, · · · , ai−1, ai , ai+1, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai , ai+2, · · · , an)

Example:

(2,1,5,3,4) (2,1,3,5,4)

Original Cell Levels Noisy Cell Levels

We can extend the concept to multiple such “local exchanges” (for larger
errors).
[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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Kendall-tau Distance for Rank Modulation ECC

Definition (Adjacent Transposition)

An adjacent transposition is the local exchange of two neighboring
numbers in a permutation, namely,

(a1, · · · , ai−1, ai , ai+1, ai+2, · · · , an) → (a1, · · · , ai−1, ai+1, ai , ai+2, · · · , an)

Definition (Kendall-tau Distance)

Given two permutations A and B, the Kendall-tau distance between
them, dτ (A,B), is the minimum number of adjacent transpositions
needed to change A into B. (Note that dτ (A,B) = dτ (B,A).)

If the minimum Kendall-tau distance of a code is 2t+1, then it can

correct t adjacent transposition errors.
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Kendall-tau Distance for Rank Modulation ECC

Example: Let A = (2, 1, 3, 4) and B = (2, 3, 4, 1). Then dτ (A,B) = 2,
and the transition from A to B is

A = (2, 1, 3, 4)→ (2, 3,1, 4)→ (2, 3, 4,1) = B.

Fact: For two permutations A,B ∈ Sn, dτ (A,B) ≤
(
n
2

)
.

Definition (State Diagram)

Vertices are permutations. There is an undirected edge between two
permutations A,B ∈ Sn iff dτ (A,B) = 1.

Example: The state diagram for n = 3 cells is

(1,2,3)
(2,1,3)

(1,3,2)

(2,3,1)

(3,1,2)
(3,2,1)
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Kendall-tau Distance for Rank Modulation ECC

Example: The state diagram for n = 4 cells is

1234 

2134 

3124 

4123 

3214 

4213 

1324 

2314 

4312 

1423 

2413 

3412 

4321 

3421 

4132 4231 

1432 

2431 2143 

3142 

1243 

3241 

1342 

2341 
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One-Error-Correcting Code

We introduce an error-correcting code of minimum Kendall-tau distance
3, which corrects one Kendall (i.e., adjacent transposition) error.

Definition (Inversion Vector)

Given a permutation (a1, a2, · · · , an), its inversion vector
(x1, x2, · · · , xn−1) ∈ {0, 1} × {0, 1, 2} × · · · × {0, 1, · · · , n − 1} is
determined as follows:

For i = 1, 2, · · · , n− 1, xi is the number of elements in {1, 2, · · · , i}
that are behind i + 1 in the permutation (a1, · · · , an).

Example: The inversion vector for (1, 2, 3, 4) is (0, 0, 0). The inversion for

(4, 3, 2, 1) is (1, 2, 3). The inversion vector for (2, 4, 3, 1) is (1, 1, 2).
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One-Error-Correcting Code [1]

By viewing the inversion vector as coordinates, we embed
permutations in an (n − 1)-dimensional space.

Fact: For any two permutations A,B ∈ Sn, dτ (A,B) is no less
than their L1 distance in the (n − 1)-dimensional space.

Idea: We can construct a code of minimum L1 distance D in the
(n− 1)-dimensional array of size 2× 3× · · · × n. Then it is a code
of Kendall-tau distance at least D for the permutations.

[1] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1736–1740, July 2008.
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One-Error-Correcting Code

Example: When n = 3 or n = 4, the embedding is as follows. (Only
the solid edges are the edges in the state graph of permutations.)
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!"#$%& '9 -../+012345 .: ;4/783230.15# 21+ 47,4++01< 3=4 2+>2*41*? </2;= .: ;4/783230.15# G# 01 3=4 2 × 3 × · · · × n 2//2?# Ln9 @1 3=4 3A. 2//2?5# 3=4 5.B0+
B0145 2/4 3=4 4+<45 01 ,.3= G 21+ Ln# 21+ 3=4 +.334+ B0145 2/4 3=4 4+<45 .1B? 01 Ln9 !2$ -../+012345 .: ;4/783230.15 :./ n = 39 !,$ C7,4++01< G 01 Ln :./
n = 39 !*$ -../+012345 .: ;4/783230.15 :./ n = 49 !+$ C7,4++01< G 01 Ln :./ n = 49

D9 EFGC -FHCI JKH LFMKHI

@3 =25 ,441 5=.A1 3=23 3=4 501<B4N4//./N*.//4*301< *.+4 ,80B3
,? -.153/8*30.1 O =25 2 50P4 A03=01 =2B: .: .;3072B9 Q=4/4 4R053
*.+4 *.153/8*30.15 3=23 *21 ,80B+ B2/<4/ *.+45 01 721? *25459
S4 /4;./3 =4/4 5.74 4//./N*.//4*301< *.+45 ,80B3 8501< 2+
=.* *.153/8*30.15# 21+ *.7;2/4 3=47 A03= 3=4 5;=4/4N;2*T01<
8;;4/ ,.81+ 21+ 3=4 =2B:N.;3072B *.+4U

• S=41 n = 3# 2 501<B4N4//./N*.//4*301< *.+4 A03= 3A.
*.+4A./+5 V [1, 2, 3] 21+ [3, 2, 1] V *21 ,4 4250B? :.81+9
Q=4 5274 *.+4 05 ,80B3 ,? -.153/8*30.1 O# 21+ 3=4 50P4
74435 3=4 5;=4/4N;2*T01< 8;;4/ ,.81+9

• S=41 n = 4# 21 2+ =.* *.153/8*30.1 <414/2345 2 501<B4N
4//./N*.//4*301< *.+4 A03= !W4 *.+4A./+5U [1, 2, 4, 3]#
[3, 1, 4, 2]# [3, 2, 4, 1]# [4, 1, 3, 2] 21+ [4, 2, 3, 1]9 Q=4 *.+4
.83;83 ,? -.153/8*30.1 O =25 50P4 49 Q=4 5;=4/4N;2*T01<
,.81+ 05 69 @3 *21 ,4 5=.A1 3=23 3=4 *.+4 .: 50P4 5 05
.;3072B9
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=2W4 50P4 %)# ZZ# 21+ 'OO# /45;4*30W4B?9 Q=4 5;=4/4N
;2*T01< 8;;4/ ,.81+ 05 &)# %&"# 21+ [&"# /45;4*30W4B?9

• S=41 n = 5, 6, 7# 3=4/4 4R053 3A.N4//./N*.//4*301< *.+45
.: 50P4 Z# &'# 21+ %%"# 3=/44N4//./N*.//4*301< *.+45 .: 50P4
&# %"# ')# 21+ :.8/ 4//./N*.//4*301< *.+45 .: 50P4 &# )# 21+
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*21 ,4 +450<14+ 8501< \44N743/0* *.+459 S4 ;/45413 2 :270B?
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2+ =.*$ *.+4 *.153/8*30.159
@3 A0BB ,4 0134/45301< 3. 4R341+ 3=4 *.+4 *.153/8*30.1 01 3=05

;2;4/ 3. +450<1 *.+45 3=23 *.//4*3 3A. ./ 7./4 4//./5# ,?
8501< 14A \44N743/0* *.+45 ./ 58032,B4 B2330*4 0134/B42W4/59
Q=4 *.+45 *21 2B5. ,4 07;/.W4+ ,? 2 ,4334/ 830B0P230.1 .:
3=4 5;=4/4 ;2*T01< 01 3=4 ;4/783230.1 2+>2*41*? </2;=# A=0*=
05 5;2/54/ 3=21 3=4 2//2? Ln9 JB34/1230W4 47,4++01< .: 3=4
;4/783230.15# T1.A1 25 !"#$%&'(")#'*# *21 ,4 4R;B./4+ ^'_#
^O_9 !`./ 4R27;B4# 3=4 ;4/783230.1 2+>2*41*? </2;= :./ :.8/
187,4/5 *21 ,4 47,4++4+ 25 2 3/81*234+ .*32=4+/.19$ @1
2++030.1# 03 A0BB ,4 0134/45301< 3. *.7,014 3=4 4//./N*.//4*301<
*.+45 A03= +232 /4A/0301< 5*=4745 25 01 ^Y_9
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'"&V'%[# g219 %X["9

^Y_ J9 g021<# D9 L.=.55021# 21+ g9 L/8*T# c`B.2301< *.+45 :./ >.013 01:./72N
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"25= 747./045#d 01 +#',< 1222 1*&< 56$!< 1*0'#$3&-'*' =("'#6# &""O9
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^O_ H9 C9 f183=# =(" 3#& '0 ,'$!%&"# !#'.#3$$-*.# W.B9 '# &1+ C+9# J++05.1N
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^X_ H9 b9 \4=74/# cQ42*=01< *.7,0123./02B 3/0*T5 3. 2 *.7;834/#d 01 +#',<
56$!'/< 9!!4< :3&(< 7'$@-*3&'#-34 9*346/-/# W.B9 %"# J74/9 E23=9 I.*9#
6/.W0+41*4# G9@9# ;;9 %[XN%X'# %XZ"9
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One-Error-Correcting Code

Construction (One-Error-Correcting Rank Modulation Code)

Let C1,C2 ⊆ Sn denote two rank modulation codes constructed as
follows. Let A ∈ Sn be a general permutation whose inversion vector is
(x1, x2, · · · , xn−1). Then A is a codeword in C1 iff the following equation
is satisfied:

n−1∑
i=1

ixi ≡ 0 (mod 2n − 1)

A is a codeword in C2 iff the following equation is satisfied:

n−2∑
i=1

ixi + (n − 1) · (−xn−1) ≡ 0 (mod 2n − 1)

Between C1 and C2, choose the code with more codewords as the final
output.
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One-Error-Correcting Code

For the above code, it can be proved that:

The code can correct one Kendall error.

The size of the code is at least (n−1)!
2 .

The size of the code is at least half of optimal.
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Codes Correcting More Errors [1]

Codes correcting more Kendall errors are constructed based on
embedding.

First, consider codes of the following form:

Let m ≥ n− 1 and let h1, · · · , hn−1 be a set of integers, where
0 < hi < m for i = 1, · · · , n − 1. Define the code as follows:

C = {(x1, x2, · · · , xn−1) |
n−1∑
i=1

hixi ≡ 0 mod m}

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 854–858, June 2010.
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Codes Correcting More Errors

Fact: The above code can correct t Kendall errors if all the
syndromes caused by up to t errors are all distinct.

How to find such integers h1, · · · , hn−1?

Theorem (Bose-Chowla)

Let q be a power of a prime, and let m = qt+1−1
q−1 . Then there exist

q + 1 integers j0 = 0, j1, · · · , jq in Zm such that the sums

ji1 + ji2 + · · ·+ jit (0 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ q)

are all different modulo m.
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Codes Correcting More Errors

The Bose-Chowla theorem is useful when all the errors in the embedded
(n − 1)-dimensional L1 space are positive errors.

To also handle negative errors, we can “enlarge” the coefficients:

Theorem

For 1 ≤ i ≤ q + 1 let

hi =

{
ji−1 + t−1

2 m for odd t

ji−1 + t
2 m for even t

where the numbers ji are given by the Bose-Chowla theorem. Let
mt = t(t + 1)m if t is odd and mt = t(t + 2)m if t is even. For all

e ∈ Zq+1 such that ||e|| ≤ t the sums (i.e., syndromes)
∑q+1

i=1 eihi are all
distinct and nonzero modulo mt .
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Codes Correcting More Errors [1]

More idea: Map each dimension of the (n − 1)-dimensional space
to bits using Gray code. Then binary ECC can be turned into ECC
for permutations.

[1] A. Mazumdar, A. Barg and G. Zemor, “Constructions of Rank Modulation Codes,” in Proc. IEEE International

Symposium on Information Theory (ISIT), 2011.
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Capacity of Rank Modulation ECC [1]

Let the number of cells n→∞. Consider capacity.

Theorem (Capacity of Rank Modulation ECC)

Let A(n, d) be the maximum number of permutations in Sn with
minimum Kendall-tau distance d. We call

C (d) = lim
n→∞

ln A(n, d)

ln n!

the capacity of rank modulation ECC of Kendall-tau distance d. Then,

C (d) =


1 if d = O(n)

1− ε if d = Θ(n1+ε), 0 < ε < 1

0 if d = Θ(n2)

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 854–858, June 2010.
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Rank Modulation ECC with L∞ Distance

L∞ distance between two cell states: The maximum change in the rank
of a cell. (We consider the absolute value of the change.)

Example: In the following, cell 2’s rank has changed by 4, which is the
greatest.

Cell
1

Cell
2

Cell
3

Cell
4

Cell
5

Cell
1

Cell
2

Cell
3

Cell
4

Cell
5

Rank
2

Rank
1

Rank
4
Rank
5

Rank
3

Rank
1

Rank
5

Rank
2 Rank

3 Rank
4

For more, see: I. Tamo and M. Schwartz, “Correcting Limited-Magnitude Errors in the Rank Modulation Scheme,”

in IEEE Transactions on Information Theory, vol. 56, no. 6, pp. 2551-2560, June 2010.
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Rank Modulation with Multiple Cell Groups

A practical way to use rank modulation is to partition cells into groups,
and apply rank modulation to each cell group. The code, such as ECC,
can be defined for all the cell groups together.

Example: Partition cells into groups of size 3.

(2,1,3) (1,2,3) (3,1,2) (3,2,1) (2,3,1)

LDPC code has been studied for this setting, where each cell group is
seen as a codeword symbol.

For more, see: F. Zhang, H. Pfister and A. Jiang, “LDPC Codes for Rank Modulation in Flash Memories,” in Proc.

IEEE International Symposium on Information Theory (ISIT), pp. 859–863, June 2010.
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Further reading (1/4)

Error-Correcting Codes for Rank Modulation:

A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for
Rank Modulation,” Proc. ISIT, pp. 1736–1740, 2008.

A. Barg and A. Mazumdar, “Codes in Permutations and Error
Correction for Rank Modulation,” Proc. ISIT, pp. 854–858, 2010.

A. Jiang, M. Schwartz and J. Bruck, “Correcting Charge-Constrained
Errors in the Rank Modulation Scheme,” IEEE Transactions on
Information Theory, vol. 56, no. 5, pp. 2112–2120, 2010.

F. Zhang, H. Pfister and A. Jiang, “LDPC Codes for Rank
Modulation in Flash Memories,” Proc. ISIT, pp. 859–863, 2010.
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Further reading (2/4)

I. Tamo and M. Schwartz, “Correcting Limited-Magnitude Errors in
the Rank Modulation Scheme,” IEEE Transactions on Information
Theory, vol. 56, no. 6, pp. 2551–2560, 2010.

A. Barg and A. Mazumdar, “Codes in Permutations and
Error-Correction for Rank Modulation,” IEEE Transactions on
Information Theory, vol. 56, no. 7, pp. 3158–3165, 2010.

M. Schwartz and I. Tamo, “Optimal Permutation Anticodes with the
Infinity Norm via Permanents of (0, 1)-Matrices,” Journal of
Combinational Theory, Series A, vol. 118, pp. 1761–1774, 2011.

A. Mazumdar, A. Barg and G. Zemor, “Constructions of Rank
Modulation Codes,” Proc. ISIT, 2011.

136 / 158



Outline
Channel Models

Error Correcting Codes
Codes for Rewriting Data

Rank Modulation
Constrained Coding

Summary and Future Directions

Further reading (3/4)

F. Farnoud, V. Skachek and O. Milenkovic, “Rank Modulation
Codes for Translocation Errors,” Proc. Information Theory and
Applications Workshop (ITA), San Diego, CA, 2012.

M. Schwartz, “Quasi-cross Lattice Tilings with Applications to Flash
Memory,” IEEE Transactions on Information Theory, vol. 58, no. 4,
pp. 2397–2405, 2012.

H. Zhou, A. Jiang and J. Bruck, “Systematic Error-correcting Codes
for Rank Modulation,” Proc. ISIT, 2012.

Y. Yehezkeally and M. Schwartz, “Snake-in-the-Box Codes for Rank
Modulation,” IEEE Transactions on Information Theory, vol. 58, no.
8, pp. 5471–5483, 2012.
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Further reading (4/4)

I. Tamo and M. Schwartz, “On the Labeling Problem of Permutation
Group Codes under the Infinity Metric,” IEEE Transactions on
Information Theory, vol. 58, no. 10, pp. 6595–6604, 2012.
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Example of NAND Flash Memory Block

Example of a NAND flash memory block: A block has ∼ 64 pages.
A page has thousands of cells.

Block 

Page 1 
Page 2 
Page 3 

Page 4 

Page 64 
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Intercell Coupling in NAND Flash Memories

Intercell Coupling: The threshold voltage Vth is shifted due to
parasitic capacitance between neighboring cells, including:

Horizontal direction (bit-line to bit-line coupling)
Vertical direction (word-line to word-line coupling)
Diagonal direction

The amount of shift in Vth is affected by:

Coupling coefficient C
Vth shift of neighboring cell due to programming

When memory density scales up, intercell coupling becomes
more severe.
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Intercell Coupling in NAND Flash Memories

The Vth shift of middle cell caused by shifting of neighboring cells is

∆Vi,j = Cx(∆Vi−1,j + ∆Vi+1,j) + Cy (∆Vi,j−1 + ∆Vi,j+1)
+Cx,y (∆Vi−1,j−1 + ∆Vi+1,j−1 + ∆Vi−1,j+1 + ∆Vi+1,j+1)

V i,jVi-1,j Vi+1,j

Vi,j+1Vi-1,j+1 Vi+1,j+1

Vi,j-1Vi-1,j-1 Vi+1,j-1

CxCx

Cy

Cy

Cx,y
Cx,y

Cx,y Cx,y
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Constrained Coding Techniques

Consider MLC with q levels: 0, 1, · · · , q − 1.

Proposed Constraint [1]: A cell of level 0 cannot be adjacent to a
cell of level q − 1.

Example: When q = 4, two cells of level 0 and level 3 cannot be
adjacent.

Proposed Constraint [2]: For every cell, the difference between its
own level and the summation of its neighboring cells’ levels cannot
be too large.

[1] Y. Kim, K. Son, K. L. Cho, J. Kim, J. J. Kong, and J. Lee, “RLL Codes for Flash Memory,” presented in JCCI,
2010.
[2] A. Berman and Y. Birk, “Mitigating inter-cell coupling effects in MLC NAND flash via constrained coding,”
presented at Flash Memory Summit, 2010.
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Further reading (1/2)

A. Berman and Y. Birk, “Mitigating Inter-cell Coupling Effects in
MLC NAND Flash via Constrained Coding,” presented at Flash
Memory Summit, August 2010.

Y. Kim, K. Son, K. L. Cho, J. Kim, J. J. Kong, and J. Lee, “RLL
Codes for Flash Memory,” presented in JCCI, 2010.

A. Jiang, J. Bruck and H. Li, “Constrained Codes for Phase-change
Memories,” Proc. ITW, 2010.

A. Berman and Y. Birk, “Error Correction Scheme for Constrained
Inter-Cell Coupling in Flash Memory,” presented at Non-Volatile
Memories Workshop (NVMW), San Diego, CA, March 2011.
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Further reading (2/2)

M. Qin, E. Yaakobi and P. Siegel, “Time-space Constrained Codes
for Phase Change Memories,” presented at Flash Memory Summit,
2011.

R. Motwani, “Hierarchical Constrained Coding for Floating-gate to
Floating-gate coupling Mitigation in Flash Memory,” Globecom
2011.
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Research Problems

1 Design of graph-based non-binary codes for Flash channels
with respect to spatio-temporal variability.

2 Design of LDPC codes in the high-reliability region of
quantized Flash channels with respect to absorbing/trapping
sets.

3 Error Correction coding methods and information theory for
STTRAM.

4 Design of codes combining WOM, ECC and ICI properties.

5 Probabilistic vs. worst case analysis of various coding methods
for NVM-inspired channels.
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IEEE JSAC Special Issue on Communication Methodologies
for the Next-Generation Storage Systems
Topics include:

Device-level channel modeling for emerging storage
technologies

Information theory and fundamental data transmission limits
for new storage channels

Practical coding and signal processing methods cognizant of
underlying physical constraints

Architecture and design of large-scale storage subsystems
based on new non-volatile memories

Security, data compression and communication techniques for
cloud storage and distributed storage networks

Deadline: May 1st, 2013
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2013 Non-Volatile Memories Workshop (NVMW)
March 3-5, 2013, University of California, San Diego
The workshop solicits presentations on any topic related to non-volatile, solid
state memories, including:

Advances in memory devices or memory cell design.

Characterization of commercial or experimental memory devices.

Error correction and data encoding schemes for non-volatile memories.

Advances in non-volatile memory-based storage system.

Operating system and file system designs for non-volatile memories.

Security and reliability of solid-state storage systems.

Applications of non-volatile memories to scientific, “big data,” and
high-performance workloads.

Implications of non-volatile memories for applications such as databases
and NoSQL systems.

Deadline: November 19, 2012
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