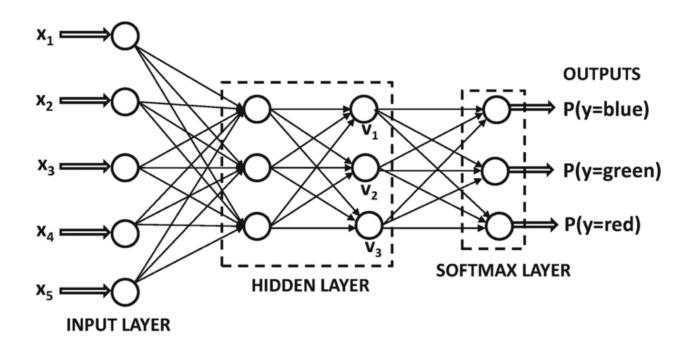
CSCE 636 Neural Networks (Deep Learning)

Lecture 20: Summary

Anxiao (Andrew) Jiang

What is a neural network



Step 2: Build neural network architecture

511

```
from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))

0
0
0
1
1
2
2
```

28 x 28 2-d array

28x28-1 = 783

512 neurons 10 neurons

Backpropagation – Summary

Forward Pass Backward Pass ∂z ∂w

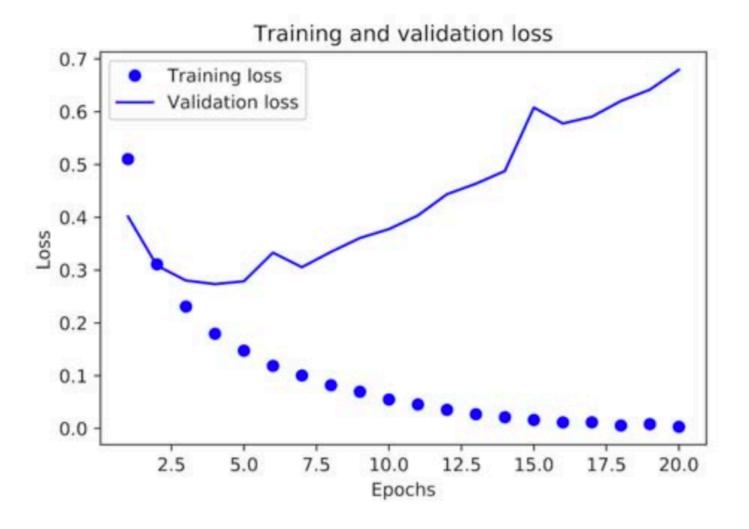
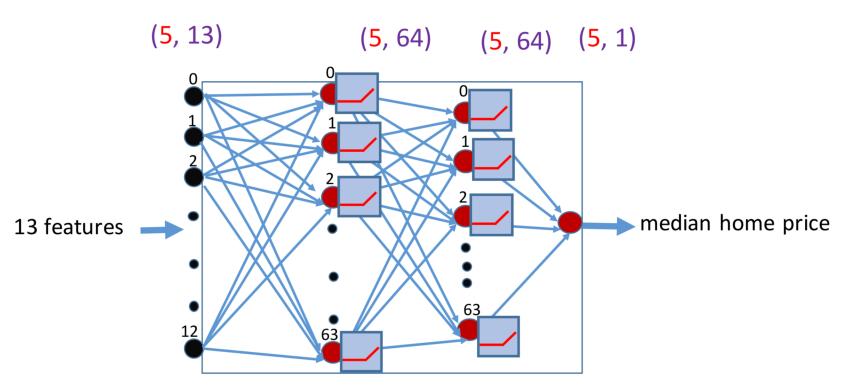


Figure 3.7 Training and validation loss

Say that the mini-batch size is 5 during training.

What is the shape of data in each layer?

In reality:

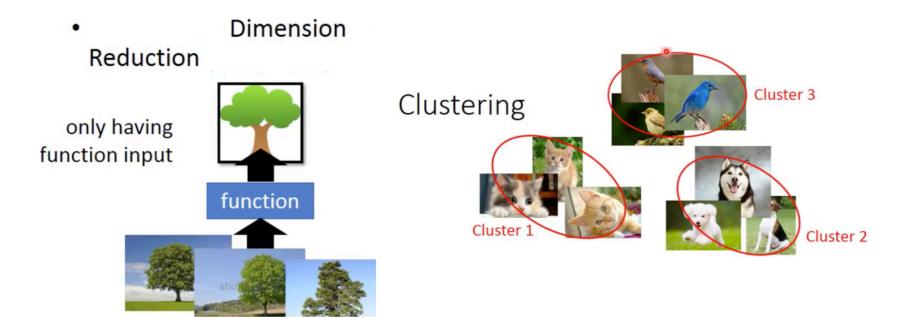


Supervised Learning

- Input and output are both known. Just learn the function.
- The four applications introduced so far in our class are all supervised learning.

Unsupervised Learning

• Output is unknown. Learn the relationship between data.



Semi-supervised Learning

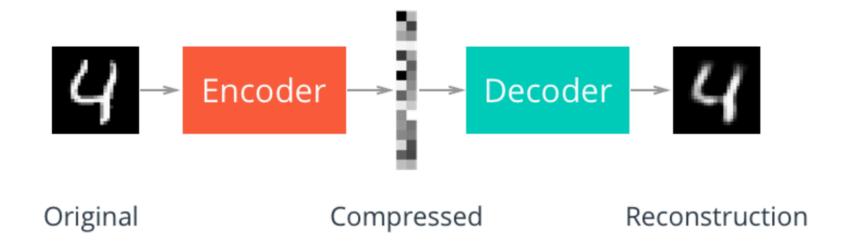
• Some outputs are known, but not all. (Most data are unlabeled.)

Labelled data

Unlabeled data

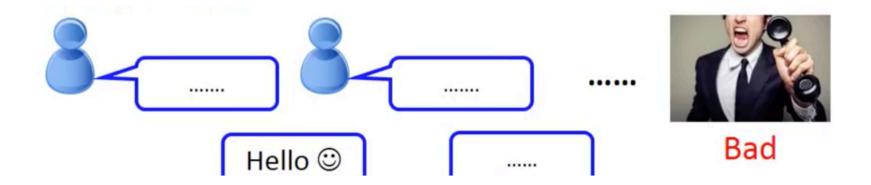
Self-supervised Learning

- Output is generated from input data, without human help.
- Example: auto-encoder



Reinforcement Learning

- Learn from feedback (penalty or reward) from environment.
- But the environment does not tell what to do.



Regularization techniques

 Weight regularization: add a function of weights to the loss function, to prevent the weights from becoming too large.

L2 regularization new loss function = old loss function + $\lambda \sum_{i} w_{i}^{2}$

L1 regularization new loss function = old loss function + $\lambda \sum_{i} |w_{i}|$

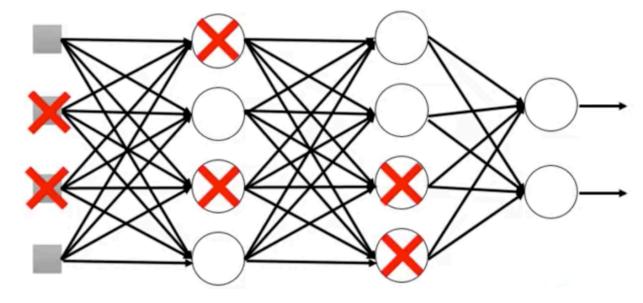
A reason for weight regularization: large weight can make the model more sensitive to noise/variance in data.

L2 regularization: it tends to make all weights small.

L1 regularization: it tends to make weights sparser (namely, more 0s).

Dropout

Training:



- > Each time before updating the parameters
 - Each neuron has p% to dropout

Property 1

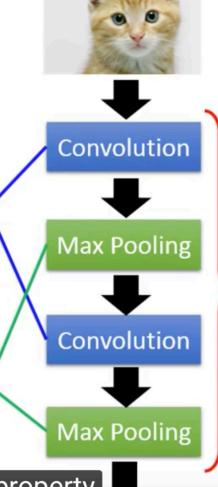
Some patterns are much smaller than the whole image

Property 2

The same patterns appear in different regions.

Property 3

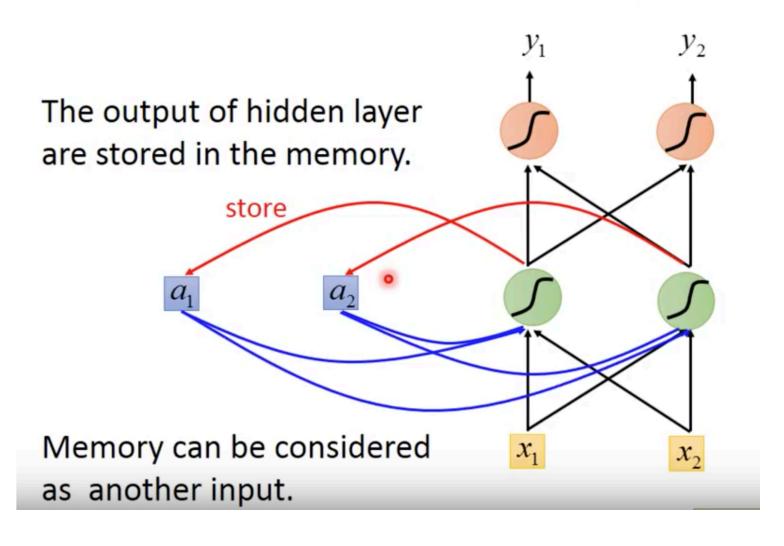
Subsampling the pixels will not change the object



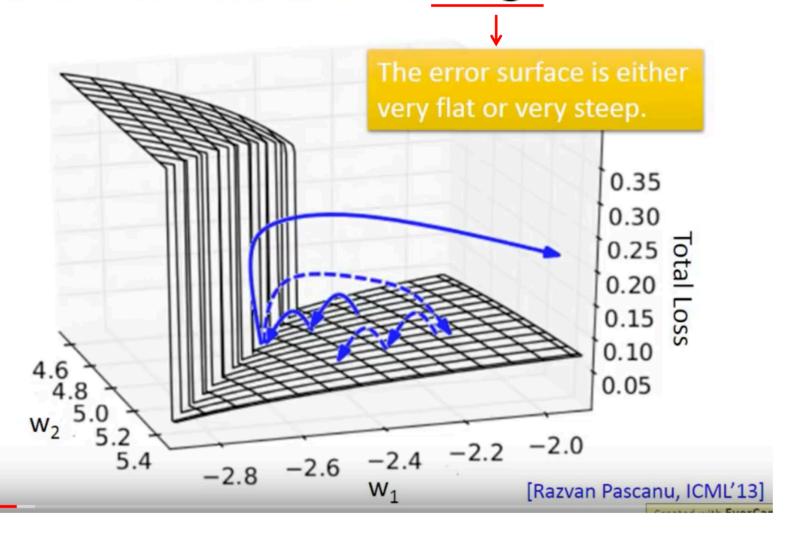
Can repeat many times

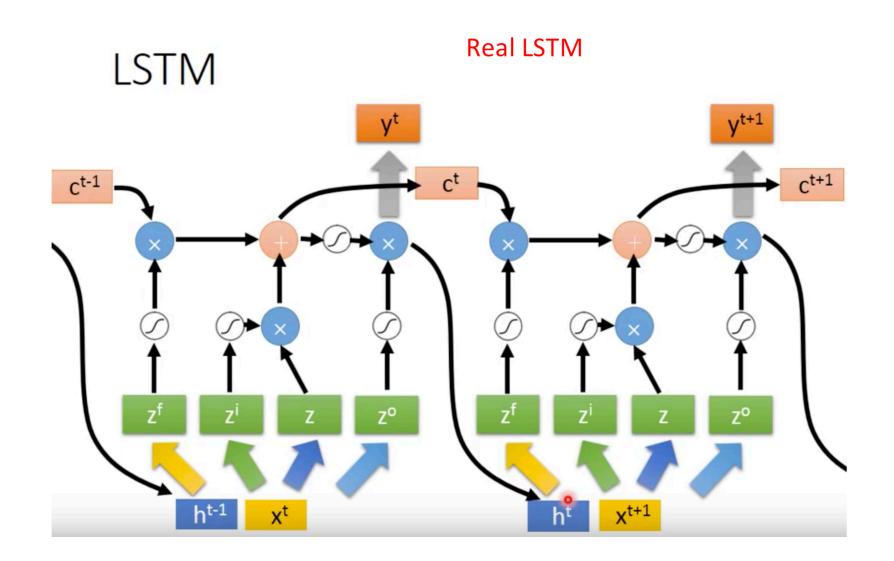
最後這個 property

Recurrent Neural Network (RNN)



The error surface is rough.



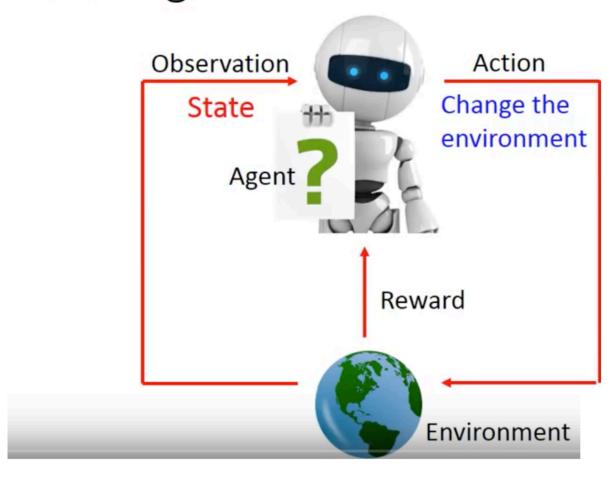


Keras Functional API

Directed acyclic graphs of layers

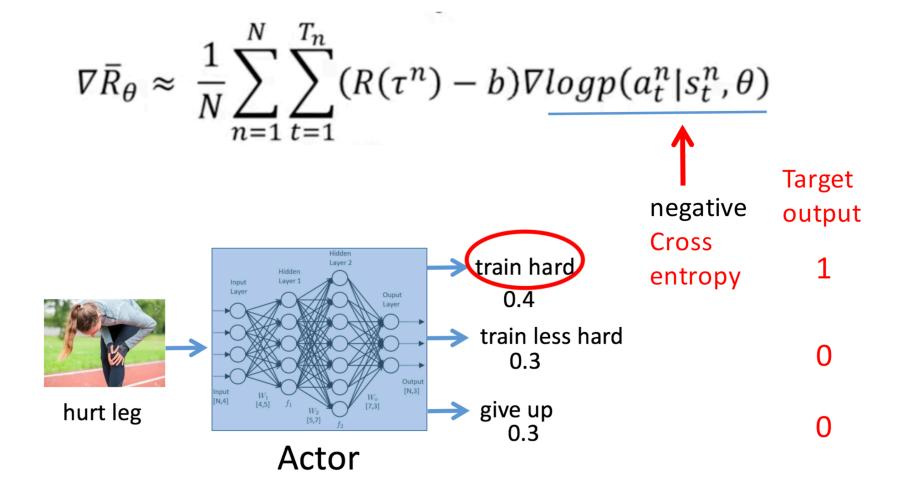
Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard

Scenario of Reinforcement Learning



Policy-based Approach

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla log p(a_t^n | s_t^n, \theta)$$



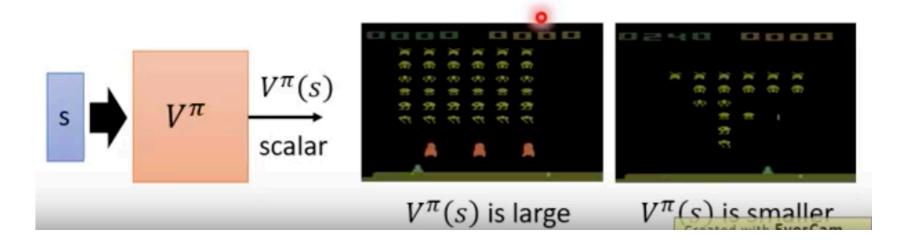
From on-policy to off-policy

Using the experience more than once

Q-Learning

Critic

- A critic does not directly determine the action.
- Given an actor π , it evaluates how good the actor is
- State value function $V^{\pi}(s)$
 - When using actor π, the cumulated reward expects to be obtained after visiting state s



Another Way to use Critic: Q-Learning

 π interacts with the environment

$$\pi = \pi'$$

TD or MC

Find a new actor π' "better" than π

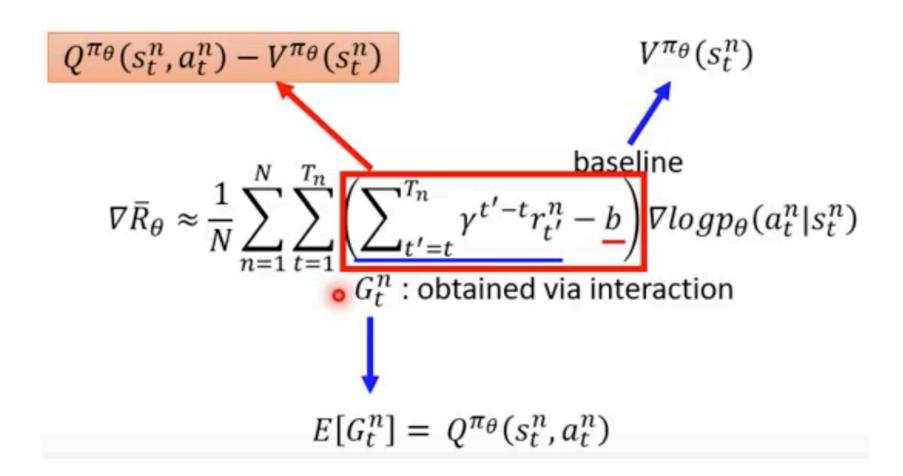
Learning $Q^{\pi}(s, a)$

Asynchronous Advantage Actor-Critic (A3C)

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning", ICML, 2016

Created with EverCam.

Actor-Critic



Advantage Actor-Critic

 π interacts with the environment

$$\pi = \pi'$$

TD or MC

0

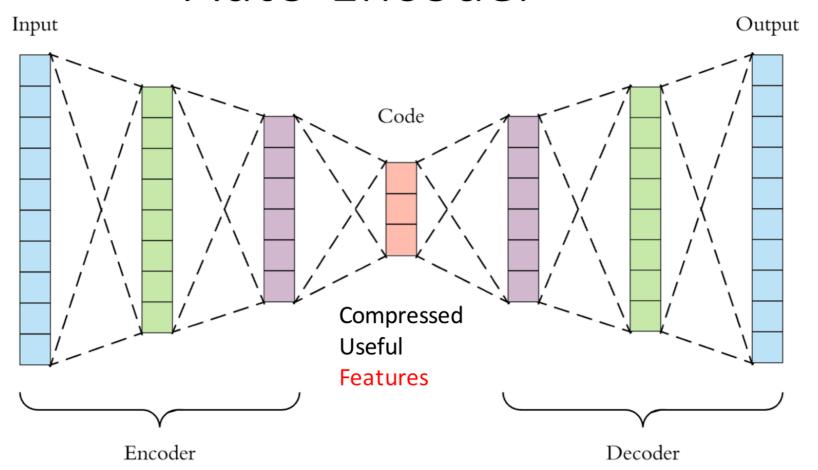
Update actor from $\pi \to \pi'$ based on $V^{\pi}(s)$

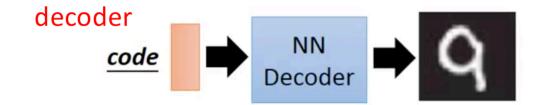
Learning $V^{\pi}(s)$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(r_t^n + V^{\pi}(s_{t+1}^n) - V^{\pi}(s_t^n) \right) \nabla log p_{\theta}(a_t^n | s_t^n)$$

$$\frac{Created \text{ with EverCam http://www.camdemy.c}}{created \text{ with EverCam http://www.camdemy.c}}$$

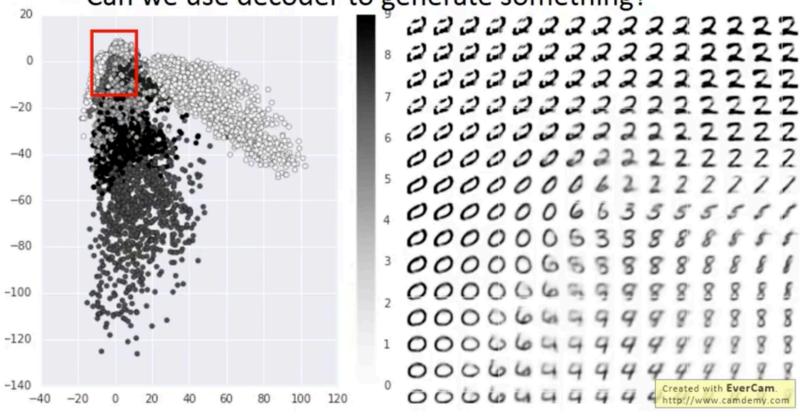
Auto-Encoder



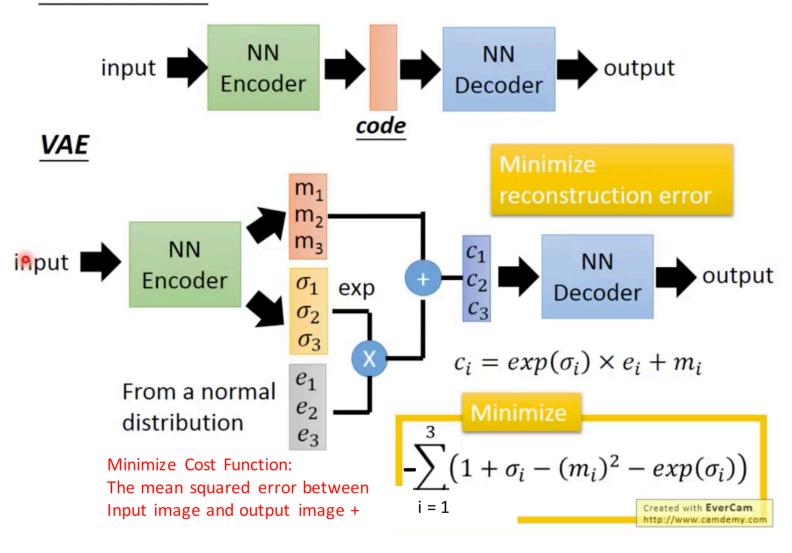


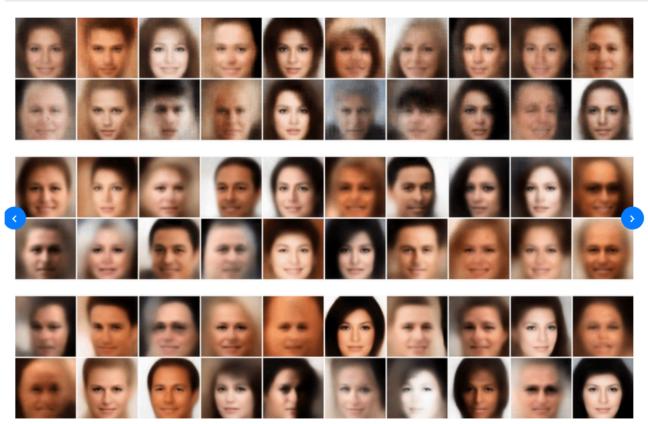
Can we use decoder to generate something?

Next



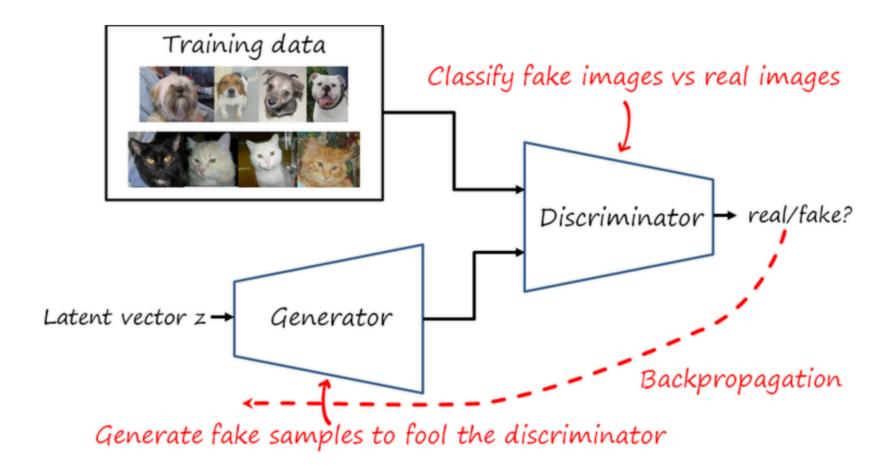
Auto-encoder





Sample images generated by different models when trained on the CelebA dataset. The first two rows are images generated by a standard VAE. The middle two rows are images generated by deep residual VAE. The last two rows are images generated by multi-stage VAE.

https://www.researchgate.net/figure/Sample-images-generated-by-different-models-when-trained-on-the-CelebA-dataset-The-first_fig5_317062169



Images generated using Progressive GAN

(c) Generating from a sequence of poses

Pose Guided Person Image Generation

CycleGAN

Cross-domain transfer GANs will be likely the first batch of commercial applications. These GANs transform images from one domain (say real scenery) to another domain (Monet paintings or Van Gogh).



Transfer Learning

Transfer Learning - Overview

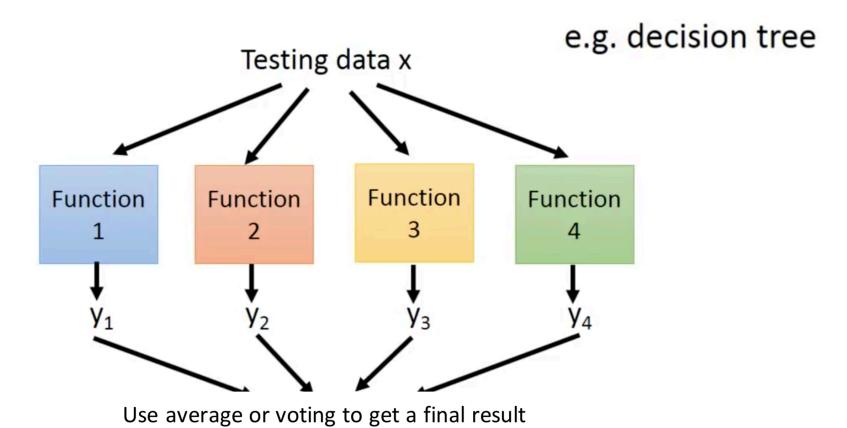
Source Data (not directly related to the task)

·		labelled	unlabeled		
Data	labelled	Fine-tuning Multitask Learning	Self-taught learning Rajat Raina , Alexis Battle , Honglak Lee , Benjamin Packer , Andrew Y. Ng, Self-taught learning: transfer learning from unlabeled data, ICML, 2007		
Target Data	unlabeled	Domain-adversarial training Zero-shot learning	Self-taught Clustering Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu, "Self-taught clustering", ICML 2008		

Ensemble Learning

Bagging

This approach would be helpful when your model is complex, easy to overfit.



Ensemble: Boosting

Improving Weak Classifiers

Algorithm for AdaBoost

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}$ • $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:

 - If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$ $u^n_{t+1} = u^n_t \times d_t = u^n_t \times \exp(\alpha_t)$ $d_t = \sqrt{(1-\varepsilon_t)/\varepsilon_t}$ Else: $u^n_{t+1} = u^n_t/d_t = u^n_t \times \exp(-\alpha_t)$ $\alpha_t = \ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$

$$u_{t+1}^n \leftarrow u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t)$$

Algorithm for AdaBoost

- We obtain a set of functions: $f_1(x), ..., f_t(x), ..., f_T(x)$
- How to aggregate them?
 - Uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} f_t(x))$$

Non-uniform weight:

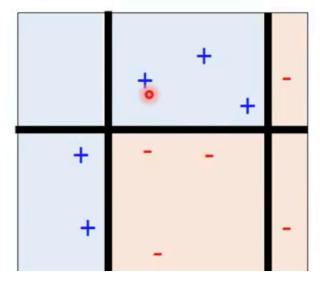
•
$$H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$$

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

$$u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

Toy Example

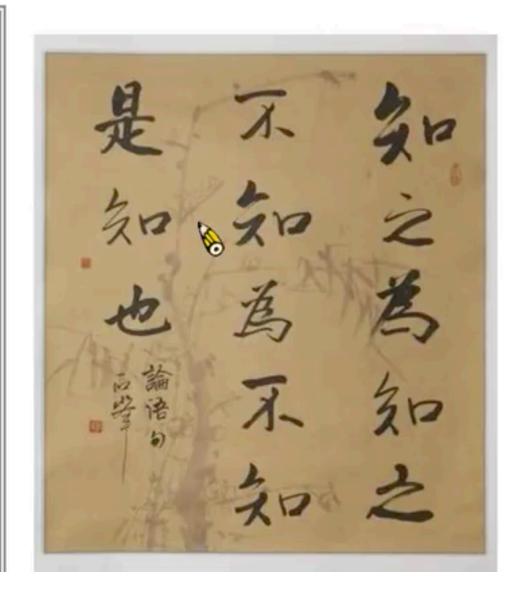
• Final Classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$



Final Error Rate = 0

Anomaly Detection

Hung-yi Lee 李宏毅

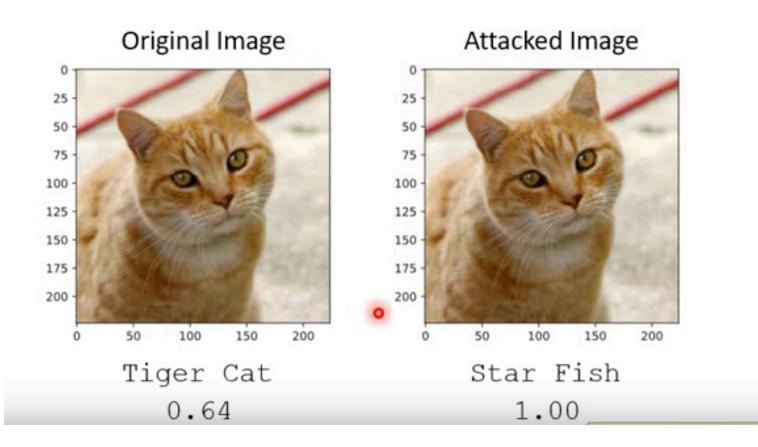


$$L(x') = -C(y', y^{true}) + C(y', y^{false})$$

Example

True = Tiger cat False = Star Fish

f = ResNet-50



https://www.cs.cmu.edu/~sbhagava/pape rs/face-rec-ccs16.pdf

Attack in the Real World

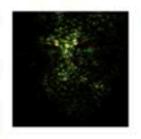


Figure 2: A dodging attack by perturbing an entire face. Left: an original image of actress Eva ingoria (by Richard Sandoval / CC BY-SA / cropped from https://goo.gl/7QUvRq). Middle: A perturbed image for dodging. Right: The applied perturbation, after multiplying the absolute value of pixels' channels ×20.

Figure 3: An impersonation using frames. Left: Actress Reese Witherspoon (by Eva Rinaldi / CC BY-SA / cropped from https://goo.gl/a2sCdc). Image classified correctly with probability 1. Middle: Perturbing frames to impersonate (actor) Russel Crowe. Right: The target (by Eva Rinaldi / CC BY-SA / cropped from https://goo.gl/AO7QYu).

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP		STOP	STOP	STOP
5′ 15°	STOP		STOP	STOP	STOP
10′ 0° https://arxiv.org/ab	500		STOP	STOP	STOP
s/1707.08945 10′ 30°				STOP	STOP
40' 0°					
Targeted-Attack Success	100%	73.33%	66.67%	100 Created	with EverCam.

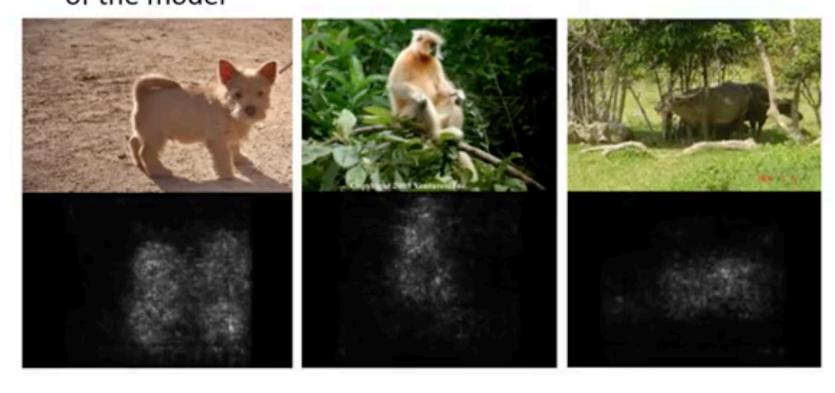
EXPLAINABLE MACHINE LEARNING

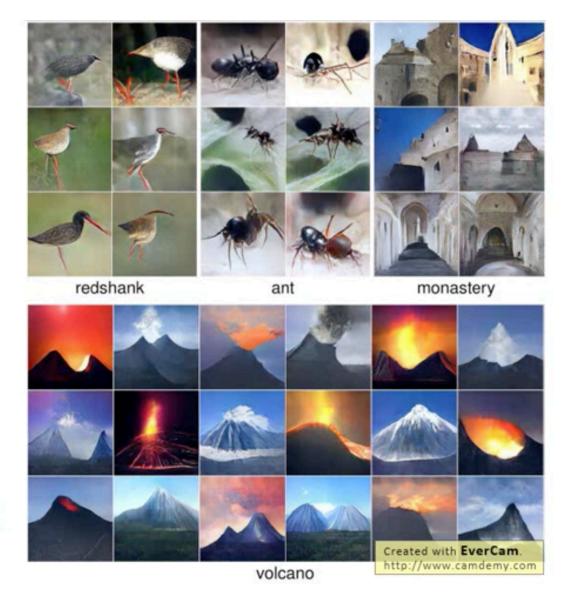
$$\{x_1, \cdots, x_n, \cdots, x_N\} \longrightarrow \{x_1, \cdots, x_n + \Delta x, \cdots, x_N\}$$

$$y_k \longrightarrow y_k + \Delta y$$

$$y_k : \text{the prob. of the predicted class}$$

$$|\frac{\Delta y}{\Delta x}| \longrightarrow |\frac{\partial y_k}{\partial x_n}|$$
of the model





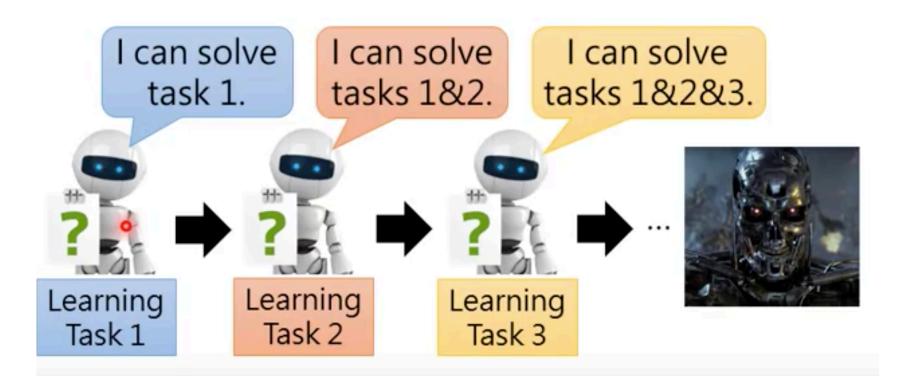
https://arxiv.org/abs/ 1612.00005

Life Long Learning Pung-yi 李宏毅

Hung-yi Lee

Life Long Learning (LLL)

Continuous Learning, Never Ending Learning, Incremental Learning



Life-long Learning

Knowledge Retention

but NOT Intransigence

Knowledge Transfer

Model Expansion

but Parameter Efficiency

Elastic Weight Consolidation (EWC)

Basic Idea: Some parameters in the model are important to
 the previous tasks. Only change the unimportant parameters.

Next Spring: Advanced Topics in Deep Learning

