CSCE 636 Neural Networks (Deep Learning)

Lecture 19: Ensemble Learning

Anxiao (Andrew) Jiang

Based on the interesting lecture of Prof. Hung-yi Lee "Ensemble" https://www.youtube.com/watch?v=tH9FH1DH5n0&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=32

Ensemble Learning

Framework of Ensemble

Basic idea: Build multiple models for the same application, make them collaborate to achieve better performance.

In other words: use Team Work.

Framework of Ensemble

- Get a set of classifiers
 - $f_1(x), f_2(x), f_3(x), \dots$

They should be diverse.

Framework of Ensemble

- Get a set of classifiers
 - $f_1(x), f_2(x), f_3(x), \dots$

They should be diverse.

• Aggregate the classifiers (properly)

Ensemble is a popular technique for winning machine learning competitions. It can improve the performance to the next level. Requirement: need to train multiple models.

Ensemble: Bagging

Combine multiple complex models

Review: Bias v.s. Variance

Simple models: large bias, small variance Complex models: small bias, large variance

Review: Bias v.s. Variance

Bagging

An idea:

Create multiple "different" datasets, and train one model for each dataset; then combine them.

But how to create different datasets?

Bagging

N training examples

Sampling N' examples with replacement (usually N=N')

Use a complex model to train 4 classification functions for the 4 datasets.

Bagging

Use average or voting to get a final result

This approach would be helpful when your model is complex, easy to overfit.

A deep decision tree can easily get 100% accuracy on training data (but overfit)

Bagging

Use average or voting to get a final result

Decision Tree

The famous "Random Forest" method: Decision trees with bagging.

Decision Tree

Assume each object x is represented by a 2-dim vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Experiment: Function of Miku

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ MLDS_2015_2/theano/miku

- Decision tree:
 - Easy to achieve 0% error rate on training data

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf

Complete overfitting, and nothing is learned.

- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging

train f_4 f₁ f, f₃ X^1 0 X 0 Х x² 0 X Х 0 x³ X 0 0 X x4 X 0 Х 0

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf

train

 X^1

x²

x³

 x^4

 f_2

X

X

0

0

 f_1

0

0

X

Х

f₃

0

X

0

X

 f_4

X

0

Х

0

- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging
 - Using RF = f₂+f₄ to test x¹
 - Using RF = f₂+f₃ to test x²

train	f ₁	f ₂	f ₃	f ₄
X1	0	Х	0	Х
x ²	0	Х	Х	0
x ³	Х	0	0	Х
• x ⁴	X	0	X	0

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging
 - Using RF = $f_2 + f_4$ to test x^1
 - Using RF = f_2+f_3 to test x^2
 - Using RF = $f_1 + f_4$ to test x^3

• Using RF = $f_1 + f_3$ to test x⁴

Out-of-bag (OOB) error

Created with EverCan

(100 trees)

Ensemble: Boosting

Improving Weak Classifiers

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if f₂(x) is similar to f₁(x), it will not help a lot.

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
 - We want f₂(x) to be complementary with f₁(x) (How?)
 - Obtain the second classifier $f_2(x)$
 - Finally, combining all the classifiers

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
 - We want f₂(x) to be complementary with f₁(x) (How?)
 - Obtain the second classifier $f_2(x)$
 - Finally, combining all the classifiers
- The classifiers are learned sequentially.

Training data: $\{(x^1, \hat{y}^1), \cdots, (x^n, \hat{y}^n), \cdots, (x^N, \hat{y}^N)\}$ $\hat{y} = \pm 1$ (binary classification)

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
 - We want $f_2(x)$ to be complementary with $f_1(x)$ (How?)
 - Obtain the second classifier $f_2(x)$
 - Finally, combining all the classifiers
- The classifiers are learned sequentially.

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set

 (x^1, \hat{y}^1, u^1) (x^2, \hat{y}^2, u^2) (x^3, \hat{y}^3, u^3)

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set

$$(x^1, \hat{y}^1, u^1) \quad u^1 = 1$$

$$(x^2, \hat{y}^2, u^2) \quad u^2 = 1$$

$$(x^3, \hat{y}^3, u^3) \quad u^3 = 1$$

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set
 - In real implementation, you only have to change the cost/objective function

$$(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1 \quad 0.4$$
$$(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1 \quad 2.1$$
$$(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1 \quad 0.7$$

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set
 - In real implementation, you only have to change the cost/objective function

$$(x^1, \hat{y}^1, u^1)$$
 $u^1 = 1$ 0.4
 (x^2, \hat{y}^2, u^2) $u^2 = 1$ 2.1

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

 (x^3, \hat{y}^3, u^3) $u^3 = 1$ 0.7

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set
 - In real implementation, you only have to change the cost/objective function

$$(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1 \quad 0.4$$

$$(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1 \quad 2.1$$

$$(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1 \quad 0.7$$

$$L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})$$

$$L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})$$

• Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?
- ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1}$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \quad Z_1 = \sum_n u_1^n$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?
- ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1^{\bullet}} \quad Z_1 = \sum_n u_1^n \quad \varepsilon_1 < 0.5$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?
- ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \quad Z_1 = \sum_n u_1^n \quad \varepsilon_1 < 0.5$$

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \quad Z_1 = \sum_n u_1^n \quad \varepsilon_1 < 0.5$$

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5$$
 The performance of f_{1} for new weights would be random.

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \quad Z_1 = \sum_n u_1^n \quad \varepsilon_1 < 0.5$$

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5$$
 The performance of f_{1} for new weights would be random.

Training $f_2(x)$ based on the new weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 $(x^{1}, \hat{y}^{1}, u^{1})$ $(x^{2}, \hat{y}^{2}, u^{2})$ $(x^{3}, \hat{y}^{3}, u^{3})$ $(x^{4}, \hat{y}^{4}, u^{4})$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 $(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1$ $(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1$ $(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1$ $(x^{4}, \hat{y}^{4}, u^{4}) \quad u^{4} = 1$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

$$(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1$$

$$(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1$$

$$(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1$$

$$(x^{4}, \hat{y}^{4}, u^{4}) \quad u^{4} = 1$$

$$\varepsilon_{1} = 0.25$$

$$f_{1}(x)$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(\mathbf{x})$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

If x^n misclassified by $f_1(f_1(x^n) \neq \hat{y}^n)$

 $u_2^n \leftarrow u_1^n$ multiplying d_1

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 $\begin{cases} \text{If } x^n \text{ misclassified by } f_1 \left(f_1(x^n) \neq \hat{y}^n \right) \\ u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \\ \text{If } x^n \text{ correctly classified by } f_1 \left(f_1(x^n) = \hat{y}^n \right) \\ u_2^n \leftarrow u_1^n \text{ divided by } d_1 \end{cases}$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 $\begin{cases} \text{If } x^n \text{ misclassified by } f_1 \left(f_1(x^n) \neq \hat{y}^n \right) \\ u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \text{ increase} \\ \text{If } x^n \text{ correctly classified by } f_1 \left(f_1(x^n) = \hat{y}^n \right) \\ u_2^n \leftarrow u_1^n \text{ divided by } d_1 \text{ decrease} \end{cases}$
- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 $\begin{cases} \text{If } x^n \text{ misclassified by } f_1 \left(f_1(x^n) \neq \hat{y}^n \right) \\ u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \text{ increase} \\ \text{If } x^n \text{ correctly classified by } f_1 \left(f_1(x^n) = \hat{y}^n \right) \\ u_2^n \leftarrow u_1^n \text{ divided by } d_1 \text{ decrease} \end{cases} \end{cases}$

 f_2 will be learned based on example weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 f_2 will be learned based on example weights u_2^n

What is the value of d_1 ?

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

$\frac{\text{Re-weighting Training Data}}{\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$ $\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5$

$$\begin{split} \varepsilon_{1} &= \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n} \\ \frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} &= 0.5 \quad \begin{array}{c} f_{1}(x^{n}) \neq \hat{y}^{n} & u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ f_{1}(x^{n}) &= \hat{y}^{n} & u_{2}^{n} \leftarrow u_{1}^{n} \text{ divided by } d_{1} \\ \end{array} \\ \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{o} f_{1}(x^{n}) = \hat{y}^{n} & u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \quad \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1 \end{split}$$

$$\begin{split} \varepsilon_{1} &= \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n} \\ \frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} &= 0.5 \quad \frac{f_{1}(x^{n}) \neq \hat{y}^{n}}{f_{1}(x^{n}) = \hat{y}^{n}} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \quad \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1 \\ \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1} = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \end{split}$$

$$\begin{split} \varepsilon_{1} &= \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n} \\ \frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} &= 0.5 \quad f_{1}(x^{n}) \neq \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \quad \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1 \\ \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1} = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \quad \frac{1}{d_{1}} \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} = d_{1} \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} \end{split}$$

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

 $\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \quad \begin{array}{c} f_{1}(x^{n}) \neq \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ f_{1}(x^{n}) = \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ divided by } d_{1} \end{array}$

 $\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 2 \quad \frac{\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1$ $\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1 = \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \quad \frac{1}{d_1} \sum_{f_1(x^n)=\hat{y}^n} u_1^n = d_1 \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n$ $\varepsilon_1 = \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1}$

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

$$\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 2 \quad \frac{\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1$$

$$\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1 = \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \quad \frac{1}{d_1} \sum_{\substack{f_1(x^n)=\hat{y}^n\\Z_1(1-\varepsilon_1)}} u_1^n = d_1 \sum_{\substack{f_1(x^n)\neq\hat{y}^n\\Z_1\varepsilon_1}} u_1^n$$

$$\varepsilon_1 = \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1} u_1^n = Z_1\varepsilon_1$$

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

$$\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 2 \quad \frac{\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1$$

$$\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1 = \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \quad \frac{1}{d_1} \sum_{\substack{f_1(x^n)=\hat{y}^n\\Z_1(1-\varepsilon_1)}} u_1^n = d_1 \sum_{\substack{f_1(x^n)\neq\hat{y}^n\\Z_1\varepsilon_1}} u_1^n$$

$$\varepsilon_1 = \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1} \qquad Z_1(1-\varepsilon_1) \quad Z_1\varepsilon_1$$

$$Z_1(1-\varepsilon_1) / d_1 = Z_1\varepsilon_1 d_1$$

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

$$\begin{split} \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} &= 2 \quad \frac{\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1 \\ \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1 &= \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \quad \frac{1}{d_1} \sum_{\substack{f_1(x^n)=\hat{y}^n\\ Z_1(1-\varepsilon_1)}} u_1^n = d_1 \sum_{\substack{f_1(x^n)\neq\hat{y}^n\\ Z_1\varepsilon_1}} u_1^n \\ \varepsilon_1 &= \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1} \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n = Z_1\varepsilon_1 \\ \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n = Z_1\varepsilon_1 \\ \end{array}$$

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

$$\begin{split} \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} &= 2 \quad \frac{\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1 \\ \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1 &= \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \quad \frac{1}{d_1} \sum_{\substack{f_1(x^n)=\hat{y}^n\\Z_1(1-\varepsilon_1)}} u_1^n = d_1 \sum_{\substack{f_1(x^n)\neq\hat{y}^n\\Z_1\varepsilon_1}} u_1^n \\ \varepsilon_1 &= \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1} \\ \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n = Z_1\varepsilon_1 \\ \int_{f_1(x^n)\neq\hat{y}^n} u_1^n = Z_1\varepsilon_1 \\ \end{bmatrix} \quad \frac{d_t = \sqrt{(1-\varepsilon_t)}/\varepsilon_t} > 1 \end{split}$$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \dots, (x^n, \hat{y}^n, u_1^n), \dots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \cdots, u_t^N\}$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \dots, (x^n, \hat{y}^n, u_1^n), \dots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \cdots, u_t^N\}$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \dots, (x^n, \hat{y}^n, u_1^n), \dots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \cdots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:
 - If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
 - $u_{t+1}^n = u_t^n \times d_t$

- Giving training data {(x¹, ŷ¹, u₁¹), …, (xⁿ, ŷⁿ, u₁ⁿ), …, (x^N, ŷ^N, u₁^N)}
 ŷ = ±1 (Binary classification), u₁ⁿ = 1 (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:
 - If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
 - $u_{t+1}^n \stackrel{\bullet}{=} u_t^n \times d_t$
 - Else:
 - $u_{t+1}^n = u_t^n/d_t$

- Giving training data {(x¹, ŷ¹, u¹₁), …, (xⁿ, ŷⁿ, uⁿ₁), …, (x^N, ŷ^N, u^N₁)}
 ŷ = ±1 (Binary classification), uⁿ₁ = 1 (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$

 $d_t = \sqrt{(1-\varepsilon_t)/\varepsilon_t}$

- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
- For n = 1, ..., N:
 - If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
 - $u_{t+1}^n = u_t^n \times d_t$
 - Else:

•
$$u_{t+1}^n = u_t^n/d_t$$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \dots, (x^n, \hat{y}^n, u_1^n), \dots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$

• If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$

•
$$u_{t+1}^n = u_t^n \times d_t$$

• Else:

•
$$u_{t+1}^n = u_t^n/d_t$$

$$d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

$$\alpha_t = ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}$ • $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:
 - If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
 - $u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(\alpha_t) \quad d_t = \sqrt{(1 \varepsilon_t)/\varepsilon_t}$ $\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$
 - Else:
 - $u_{t+1}^n = u_t^n / d_t = u_t^n \times exp(-\alpha_t)$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \dots, (x^n, \hat{y}^n, u_1^n), \dots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$

• If
$$x^n$$
 is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
• $u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(\alpha_t)$ $d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$
• Else:
• $u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t)$ $\alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$
 $u_{t+1}^n \leftarrow u_t^n \times \exp(-\alpha_t)$ α_t

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \dots, (x^n, \hat{y}^n, u_1^n), \dots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:

• If
$$x^n$$
 is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
• $u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(\alpha_t)$ $d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$
• Else:
• $u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t)$ $\alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$

$$u_{t+1}^n \leftarrow u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t)$$

We obtain a set of functions: f₁(x), ..., f_t(x),
 ..., f_T(x)

- We obtain a set of functions: f₁(x), ..., f_t(x),
 ..., f_T(x)
- How to aggregate them?

- We obtain a set of functions: f₁(x), ..., f_t(x),
 ..., f_T(x)
- How to aggregate them?
 - Uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} f_t(x))$

- We obtain a set of functions: f₁(x), ..., f_t(x),
 ..., f_T(x)
- How to aggregate them?
 - Uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} f_t(x))$
 - Non-uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

- We obtain a set of functions: f₁(x), ..., f_t(x),
 ..., f_T(x)
- How to aggregate them?
 - Uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} f_t(x))$$

• Non-uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$$

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

$$u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t)$$

- We obtain a set of functions: $f_1(x), \dots, f_t(x), \dots, f_t(x)$, ..., $f_T(x)$
- How to aggregate them?
 - Uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} f_t(x))$
 - Non-uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$$

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t} \qquad \varepsilon_t = 0.1$$

$$u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t) \quad \alpha_t = 1.10$$

- We obtain a set of functions: f₁(x), ..., f_t(x),
 ..., f_T(x)
- How to aggregate them?
 - Uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} f_t(x))$
 - Non-uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$$

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$
 $\varepsilon_t = 0.1$ $\varepsilon_t = 0.4$

$$u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t) \quad \alpha_t = 1.10 \qquad \alpha_t = 0.20$$

- We obtain a set of functions: f₁(x), ..., f_t(x),
 ..., f_T(x)
- How to aggregate them?
 - Uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} f_t(x))$
 - Non-uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$$

Smaller error ε_t , larger weight for final voting

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$
 $\varepsilon_t = 0.1$ $\varepsilon_t = 0.4$

$$u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t) \quad \alpha_t = 1.10 \qquad \alpha_t = 0.20$$
Toy Example

Toy Example T=3, weak classifier = decision stump Make a cut along a dimension

•

• t=1

1.0 + 1.0 + 1.0 - 1.0 + 1.0

• t=1

1	.0+ 1.0+ 1.	1.0 _ 0 <mark>+</mark>
1.0+	1.0 1.0	
1.0+	1.0-	<mark>1.0 -</mark>

 $f_1(x)$

T=3, weak classifier = decision stump

T=3, weak classifier = decision stump

Toy Example

Toy Example

Another example:

