CSCE 636 Neural Networks (Deep Learning)

Lecture 19: Ensemble Learning

Anxiao (Andrew) Jiang

Based on the interesting lecture of Prof. Hung-yi Lee "Ensemble" https://www.youtube.com/watch?v=tH9FH1DH5n0&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=32

Ensemble Learning

Framework of Ensemble

Basic idea: Build multiple models for the same application, make them collaborate to achieve better performance.

In other words: use Team Work.

Framework of Ensemble

- Get a set of classifiers
	- $\cdot f_1(x)$, $f_2(x)$, $f_3(x)$,

They should be diverse.

Framework of Ensemble

- Get a set of classifiers
	- $f_1(x)$, $f_2(x)$, $f_3(x)$,

They should be diverse.

• Aggregate the classifiers (*properly*)

Ensemble is a popular technique for winning machine learning competitions. It can improve the performance to the next level. Requirement: need to train multiple models.

Ensemble: Bagging

Combine multiple complex models

Review: Bias v.s. Variance

Simple models: large bias, small variance Complex models: small bias, large variance

Review: Bias v.s. Variance

Bagging

An idea:

Create multiple "different" datasets, and train one model for each dataset; then combine them.

But how to create different datasets?

Bagging

N training examples

Sampling N' examples with replacement (usually N=N')

Use a complex model to train 4 classification functions for the 4 datasets.

Bagging

Use average or voting to get a final result

This approach would be helpful when your model is complex, easy to overfit.

A deep decision tree can easily get 100% accuracy on training data (but overfit)

Bagging

Use average or voting to get a final result

Decision Tree

The famous "Random Forest" method: Decision trees with bagging.

Decision Tree

Assume each object x is represented by a 2-dim vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Experiment: Function of Miku

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ MLDS_2015_2/theano/miku

- Decision tree:
	- Easy to achieve 0% error rate on training data

- Decision tree: \bullet
	- Easy to achieve 0% error rate on training data
		- . If each training example has its own leaf

Complete overfitting, and nothing is learned.

- Random forest: Bagging of decision tree
	- Resampling training data is not sufficient

- Decision tree:
	- Easy to achieve 0% error rate on training data
		- If each training example has its own leaf
- Random forest: Bagging of decision tree
	- Resampling training data is not sufficient
	- Randomly restrict the features/questions used in each split

- Decision tree:
	- Easy to achieve 0% error rate on training data
		- If each training example has its own leaf
- Random forest: Bagging of decision tree
	- Resampling training data is not sufficient
	- Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging

train f_4 f_1 $f₂$ f_3 x^1 X Ω Ω X x^2 Ω X X Ω x^3 X Ω Ω X x^4 X Ω X Ω

- Decision tree: \bullet
	- Easy to achieve 0% error rate on training data
		- . If each training example has its own leaf
- Random forest: Bagging of decision tree
	- Resampling training data is not sufficient
	- Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging

- Decision tree:
	- Easy to achieve 0% error rate on training data
		- . If each training example has its own leaf

train

 x^1

 x^2

 x^3

 x^4

f,

 Ω

 Ω

 x

 x

 $f₂$

 X

 x

 Ω

 Ω

 f_3

 Ω

 x

 Ω

 x

 f_4

 x

 Ω

X

 Ω

- Random forest: Bagging of decision tree
	- Resampling training data is not sufficient
	- Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging
	- Using RF = $f_2 + f_4$ to test x^1
	- Using RF = $f_2 + f_3$ to test x^2

- Decision tree:
	- Easy to achieve 0% error rate on training data
		- . If each training example has its own leaf
- Random forest: Bagging of decision tree
	- Resampling training data is not sufficient
	- Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging
	- Using RF = $f_2 + f_4$ to test x¹
	- Using RF = $f_2 + f_3$ to test x^2
	- Using RF = $f_1 + f_4$ to test x^3

• Using RF = $f_1 + f_3$ to test x^4

Out-of-bag (OOB) error

Created with EverCan

 $(100$ trees)

Ensemble: Boosting

Improving Weak Classifiers

- · Guarantee:
	- . If your ML algorithm can produce classifier with error rate smaller than 50% on training data

- · Guarantee:
	- . If your ML algorithm can produce classifier with error rate smaller than 50% on training data
	- . You can obtain 0% error rate classifier after boosting.

- Guarantee:
	- . If your ML algorithm can produce classifier with error rate smaller than 50% on training data
	- You can obtain 0% error rate classifier after boosting.
- Framework of boosting
	- Obtain the first classifier $f_1(x)$
	- Find another function $f_2(x)$ to help $f_1(x)$

- Guarantee:
	- If your ML algorithm can produce classifier with error rate smaller than 50% on training data
	- You can obtain 0% error rate classifier after boosting.
- Framework of boosting
	- Obtain the first classifier $f_1(x)$
	- Find another function $f_2(x)$ to help $f_1(x)$
		- However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.

- Guarantee:
	- If your ML algorithm can produce classifier with error rate smaller than 50% on training data
	- . You can obtain 0% error rate classifier after boosting.
- Framework of boosting
	- Obtain the first classifier $f_1(x)$
	- Find another function $f_2(x)$ to help $f_1(x)$
		- However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
		- We want $f_2(x)$ to be complementary with $f_1(x)$ $(How?)$
	- Obtain the second classifier $f_2(x)$
	- Finally, combining all the classifiers

- Guarantee:
	- If your ML algorithm can produce classifier with error rate smaller than 50% on training data
	- . You can obtain 0% error rate classifier after boosting.
- Framework of boosting
	- Obtain the first classifier $f_1(x)$
	- Find another function $f_2(x)$ to help $f_1(x)$
		- However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
		- We want $f_2(x)$ to be complementary with $f_1(x)$ $(How?)$
	- Obtain the second classifier $f_2(x)$
	- Finally, combining all the classifiers
- The classifiers are learned sequentially.

Training data: $\{ (x^1, \hat{y}^1), \cdots, (x^n, \hat{y}^n), \cdots, (x^N, \hat{y}^N) \}$ $\hat{y} = \pm 1$ (binary classification)

- Guarantee:
	- . If your ML algorithm can produce classifier with error rate smaller than 50% on training data
	- You can obtain 0% error rate classifier after boosting.
- Framework of boosting
	- Obtain the first classifier $f_1(x)$
	- Find another function $f_2(x)$ to help $f_1(x)$
		- However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
		- We want $f_2(x)$ to be complementary with $f_1(x)$ $(How?)$
	- Obtain the second classifier $f_2(x)$
	- Finally, combining all the classifiers
- The classifiers are learned sequentially.

- Training on different training data sets
- How to have different training data sets
	- Re-sampling your training data to form a new set
	- . Re-weighting your training data to form a new set

 (x^1, \hat{y}^1, u^1) (x^2, \hat{y}^2, u^2) (x^3, \hat{y}^3, u^3)

- Training on different training data sets
- How to have different training data sets
	- Re-sampling your training data to form a new set
	- Re-weighting your training data to form a new set

$$
(x^1, \hat{y}^1, u^1) \quad u^1 = 1
$$

- (x^2, \hat{y}^2, u^2) $u^2 = 1$
- (x^3, \hat{y}^3, u^3) $u^3 = 1$

- Training on different training data sets
- How to have different training data sets
	- Re-sampling your training data to form a new set
	- Re-weighting your training data to form a new set
	- . In real implementation, you only have to change the cost/objective function

$$
(x^1, \hat{y}^1, u^1)
$$
 $u^1 = 0.4$
\n (x^2, \hat{y}^2, u^2) $u^2 = 2.1$
\n (x^3, \hat{y}^3, u^3) $u^3 = 0.7$

- Training on different training data sets
- . How to have different training data sets
	- Re-sampling your training data to form a new set
	- . Re-weighting your training data to form a new set
	- . In real implementation, you only have to change the cost/objective function

$$
(x^1, \hat{y}^1, u^1)
$$
 $u^1 = 0.4$
 (x^2, \hat{y}^2, u^2) $u^2 = 2.1$

$$
(x^3, \hat{y}^3, u^3)
$$
 $u^3 = 0.7$

$$
L(f) = \sum_{n} l(f(x^n), \hat{y}^n)
$$

- Training on different training data sets
- How to have different training data sets
	- Re-sampling your training data to form a new set
	- . Re-weighting your training data to form a new set
	- . In real implementation, you only have to change the cost/objective function

$$
(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = \qquad \qquad 0.4 \qquad L(f) = \sum_{n} l(f(x^{n}), \hat{y}^{n})
$$

$$
(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = \qquad \qquad 2.1 \qquad \qquad L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})
$$

$$
(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = \qquad \qquad 0.7 \qquad \qquad L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})
$$

• Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?
- ε_1 : the error rate of $f_1(x)$ on its training data

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1}
$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?
- ε_1 : the error rate of $f_1(x)$ on its training data

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n
$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?
- ε_1 : the error rate of $f_1(x)$ on its training data

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_{1^n}} \quad Z_1 = \sum_n u_1^n \quad \varepsilon_1 < 0.5
$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?
- ε_1 : the error rate of $f_1(x)$ on its training data

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \qquad \varepsilon_1 < 0.5
$$

Changing the example weights from u_1^n to u_2^n such that

$$
\frac{\sum_{n} u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5
$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \qquad \varepsilon_1 < 0.5
$$

Changing the example weights from u_1^n to u_2^n such that

$$
\frac{\sum_{n} u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5
$$
 The performance of f_1 for new weights would be random.

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \qquad \varepsilon_1 < 0.5
$$

Changing the example weights from u_1^n to u_2^n such that

$$
\frac{\sum_{n} u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5
$$
 The performance of f_1 for new weights would be random.

Training $f_2(x)$ based on the new weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 (x^1, \hat{y}^1, u^1) (x^2, \hat{y}^2, u^2) (x^3, \hat{y}^3, u^3) (x^4, \hat{y}^4, u^4)

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 (x^1, \hat{y}^1, u^1) $u^1 = 1$ (x^2, \hat{y}^2, u^2) $u^2 = 1$ (x^3, \hat{y}^3, u^3) $u^3 = 1$ (x^4, \hat{y}^4, u^4) $u^4 = 1$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

$$
(x^1, \hat{y}^1, u^1)
$$
 $u^1 = 1$
\n (x^2, \hat{y}^2, u^2) $u^2 = 1$
\n (x^3, \hat{y}^3, u^3) $u^3 = 1$
\n (x^4, \hat{y}^4, u^4) $u^4 = 1$
\n $\varepsilon_1 = 0.25$
\n $f_1(x)$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

If x^n misclassified by $f_1(f_1(x^n) \neq \hat{y}^n)$

 $u_2^n \leftarrow u_1^n$ multiplying d_1

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

If x^n misclassified by $f_1(f_1(x^n) \neq \hat{y}^n)$
 $u_2^n \leftarrow u_1^n$ multiplying d_1

If x^n correctly classified by $\mathfrak{g}_1'(f_1(x^n) = \hat{y}^n)$
 $u_2^n \leftarrow u_1^n$ divided by d_1

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

If x^n misclassified by $f_1(f_1(x^n) \neq \hat{y}^n)$
 $u_2^n \leftarrow u_1^n$ multiplying d_1

If x^n correctly classified by $f_1(f_1(x^n) = \hat{y}^n)$
 $u_2^n \leftarrow u_1^n$ divided by d_1 increase decrease
- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

If x^n misclassified by $f_1(f_1(x^n) \neq \hat{y}^n)$
 $u_2^n \leftarrow u_1^n$ multiplying d_1 increase

If x^n correctly classified by $f_1(f_1(x^n) = \hat{y}^n)$
 $u_2^n \leftarrow u_1^n$ divided by d_1 decrease

 f_2 will be learned based on example weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

What is the value of d_1 ?

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n
$$

Re-weighting Training Data $\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1}$ $Z_1 = \sum_n u_1^n$ $\frac{\sum_{n} u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5$

$$
\varepsilon_{1} = \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n}
$$
\n
$$
\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \qquad f_{1}(x^{n}) \neq \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1}
$$
\n
$$
\frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \qquad \frac{\sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1
$$

 d_1

$$
\varepsilon_{1} = \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n}
$$
\n
$$
\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \qquad f_{1}(x^{n}) \neq \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1}
$$
\n
$$
\frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \qquad \frac{\sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1
$$
\n
$$
\sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1} = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}
$$

$$
\varepsilon_{1} = \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n}
$$
\n
$$
\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \qquad f_{1}(x^{n}) \neq \hat{y}^{n} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1}
$$
\n
$$
\frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \qquad \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1
$$
\n
$$
\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \qquad \frac{1}{d_{1}} \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \qquad \frac{1}{d_{1}} \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \qquad f_{1}(x^{n}) \neq \hat{y}^{n}}
$$

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n
$$

 $\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5 \quad f_1(x^n) \neq \hat{y}^n \quad u_2^n \leftarrow u_1^n \text{ multiplying } d_1$
 $f_1(x^n) = \hat{y}^n \quad u_2^n \leftarrow u_1^n \text{ divided by } d_1$

 $\frac{\sum_{f_1(x^n)\neq\hat{y}^n}u_1^n d_1 + \sum_{f_1(x^n)\neq\hat{y}^n}u_1^n/d_1}{\sum_{f_1(x^n)\neq\hat{y}^n}u_1^n d_1} = 2 \frac{\sum_{f_1(x^n)\neq\hat{y}^n}u_1^n/d_1}{\sum_{f_1(x^n)\neq\hat{y}^n}u_1^n d_1} = 1$ $\sum_{f_1(x^n)=\hat{v}^n} u_1^n/d_1 = \sum_{f_1(x^n)=\hat{v}^n} u_1^n d_1 \frac{1}{d_1} \sum_{f_1(x^n)=\hat{v}^n} u_1^n = d_1 \sum_{f_1(x^n)=\hat{v}^n} u_1^n$ $\varepsilon_1 = \frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n}{Z_1}$

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n
$$

$$
\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 2 \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1
$$
\n
$$
\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n / d_1 = \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \frac{1}{d_1} \sum_{\substack{f_1(x^n)\neq\hat{y}^n} u_1^n = d_1} \sum_{\substack{f_1(x^n)\neq\hat{y}^n} u_1^n = d_1 \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n = \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1(1-\varepsilon_1)} = \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1\varepsilon_1} = \frac{\sum_{f_1(x^n)\neq\hat{y}^n
$$

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n
$$

$$
\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 2 \quad \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1
$$
\n
$$
\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n / d_1 = \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \quad \frac{1}{d_1} \sum_{\substack{f_1(x^n)\neq\hat{y}^n} u_1^n = d_1} \sum_{\substack{f_1(x^n)\neq\hat{y}^n} u_1^n = d_1 \ \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n = \frac{1}{d_1}} \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n} = \frac{1}{2}
$$

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n
$$

$$
\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 2 \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1
$$
\n
$$
\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n / d_1 = \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \frac{1}{d_1} \sum_{\frac{f_1(x^n)\neq\hat{y}^n}{\hat{z}_1(n) - \hat{y}^n}} u_1^n = d_1 \sum_{\frac{f_1(x^n)\neq\hat{y}^n}{\hat{z}_1(n) - \hat{z}_1}} u_1^n
$$
\n
$$
\varepsilon_1 = \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1} = \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1(n) - \varepsilon_1} = \frac{Z_1 \varepsilon_1}{Z_1 \varepsilon_1} \frac{1}{d_1} = \frac{Z_1 \varepsilon_1}{d_1} \frac{1}{d_1} = \frac{Z_1 \varepsilon_1}{d_1} = \frac{Z_1 \varepsilon_1}{d_1}
$$

$$
\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n
$$

$$
\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 2 \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1
$$
\n
$$
\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n / d_1 = \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 \frac{1}{d_1} \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n = d_1 \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n
$$
\n
$$
\varepsilon_1 = \frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n}{Z_1} \sum_{f_1(x^n)\neq\hat{y}^n} u_1^n = Z_1 \varepsilon_1 \qquad d_t = \sqrt{(1 - \varepsilon_t) / \varepsilon_t} > 1
$$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}$
	- $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}\$
	- $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}\$ • $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}\$
	- $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- For $n = 1, ..., N$:
		- If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$

•
$$
u_{t+1}^n = u_t^n \times d_t
$$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}\$ • $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- For $n = 1, ..., N$:
		- If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
		- $\cdot u_{t+1}^n = u_t^n \times d_t$
		- · Else:
		- $u_{t+1}^n = u_t^n / d_t$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}\$ • $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$

 $d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$

- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
- For $n = 1, ..., N$:
	- If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
	- $u_{t+1}^n = u_t^n \times d_t$
	- · Else:

$$
\bullet \ \ u_{t+1}^n = u_t^n / d_t
$$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}\$
	- $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$

• For
$$
n = 1, ..., N
$$
:

 \pm f. (γ^n) • If x^n is misclassified by $f_t(x)$: \hat{y}^n

•
$$
u_{t+1}^n = u_t^n \times d_t
$$

· Else:

•
$$
u_{t+1}^n = u_t^n / d_t
$$

$$
d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}
$$

$$
\alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}
$$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}\$ • $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- For $n = 1, ..., N$:
		- If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
		- $u_{t+1}^n = u_t^n \times d_t = u_t^n \times exp(\alpha_t)$ $d_t = \sqrt{(1 \varepsilon_t)/\varepsilon_t}$ $\alpha_t = ln \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$
		- \cdot Else:
		- $u_{t+1}^n = u_t^n / d_t = u_t^n \times e^{(\alpha_t)}$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}$
	- $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$

• For
$$
n = 1, ..., N
$$
:

• If
$$
x^n
$$
 is misclassified by $f_t(x)$:
\n• $u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(\alpha_t) \quad d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$
\n• Else:
\n• $u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t) \quad \alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$
\n $u_{t+1}^n \leftarrow u_t^n \times \exp(-\alpha_t) \quad \alpha_t)$

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}$
	- $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For $t = 1, ..., T$:
	- Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
	- For $n = 1, ..., N$:

• If
$$
x^n
$$
 is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$
\n• $u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(\alpha_t) \quad d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$
\n• Else:
\n• $u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t) \quad \alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$

$$
u_{t+1}^n \leftarrow u_t^n \times exp(-\hat{y}^n f_t(x^n) \alpha_t)
$$

• We obtain a set of functions: $f_1(x)$, ..., $f_t(x)$, $..., f_T(x)$

- We obtain a set of functions: $f_1(x)$, ..., $f_t(x)$, $..., f_T(x)$
- How to aggregate them?

- We obtain a set of functions: $f_1(x)$, ..., $f_t(x)$, $..., f_T(x)$
- How to aggregate them?
	- Uniform weight:
		- \bullet H(x) = sign($\sum_{t=1}^{T} f_t(x)$)

- We obtain a set of functions: $f_1(x)$, ..., $f_t(x)$, $..., f_T(x)$
- How to aggregate them?
	- Uniform weight:
		- \bullet H(x) = sign($\sum_{t=1}^{T} f_t(x)$)
	- Non-uniform weight:
		- \bullet H(x) = sign($\sum_{t=1}^{T} \alpha_t f_t(x)$)

- We obtain a set of functions: $f_1(x)$, ..., $f_t(x)$, \ldots , $f_T(x)$
- How to aggregate them?
	- Uniform weight:

•
$$
H(x) = sign(\sum_{t=1}^{T} f_t(x))
$$

• Non-uniform weight:

•
$$
H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))
$$

$$
\alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}
$$

$$
u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n) \alpha_t)
$$

- We obtain a set of functions: $f_1(x)$, ..., $f_t(x)$, $..., f_T(x)$
- How to aggregate them?
	- · Uniform weight:
		- \bullet H(x) = sign($\sum_{t=1}^{T} f_t(x)$)
	- Non-uniform weight:

•
$$
H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))
$$

$$
\alpha_t = \ln \sqrt{(1 - \varepsilon_t)/\varepsilon_t} \qquad \qquad \varepsilon_t = 0.1
$$

$$
u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n) \alpha_t) \quad \alpha_t = 1.10
$$

- We obtain a set of functions: $f_1(x)$, ..., $f_t(x)$, $..., f_T(x)$
- How to aggregate them?
	- · Uniform weight:
		- \bullet H(x) = sign($\sum_{t=1}^{T} f_t(x)$)
	- Non-uniform weight:

•
$$
H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))
$$

$$
\alpha_t = \ln \sqrt{(1 - \varepsilon_t)/\varepsilon_t} \qquad \qquad \varepsilon_t = 0.1 \qquad \varepsilon_t = 0.4
$$

$$
u_{t+1}^{n} = u_{t}^{n} \times exp(-\hat{y}^{n} f_{t}(x^{n}) \alpha_{t}) \quad \alpha_{t} = 1.10 \quad \alpha_{t} = 0.20
$$

- We obtain a set of functions: $f_1(x)$, ..., $f_t(x)$, $..., f_T(x)$
- How to aggregate them?
	- Uniform weight:
		- \bullet H(x) = sign($\sum_{t=1}^{T} f_t(x)$)
	- Non-uniform weight:

•
$$
H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))
$$

Smaller error ε_t , larger weight for final voting

$$
\alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t} \qquad \varepsilon_t = 0.1 \qquad \varepsilon_t = 0.4
$$

$$
u_{t+1}^{n} = u_{t}^{n} \times exp(-\hat{y}^{n} f_{t}(x^{n}) \alpha_{t}) \quad \alpha_{t} = 1.10 \quad \alpha_{t} = 0.20
$$

Toy Example $T=3$, weak classifier = decision stump Make a cut along a dimension

 \cdot t=1

 $1.0 +$ $1.0 1.0 +$ $1.0 +$ $1.0 +$ $1.0 \t 1.0$ $1.0 1.0 +$ $1.0 -$

 \cdot t=1

 $f_1(x)$

 $T=3$, weak classifier = decision stump

Another example:

