CSCE 636 Neural Networks (Deep Learning)

Lecture 18: Transfer Learning

Anxiao (Andrew) Jiang

Based on the interesting lecture of Prof. Hung-yi Lee "Transfer Learning" https://www.youtube.com/watch?v=qD6iD4TFsdQ&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=28

Dog/Cat Classifier

http://weebly110810.weebly.com/3 96403913129399.html

http://www.sucaitianxia.com/png/c artoon/200811/4261.html

Data not directly related to the task considered

http://weebly110810.weebly.com/3 96403913129399.html

http://www.sucaitianxia.com/png/c artoon/200811/4261.html

8

Data not directly related to the task considered

Similar domain, different task

http://weebly110810.weebly.com/3 96403913129399.html

http://www.sucaitianxia.com/png/c artoon/200811/4261.html

8

Data not directly related to the task considered

Similar domain, different task

Different domain, same task

Why?	http://www.bigr.nl/website/structure/main.php?page=resear chlines&subpage=project&id=64 http://www.spear.com.hk/Translation-company-Directory.html	
	Task Considered	Data not directly related
Speech Recognition	Taiwanese	You Tube English Chinese
Image Recognition	Medical Images	
Text Analysis	Specific domain	

Why?	http://www.bigr.nl/website/structure/main.php?page=resear chlines&subpage=project&id=64 http://www.spear.com.hk/Translation-company-Directory.html	
	Task Considered	Data not directly related
Speech Recognition	Taiwanese	You Tube English Chinese
Image Recognition	Medical Images	
Text Analysis	Specific domain	

• Example in real life

We do it all the time.

Transfer Learning - Overview

		Source Data (not directly related to the task)	
		labelled	unlabeled
Target Data	labelled	• Warning: differen	it terminology in
	unlabeled	different literatur	e

Transfer Learning - Overview

		Source Data (not directly related to the task)	
		labelled unlabeled	
Target Data	labelled	Model Fine-tuning Warning: different terminology in	
	unlabeled	different literature	-

- Task description
 - Target data: (x^t, y^t)
 - Source data: (x^s, y^s)

- Task description

 - Source data: $(x^s, y^s) \Leftarrow$ A large amount

- Task description
 - Target data: (x^t, y^t) \checkmark Very little
 - Source data: $(x^s, y^s) \Leftarrow$ A large amount

One-shot learning: only a few examples in target domain

- Task description
 - Target data: (x^t, y^t)
 Very little
 - Source data: $(x^s, y^s) \Leftarrow$ A large amount
- Example: (supervised) speaker adaption
 - Target data: audio data and its transcriptions of specific user
 - Source data: audio data and transcriptions from many speakers

One-shot learning: only a few examples in target domain

- Task description
 - Target data: (x^t, y^t) \checkmark Very little
 - Source data: $(x^s, y^s) \leftarrow$ A large amount
- Example: (supervised) speaker adaption
 - Target data: audio data and its transcriptions of specific user
 - Source data: audio data and transcriptions from many speakers
- Idea: training a model by source data, then finetune the model by target data
 - Challenge: only limited target data, so be careful about overfitting

One-shot learning: only a few examples in target domain

Created with EverCam.

Layer Transfer	
 Output layer 	
Source Input layer	
data	

• Which layer can be transferred (copied)?

It depends on the application (task).

- Which layer can be transferred (copied)?
 - Speech: usually copy the last few layers

Because in speech recognition, the last few layers are about the meaning/words of the sentences, which are the same for different speakers; but the first few layers are (more) about the different voices of speakers.

- Which layer can be transferred (copied)?
 - Speech: usually copy the last few layers
 - Image: usually copy the first few layers

Because the first few layers are about small features (such as lines, corners, etc.), which exists in all types of images; But the last few layers are about large features (such as faces, wheels, etc.), which only apply to specific type of images and tasks.

- Which layer can be transferred (copied)?
 - Speech: usually copy the last few layers
 - Image: usually copy the first few layers

- Which layer can be transferred (copied)?
 - Speech: usually copy the last few layers
 - Image: usually copy the first few layers

Transfer Learning - Overview

		Source Data (not directly related to the task)	
		labelled	unlabeled
Target Data	labelled	Fine-tuning Multitask Learning	
	unlabeled	0	

Multitask Learning

 The multi-layer structure makes NN suitable for multitask learning

Multitask Learning

 The multi-layer structure makes NN suitable for multitask learning

Example:

task A: classify ImageNet images task B: classify medical images
Multitask Learning

 The multi-layer structure makes NN suitable for multitask learning

Multitask Learning - Multilingual Speech Recognition

If the two tasks are actually different and cannot share common layers, transfer learning may degrade the performance for both tasks.

Too much "trial-and-error" can be a waste of time.

Progressive neural networks is an approach for such "uncertain" cases.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, "Progressive Neural Networks", arXiv preprint 2016

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, "Progressive Neural Networks", arXiv preprint 2016

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, "Progressive Neural Networks", arXiv preprint 2016

When training the network for task 2, the weights from task 1 can be trained (changed) to be 0, thus not degrading the performance for task 2.

Next, train network for task 2, and connect cach layer of the first network to the second network.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, "Progressive Neural Networks", arXiv preprint 2016

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning	0		
	unlabeled	Domain-adversarial training	Created with F		

Created with EverCam. http://www.camdemy.com

Task description

- Source data: (x^s, y^s)
- Target data: (x^t)

Task description

- Source data: (x^s, y^s)
- Target data: (x^t)

Task description

- Source data: (x^s, y^s) → Training data
- Target data: (x^t) Testing data

MNIST

SOURCE

TARGET

with label

without label

- mismatch
- Source data: (x^s, y^s) → Training data
 Target data: (x^t) → Testing data

Class label y

Idea: Remove domain-specific information from the extracted features

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Source Target	MNIST 401 16 MNIST-M	SYN NUMB	ERS S	VHN GOO HO NIST	SYN SIGNS
METHOD	Source Target	MNIST MNIST-M	SYN NUMBERS SVHN	SVHN MNIST	SYN SIGNS GTSRB
SOURCE ONLY		.5749	.8665	.5919	.7400
SA (FERN	ANDO ET AL., 2013)	.6078 (7.9%)	.8672 (1.3%)	.6157 (5.9%)	.7635(9.1%)
PROPOSED	APPROACH	.8149(57.9%)	.9048 (66.1%)	.7107 (29.3%)	.8866 (56.7%)
TRAIN ON TARGET		.9891	.9244	.9951	.9987

8

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning			
	unlabeled	Domain-adversarial training Zero-shot learning	0		

Zero-shot Learning

http://evchk.wikia.com/wiki/%E8%8 D%89%E6%B3%A5%E9%A6%AC

- Source data: (x^s, y^s) → Training data
- Target data: (x^t) Testing data

Zero-shot Learning

http://evchk.wikia.com/wiki/%E8%8 D%89%E6%B3%A5%E9%A6%AC

Source data: (x^s, y^s) → Training data
 Target data: (x^t) → Testing data
 Different tasks

(true lable: llama) But it is not in the source data. How can we recognize it?

Zero-shot Learning

http://evchk.wikia.com/wiki/%E8%8 D%89%E6%B3%A5%E9%A6%AC

In speech recognition, we can not have all possible words in the source (training) data.

Ho to solve this problem in the speech recognition task?

Zero-shot Learning

http://evchk.wikia.com/wiki/%E8%8 D%89%E6%B3%A5%E9%A6%AC

• Source data: $(x^{s}, y^{s}) \rightarrow$ Training data • Target data: $(x^{t}) \rightarrow$ Testing data x^{s} : v^{s} : v

In speech recognition, we can not have all possible words in the source (training) data.

Ho to solve this problem in the speech recognition task? Idea: recognize phoneme.
Representing each class by its attributes

Representing each class by its attributes

Database

		furry	4 legs	tail	
class	Dog	0	0	0	
	Fish	Х	Х	0	
	Chimp	0	X	X	
	•				

Representing each class by its attributes

Database

		furry	4 legs	tail	
class	Dog	0	0	0	
	Fish	Х	Х	0	
	Chimp	0	X	X	
	•				

Sufficient attributes for one-to-one mapping

Representing each class by its attributes

Training

Representing each class by its attributes

· Representing each class by its attributes

Testing

	attributes				
		furry	4 legs	tail	
<mark>class</mark>	Dog	0	0	0	
	Fish	Х	X	0	
	Chimp	0	Х	X	

sufficient attributes for one to one mapping

Representing each class by its attributes

Testing

Representing each class by its attributes

Attribute embedding

Attribute embedding

Zero-shot Learning

$$f^*, g^* = \arg\min_{f,g} \sum_n \|f(x^n) - g(y^n)\|_2$$

Zero-shot Learning

$$f^*, g^* = \arg \min_{f,g} \sum_n ||f(x^n) - g(y^n)||_2$$
 Problem?

The network can simply map all inputs to the same point in the feature space.

$$f^*, g^* = \arg\min_{f,g} \sum_n \|f(x^n) - g(y^n)\|_2 \quad \text{Problem?}$$

$$f^*, g^* = \arg\min_{f,g} \sum_n \max\left(0, k - f(x^n) \cdot g(y^n) + \max_{m \neq n} f(x^n) \cdot g(y^m)\right)$$

$$f^*, g^* = \arg \min_{f,g} \sum_n \|f(x^n) - g(y^n)\|_2 \quad \text{Problem?}$$

$$f^*, g^* = \arg \min_{f,g} \sum_n \max \left(0, k - f(x^n) \cdot g(y^n) + \max_{m \neq n} f(x^n_{\bullet}) \cdot g(y^m) \right)$$
Margin you defined
$$+ \max_{m \neq n} f(x^n_{\bullet}) \cdot g(y^m) \right)$$

Zero loss:

$$f^*, g^* = \arg \min_{f,g} \sum_n ||f(x^n) - g(y^n)||_2 \quad \text{Problem?}$$

$$f^*, g^* = \arg \min_{f,g} \sum_n \max \left(0, k - f(x^n) \cdot g(y^n) \right)$$

$$\text{Margin you defined} \quad + \max_{m \neq n} f(x^n) \cdot g(y^m) \right)$$
Zero loss: $k - f(x^n) \cdot g(y^n) + \max_{m \neq n} f(x^n) \cdot g(y^m) < 0$

Zero-shot Learning

$$f^*, g^* = \arg \min_{f,g} \sum_n ||f(x^n) - g(y^n)||_2 \quad \text{Problem?}$$

$$f^*, g^* = \arg \min_{f,g} \sum_n \max \left(0, k - f(x^n) \cdot g(y^n) \right)$$

$$\text{Margin you defined} \quad + \max_{m \neq n} f(x^n) \cdot g(y^m) \right)$$
Zero loss: $k - f(x^n) \cdot g(y^n) + \max_{m \neq n} f(x^n) \cdot g(y^m) < 0$

$$f(x^n) \cdot g(y^n) - \max_{m \neq n} f(x^n) \cdot g(y^m) > k$$

$$f^*, g^* = \arg \min_{f,g} \sum_n \|f(x^n) - g(y^n)\|_2 \quad \text{Problem?}$$

$$f^*, g^* = \arg \min_{f,g} \sum_n \max \left(0, k - f(x^n) \cdot g(y^n) \right)$$

$$\text{Margin you defined} \quad + \max_{m \neq n} f(x^n) \cdot g(y^m) \right)$$
Zero loss:
$$k - f(x^n) \cdot g(y^n) + \max_{m \neq n} f(x^n) \cdot g(y^m) < 0$$

$$\frac{f(x^n) \cdot g(y^n)}{\circ} - \max_{m \neq n} \frac{f(x^n) \cdot g(y^m)}{\circ} > k$$

$$f(x^n) \text{ and } g(y^n) \text{ as close} \quad f(x^n) \text{ and } g(y^m) \text{ not as close}$$

Test Image	ConvNet	DeViSE	ConSE(10)
	sea lion carpenter's plane cowboy boot loggerhead goose		
	古拉		

Test Image	ConvNet	DeViSE	ConSE(10)
(Stellar sea lion)	sea lion carpenter's plane cowboy boot loggerhead goose		

Test Image	ConvNet	DeViSE DSeViSE:	ConSE(10)
(Stellar sea lion)	sea lion carpenter's plane cowboy boot loggerhead goose	elephant nearby points turtle the same space turtleneck flip-flop cart, handcart	to in ce.

Test Image	ConvNet	DeViSE	ConSE(10) Convex combination for se	mantic embedding
(Stellar sealion)	sea lion carpenter's plane cowboy boot loggerhead goose	elephant turtle turtleneck flip-flop cart, handcart	California sea lion Steller sea lion Australian sea lion South American sea lion eared seal	

Test Image	ConvNet	DeViSE	ConSE(10)
(Stellar sea lion)	sea lion carpenter's plane cowboy boot loggerhead goose	elephant turtle turtleneck flip-flop cart, handcart	California sea lion Steller sea lion Australian sea lion South American sea lion eared seal
(Lama pacos)	Tibetan mastiff titi monkey Koala Ilama chow-chow	kernel littoral zone carillon Cabernet Sauvignon poodle dog	domestic dog domestic cat schnauzer Belgian sheepdog domestic llama

這個 network 也沒有得到正確的結果

Created with EverCam. http://www.camdemy.com

More about Zero-shot learning

- Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, Tom M. Mitchell, "Zero-shot Learning with Semantic Output Codes", NIPS 2009
- Zeynep Akata, Florent Perronnin, Zaid Harchaoui and Cordelia Schmid, "Label-Embedding for Attribute-Based Classification", CVPR 2013
- Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc'Aurelio Ranzato, Tomas Mikolov, "DeViSE: A Deep Visual-Semantic Embedding Model", NIPS 2013
- Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens, Andrea Frome, Greg S. Corrado, Jeffrey Dean, "Zero-Shot Learning by Convex Combination of Semantic o Embeddings", arXiv preprint 2013
- Subhashini Venugopalan, Lisa Anne Hendricks, Marcus Rohrbach, Raymond Mooney, Trevor Darrell, Kate Saenko, "Captioning Images with Diverse Objects", arXiv preprint 2016

Transfer Learning - Overview

		Source Data (not directly related to the task)				
		labelled	unlabeled			
Data	labelled	Fine-tuning Multitask Learning	Self-taught learning Rajat Raina , Alexis Battle , Honglak Lee , Benjamin Packer , Andrew Y. Ng, Self-taught learning: transfer learning from unlabeled data, ICML, 2007			
Target	unlabel <mark>e</mark> d	Domain-adversarial training Zero-shot learning	Self-taught Clustering Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu, "Self- taught clustering", ICML 2008			
		—— 所以你遇到一個別	K况是 Created with EverCam.			

Self-taught learning

- Learning to extract better representation from the source data (unsupervised approach)
- Extracting better representation for target data

Self-taught learning

- Learning to extract better representation from the source data (unsupervised approach)
- Extracting better representation for target data

Domain	Unlabeled data	Labeled data	Classes	Raw features
Image	10 images of outdoor	Caltech101 image classifi-	101	Intensities in 14x14 pixel
classification	scenes	cation dataset		patch
Handwritten char-	Handwritten digits	Handwritten English char-	26	Intensities in 28x28 pixel
acter recognition	("0"-"9")	acters ("a"-"z")		character/digit image
Font character	Handwritten English	Font characters ("a"/"A" –	26	Intensities in 28x28 pixel
recognition	otharacters ("a"-"z")	"z"/"Z")		character image
Song genre	Song snippets from 10	Song snippets from 7 dif-	7	Log-frequency spectrogram
classification	genres	ferent genres		over 50ms time windows
Webpage	100,000 news articles	Categorized webpages	2	Bag-of-words with 500 word
classification	(Reuters newswire)	(from DMOZ hierarchy)		vocabulary
UseNet article classification	100,000 news articles (Reuters newswire)	Categorized UseNet posts (from "SRAA" dataset)	2	Bag-of-words with 377 word vocabulary