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Policy-based	Approach
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Minimize	Cross	Entropy:
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The	following	 lecture	is	 based	on	 the	interesting	 lecture	 of	Prof.	Hung-yi Lee “Deep	Reinforcement	 Learning”
https://www.youtube.com/watch?v=W8XF3ME8G2I&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=33
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