
CSCE	636	Neural	Networks	
(Deep	Learning)

Lecture	13:	Deep	Reinforcement	 Learning	(continued)

Anxiao (Andrew)	Jiang



Policy-based	Approach



Actor



Actor
hurt	leg



Actor

train	hard

hurt	leg give	up

train	less	hard



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3



Two	years	later	…





Actor

train	hard

give	up

0.4

0.3

train	less	hard
0.3

Now	train	the	actor	(neural	network)	…



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

1

0

0



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

1

0

0

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	higher	probability.



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

1

0

0

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	higher	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors			



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

1

0

0

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	higher	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors			X



Actor

train	hard

hurt	leg give	up

0.4	à 0.9

0.3	à 0.04

train	less	hard
0.3	à 0.06

Target
output

1

0

0

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	higher	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors			X



Another	scenario…



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3



Two	years	later	…





Actor

train	hard

give	up

0.4

0.3

train	less	hard
0.3

Now	train	the	actor	(neural	network)	…



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

0

0

1



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

0

0

1

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	higher	probability.



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

0

0

1

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	higher	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors			



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

0

0

1

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	higher	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors			X



Actor

train	hard

hurt	leg give	up

0.4	à 0.22

0.3	à 0.5

train	less	hard
0.3	à 0.28

Target
output

0

0

1

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	higher	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors			X



Another	scenario…



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3



Three	years	later	…





Actor

train	hard

give	up

0.4

0.3

train	less	hard
0.3

Now	train	the	actor	(neural	network)	…



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

0

1

0



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

0

1

0

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	lower	probability.



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

0

1

0

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	lower	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors			



Actor

train	hard

hurt	leg give	up

0.4

0.3

train	less	hard
0.3

Target
output

0

1

0

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	lower	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors		X			



Actor

train	hard

hurt	leg give	up

0.4	à 0.42

0.3	à 0.38

train	less	hard
0.3	à 0.2

Target
output

0

1

0

Tune	weights	to	help	the	actor	make	the	
same	choice	with	a	lower	probability.

Loss	=	cross-entropy	between	the	two	probability	vectors		X			







Target
output

1

0

0

negative
Cross
entropy



Minimize	Cross	Entropy:



Target
output

1

0

0

negative
Cross
entropy



Target
output

1

0

0

negative
Cross
entropy



Target
output

1

0

0

negative
Cross
entropy



Target
output

1

0

0

negative
Cross
entropy



Target
output

1

0

0

negative
Cross
entropy



Target
output

1

0

0

negative
Cross
entropy



Target
output

1

0

0

Constant	weight	for
this	input-output	pair



Target
output

1

0

0

Sum	over	all	the	input-output	pairs



1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.



1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.

2.	As	a	result,	we	get	many	triplets	 (observation,	action,	reward).	



1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.

2.	As	a	result,	we	get	many	triplets	 (observation,	action,	reward).	



1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.

2.	As	a	result,	we	get	many	triplets	 (observation,	action,	reward).	



1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.

2.	As	a	result,	we	get	many	triplets	 (observation,	action,	reward).	



1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.

2.	As	a	result,	we	get	many	triplets	 (observation,	action,	reward).	

3.	Turn	the	reinforcement	 learning	problem	into	a	classification	 problem.	Train	the	network.



1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.

2.	As	a	result,	we	get	many	triplets	 (observation,	action,	reward).	

3.	Turn	the	reinforcement	 learning	problem	into	a	classification	 problem.	Train	the	network.

4.	Use	the	new	network	to	collect	more	data.	Use	the	new	data	to	train	the	new	network.



1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.

2.	As	a	result,	we	get	many	triplets	 (observation,	action,	reward).	

3.	Turn	the	reinforcement	 learning	problem	into	a	classification	 problem.	Train	the	network.

4.	Use	the	new	network	to	collect	more	data.	Use	the	new	data	to	train	the	new	network.

5.	Repeat	the	above	steps,	until	 the	network’s	performance	converges.



The	following	 lecture	is	 based	on	 the	interesting	 lecture	 of	Prof.	Hung-yi Lee “Deep	Reinforcement	 Learning”
https://www.youtube.com/watch?v=W8XF3ME8G2I&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=33

















































1.	Use	the	current	neural	network	(actor)	to	play	the	game,	to	get	data	from	many	episodes.

2.	As	a	result,	we	get	many	triplets	 (observation,	action,	reward).	

3.	Turn	the	reinforcement	 learning	problem	into	a	classification	 problem.	Train	the	network.

4.	Use	the	new	network	to	collect	more	data.	Use	the	new	data	to	train	the	new	network.

5.	Repeat	the	above	steps,	until	 the	network’s	performance	converges.


