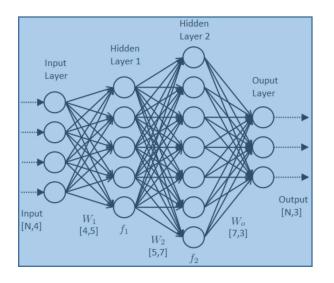
CSCE 636 Neural Networks (Deep Learning)

Lecture 13: Deep Reinforcement Learning (continued)

Anxiao (Andrew) Jiang

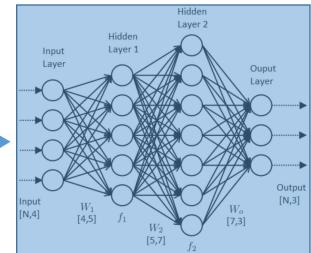
Policy-based Approach

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla logp(a_t^n | s_t^n, \theta)$$

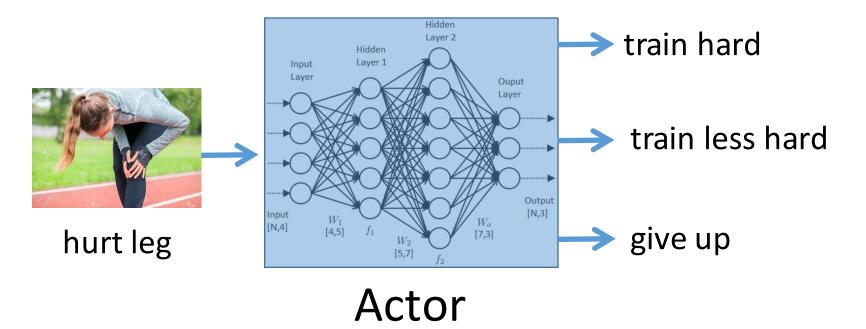


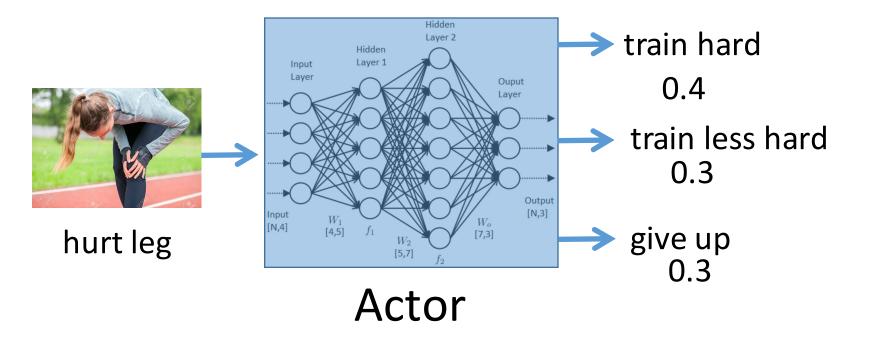
Actor

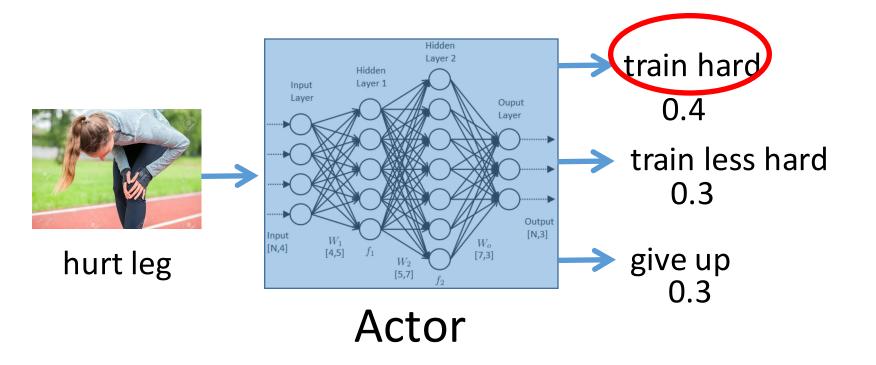
hurt leg



Actor

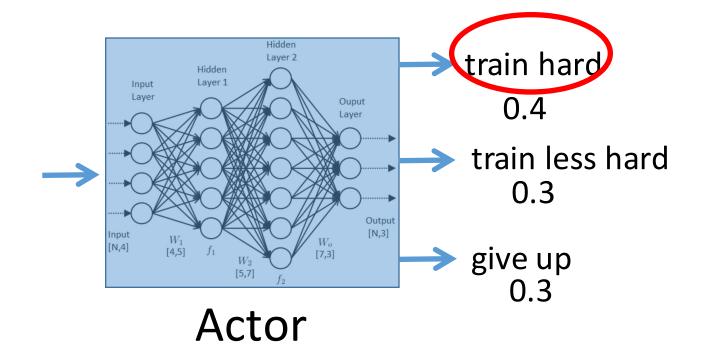


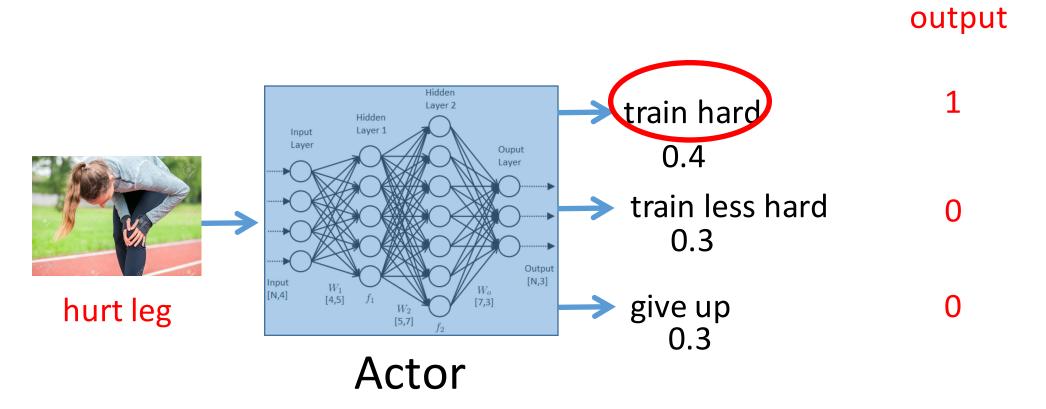




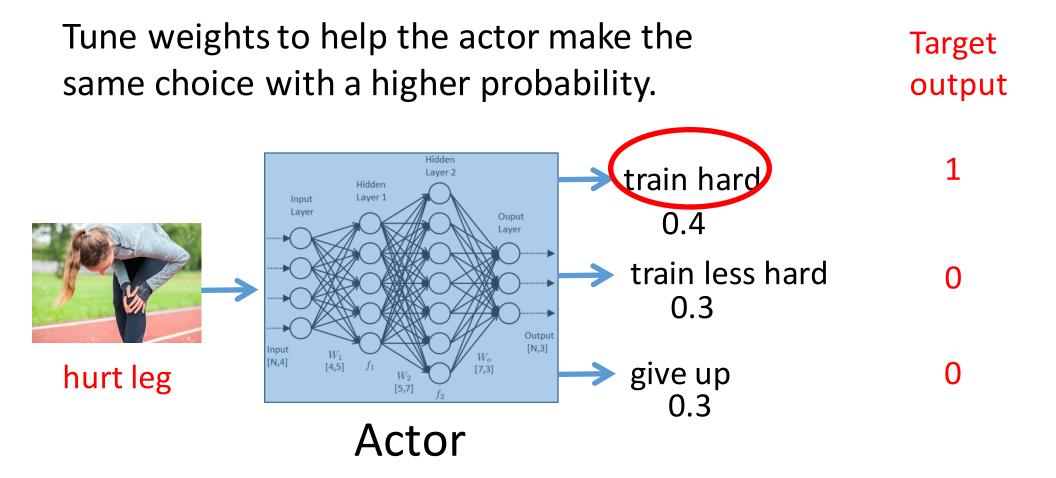
Two years later ...

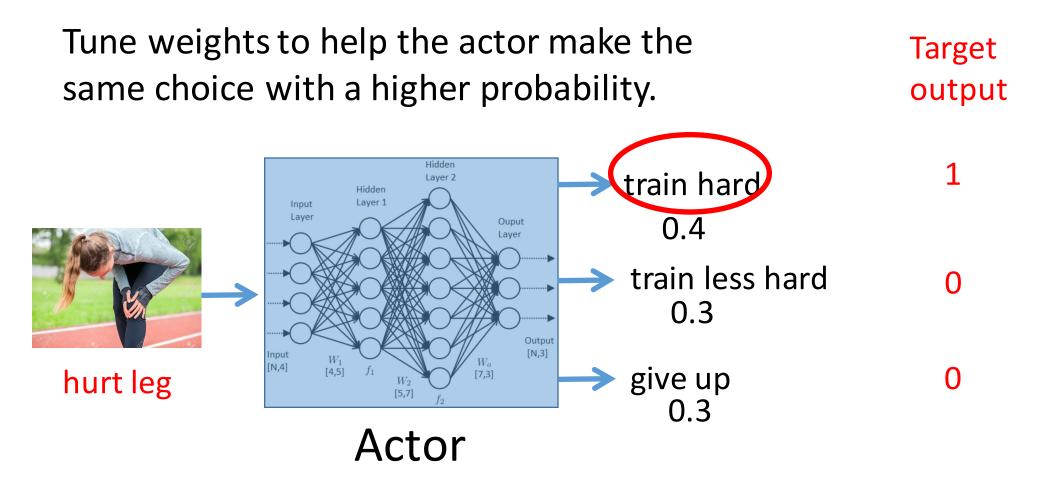
Now train the actor (neural network) ...



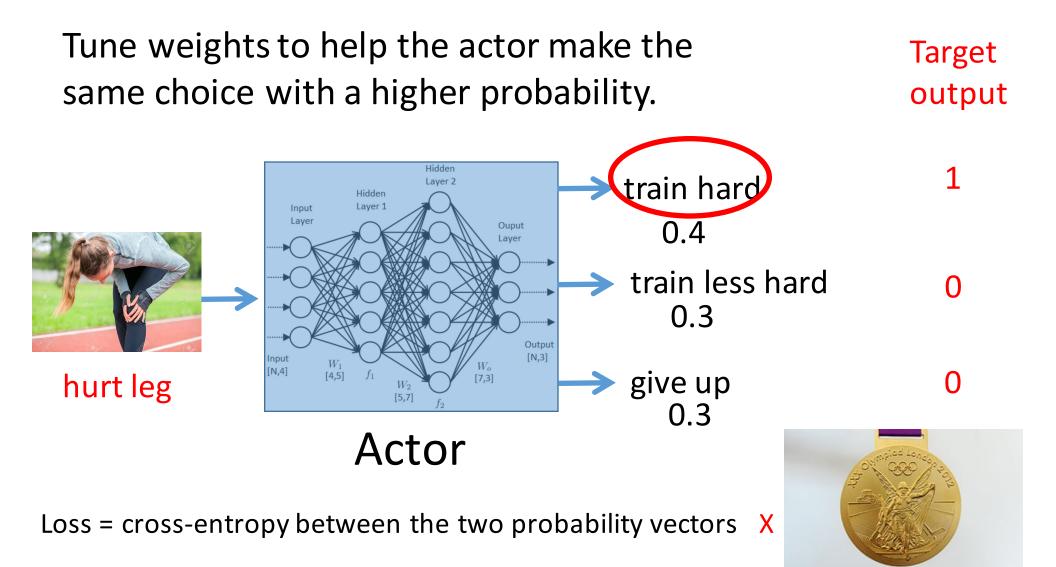


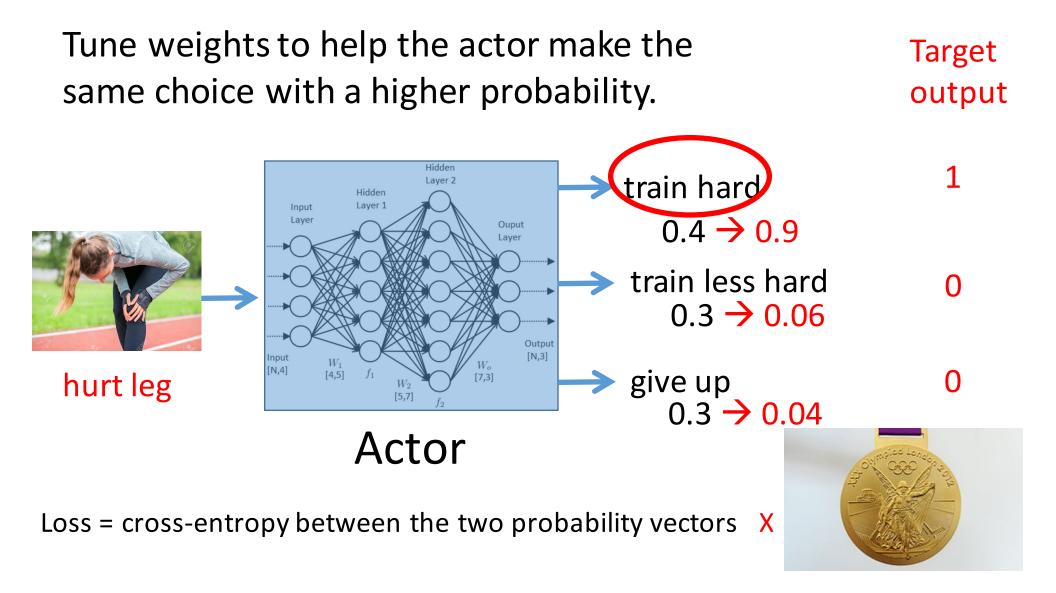
Target



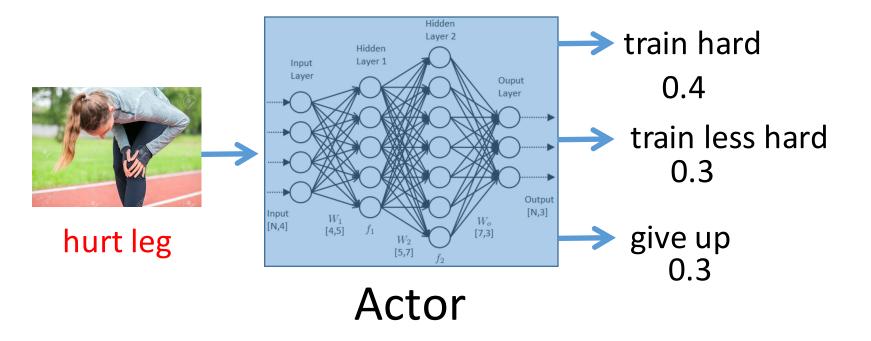


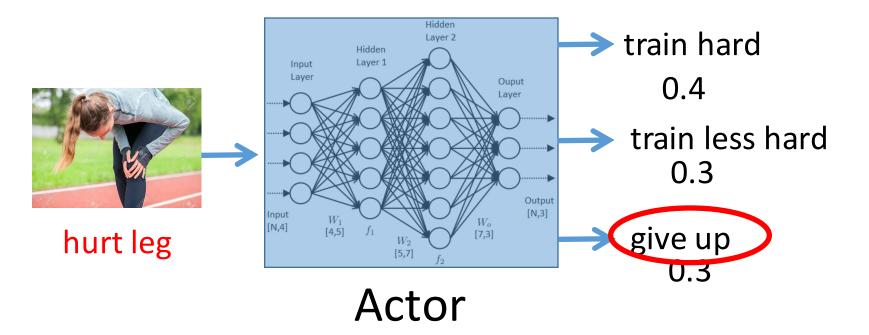
Loss = cross-entropy between the two probability vectors





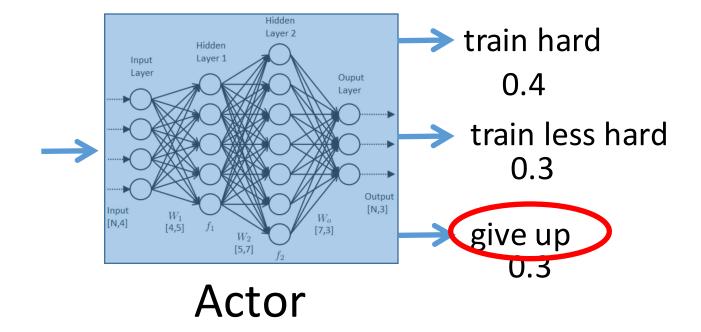
Another scenario...



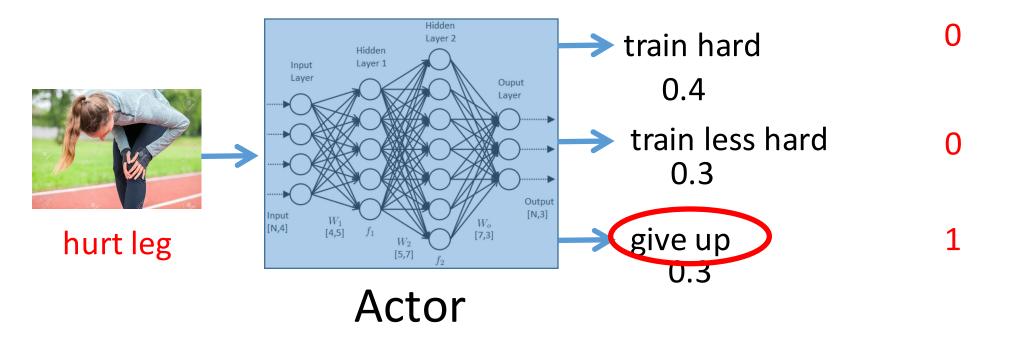


Two years later ...

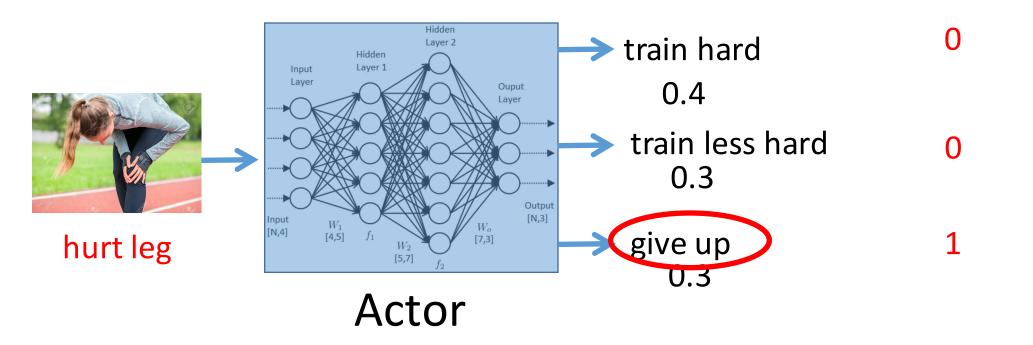
Now train the actor (neural network) ...



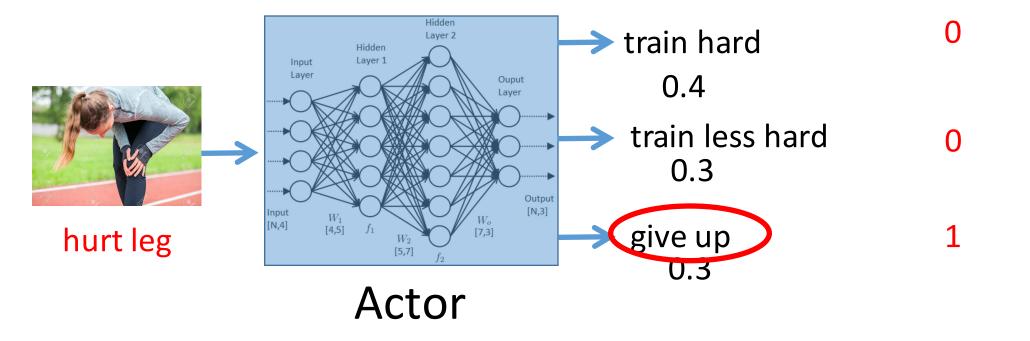
Target output



Tune weights to help the actor make theTargetsame choice with a higher probability.output

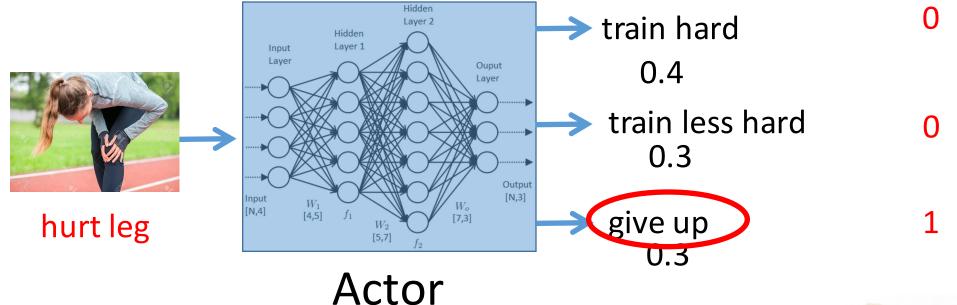


Tune weights to help the actor make theTargetsame choice with a higher probability.output



Loss = cross-entropy between the two probability vectors

Tune weights to help the actor make theTargetsame choice with a higher probability.output



Loss = cross-entropy between the two probability vectors X

Tune weights to help the actor make the same choice with a higher probability.

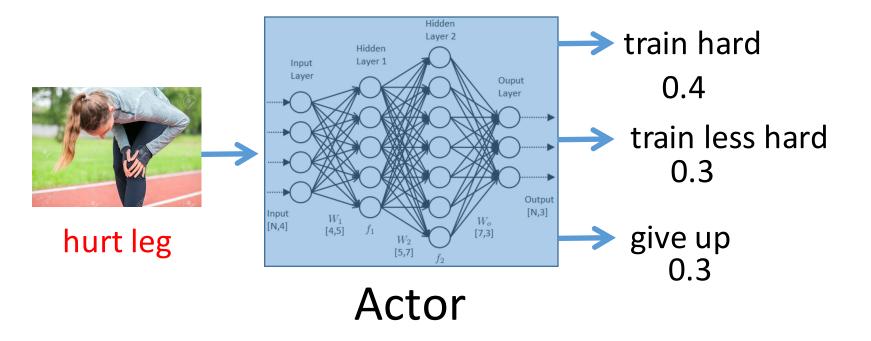
Hidden \mathbf{O} train hard Laver 2 Hidden Layer 1 Input Layer $0.4 \rightarrow 0.22$ Ouput Layer train less hard \mathbf{O} $0.3 \rightarrow 0.28$ Output [N,3] Input W₁ [4,5] W_o [N,4] give up f_1 hurt leg [7,3] W_2 [5,7] $0.3 \rightarrow 0.5$ Actor

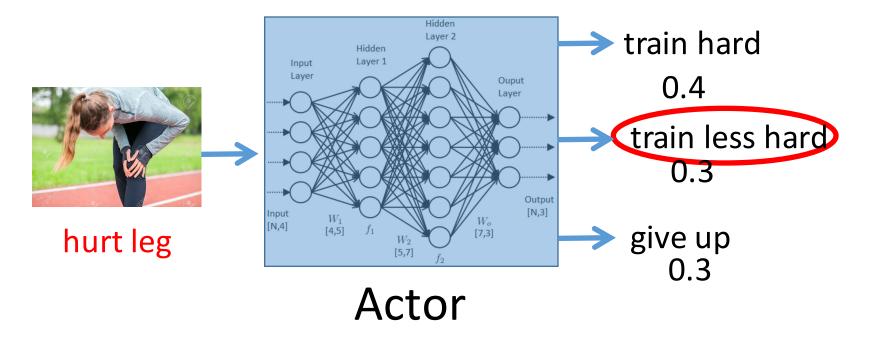
Loss = cross-entropy between the two probability vectors X

Target

output

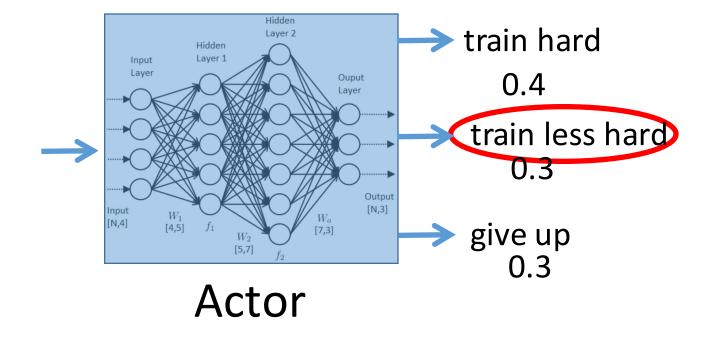
Another scenario...



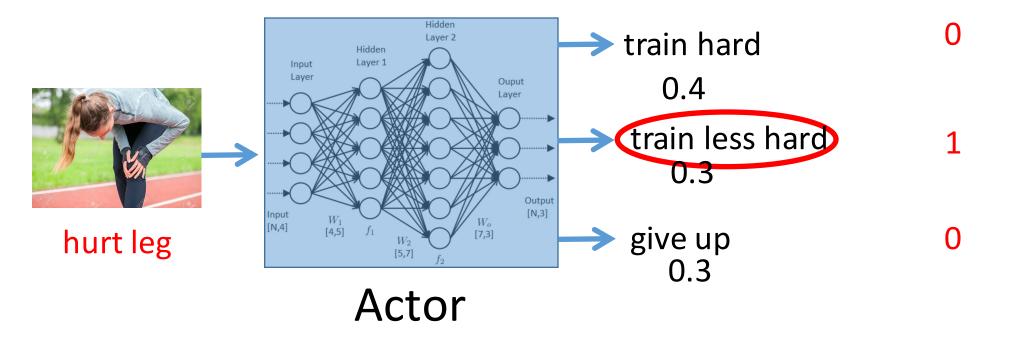


Three years later ...

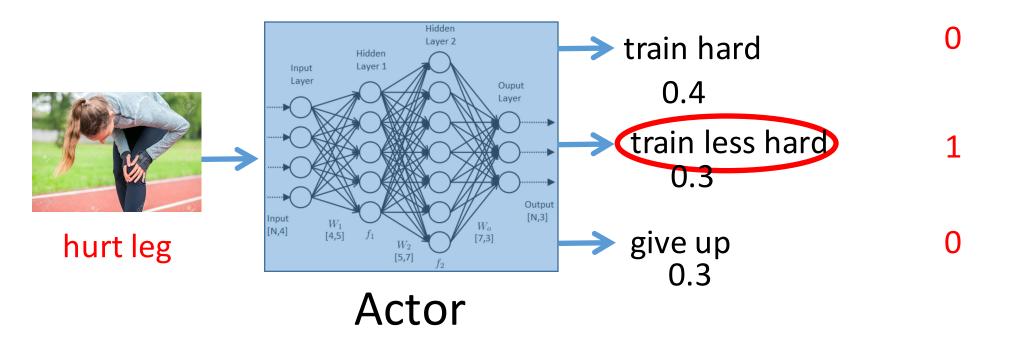
Now train the actor (neural network) ...



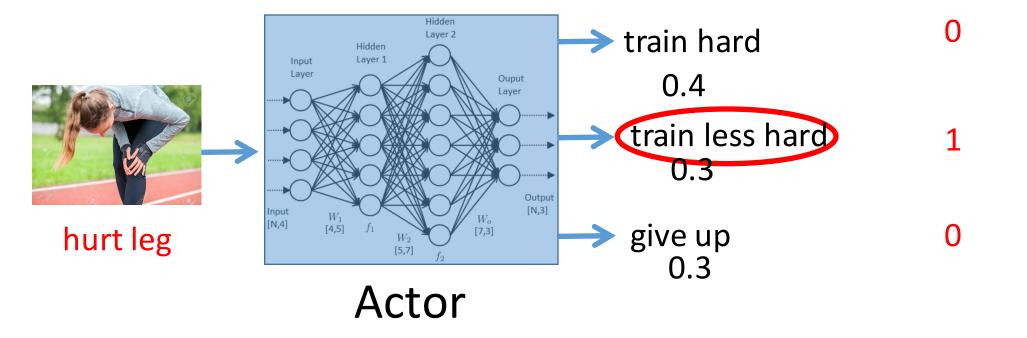
Target output



Tune weights to help the actor make theTargetsame choice with a lower probability.output

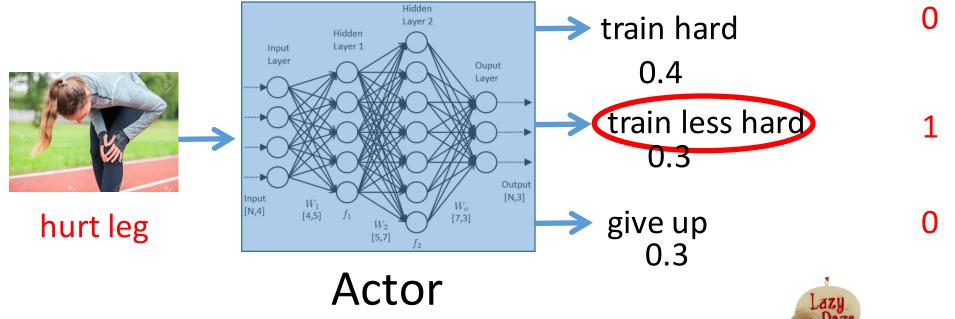


Tune weights to help the actor make theTargetsame choice with a lower probability.output



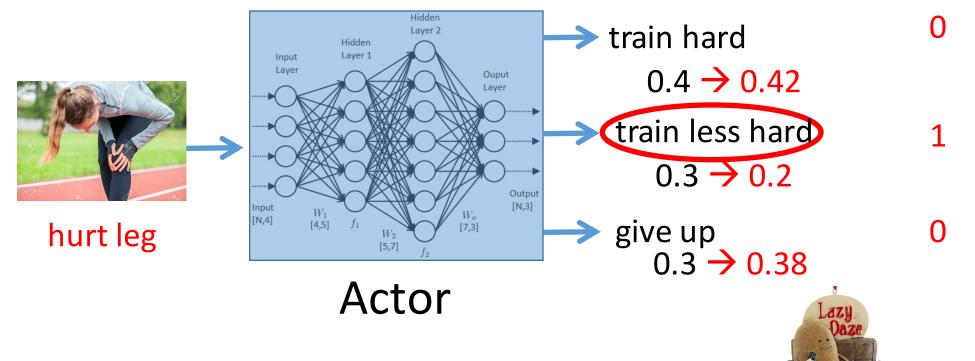
Loss = cross-entropy between the two probability vectors

Tune weights to help the actor make theTargetsame choice with a lower probability.output



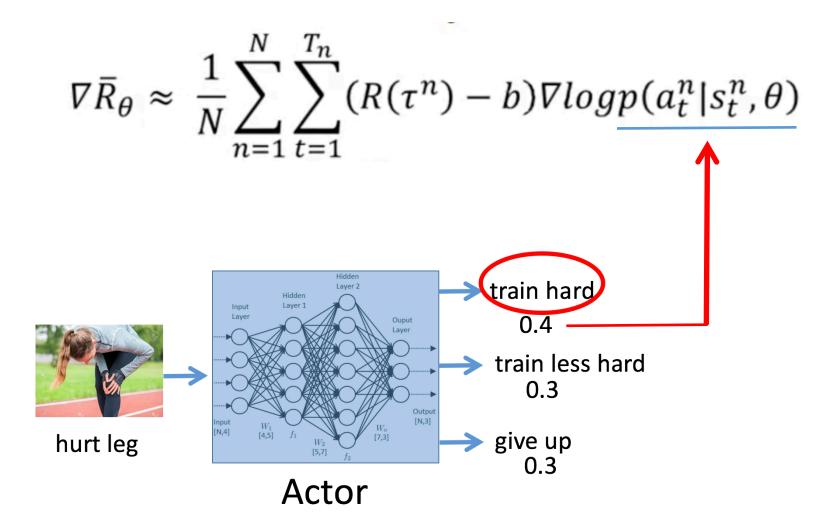
Loss = cross-entropy between the two probability vectors X

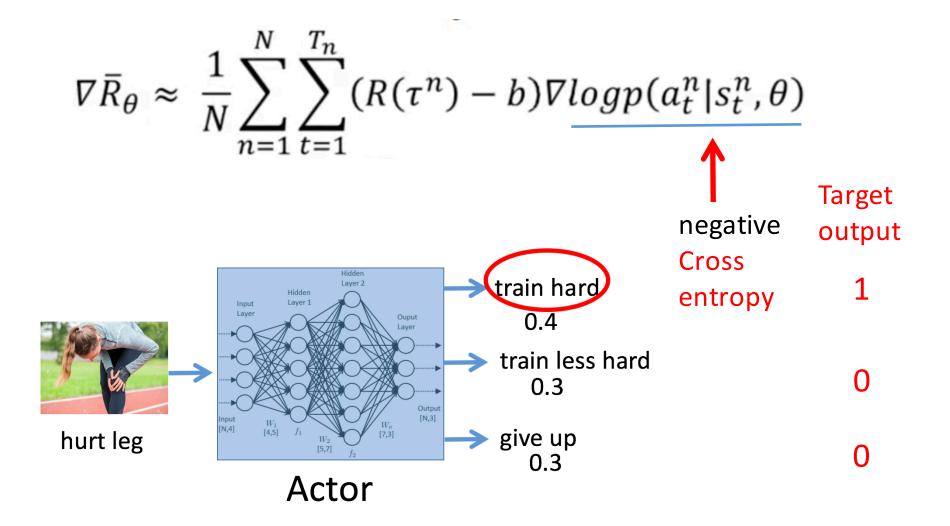
Tune weights to help the actor make theTargetsame choice with a lower probability.output



Loss = cross-entropy between the two probability vectors X

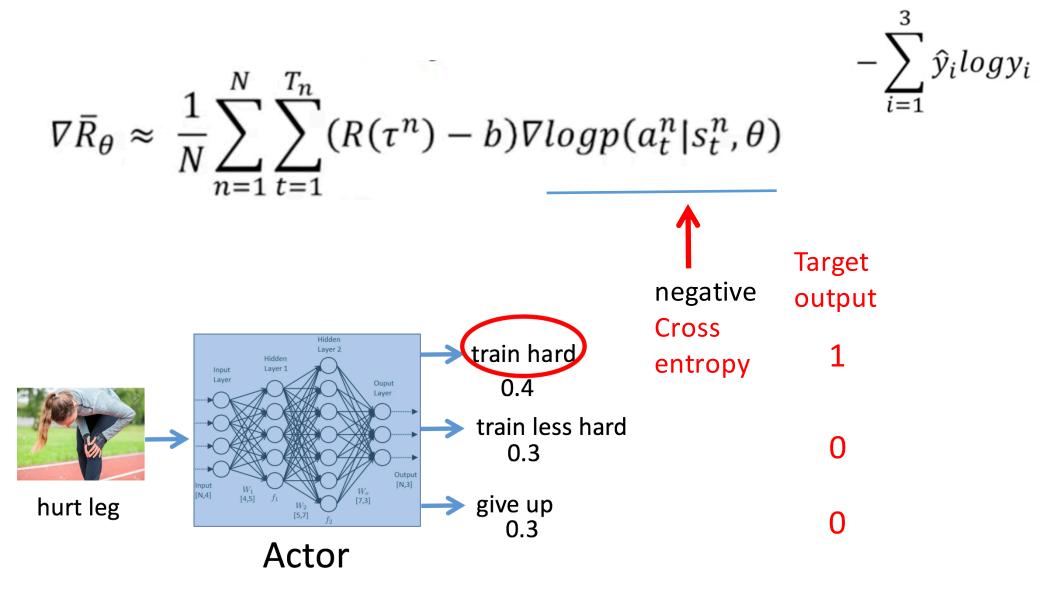
$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla logp(a_t^n | s_t^n, \theta)$$

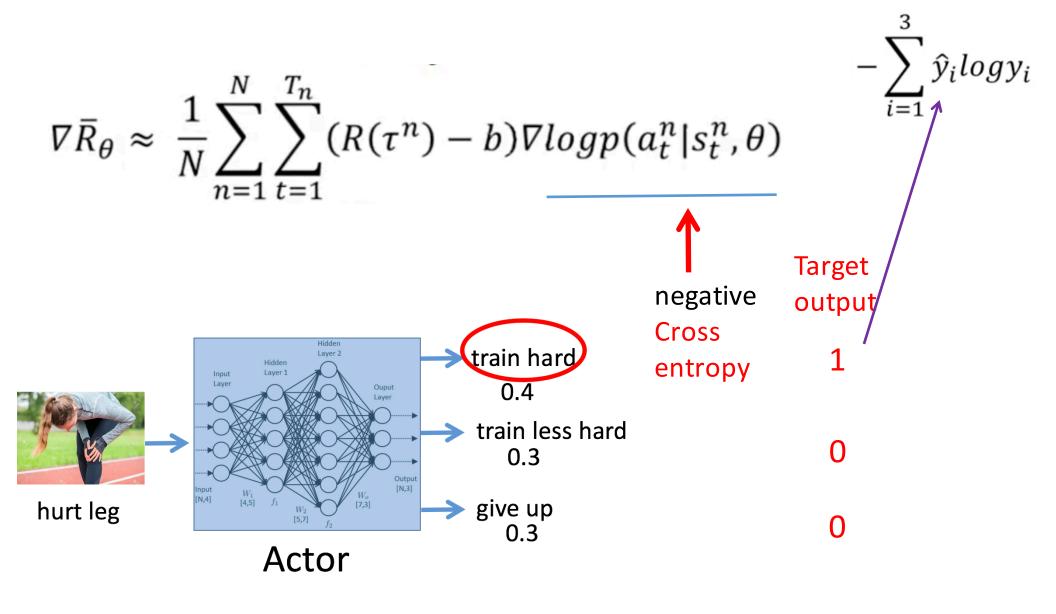


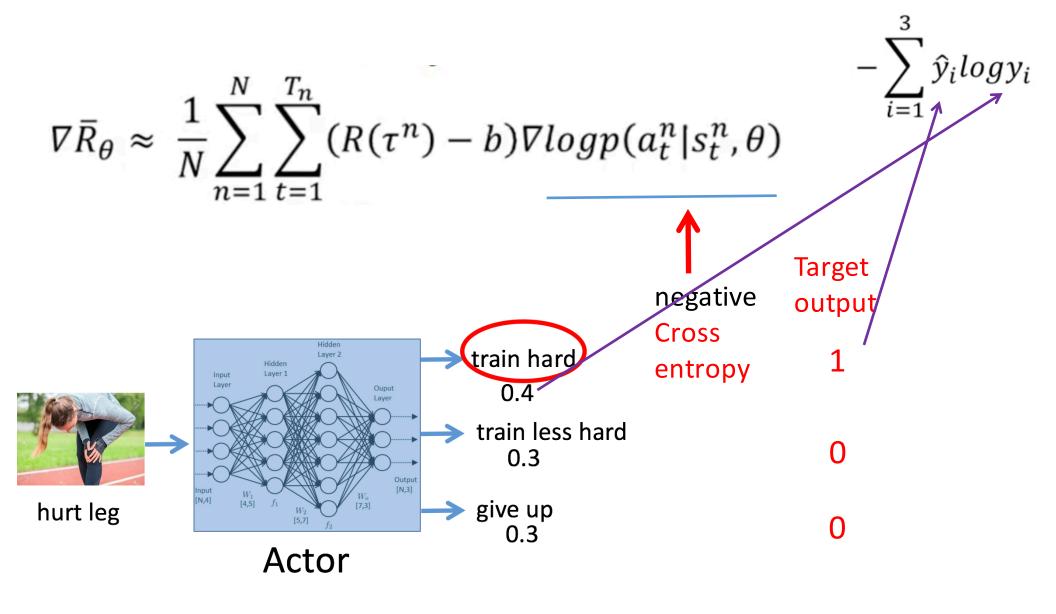


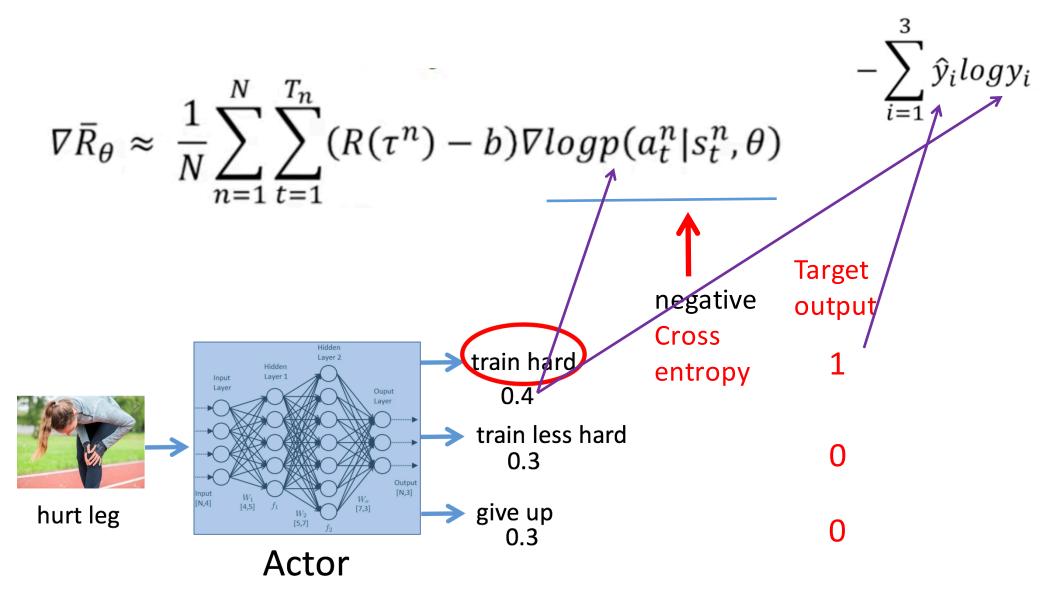
Minimize Cross Entropy:

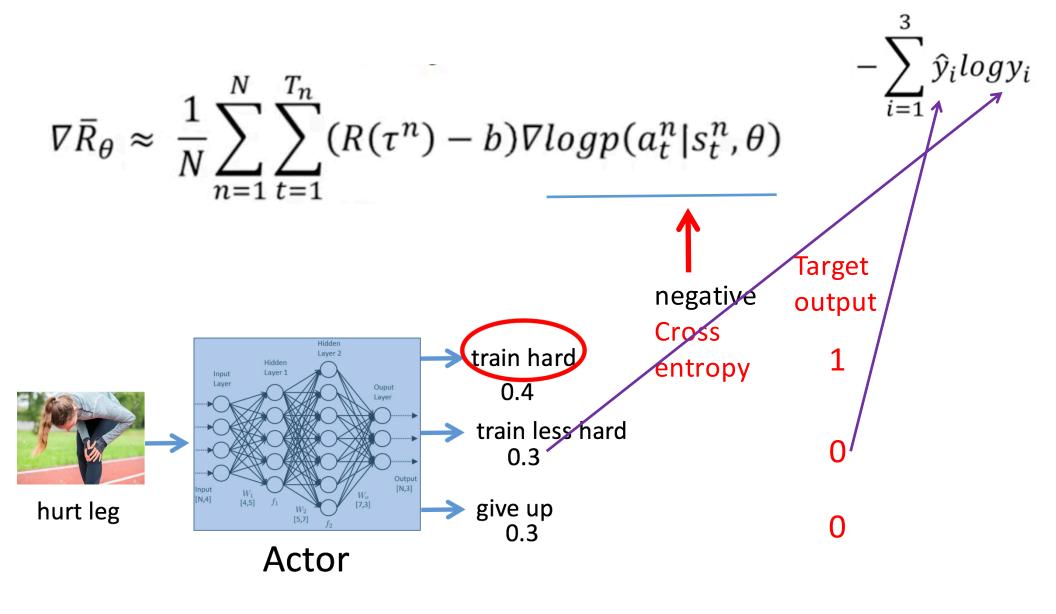
$$-\sum_{i=1}^{3} \hat{y}_i log y_i$$

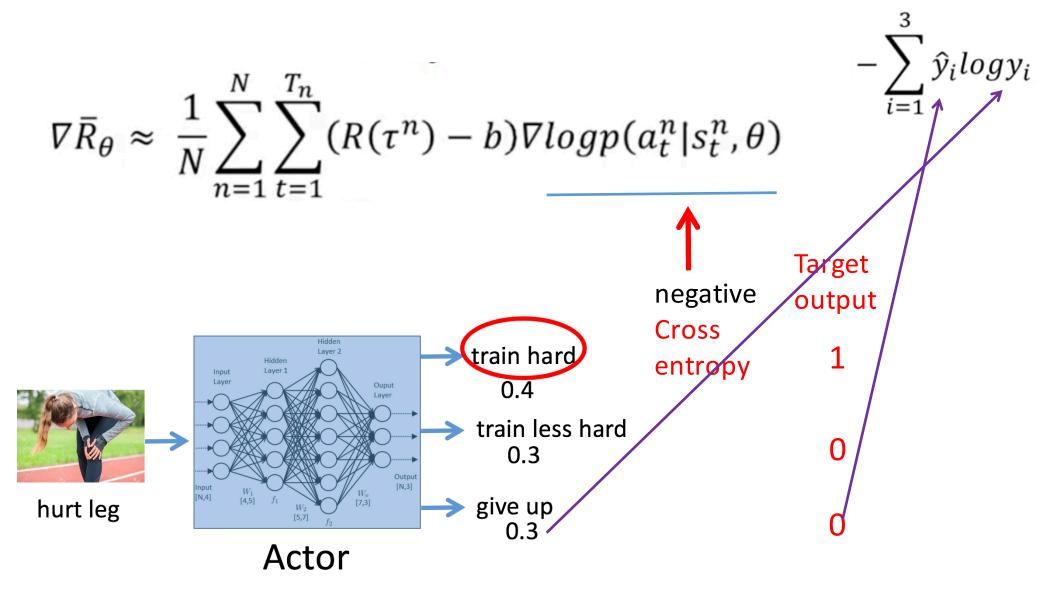


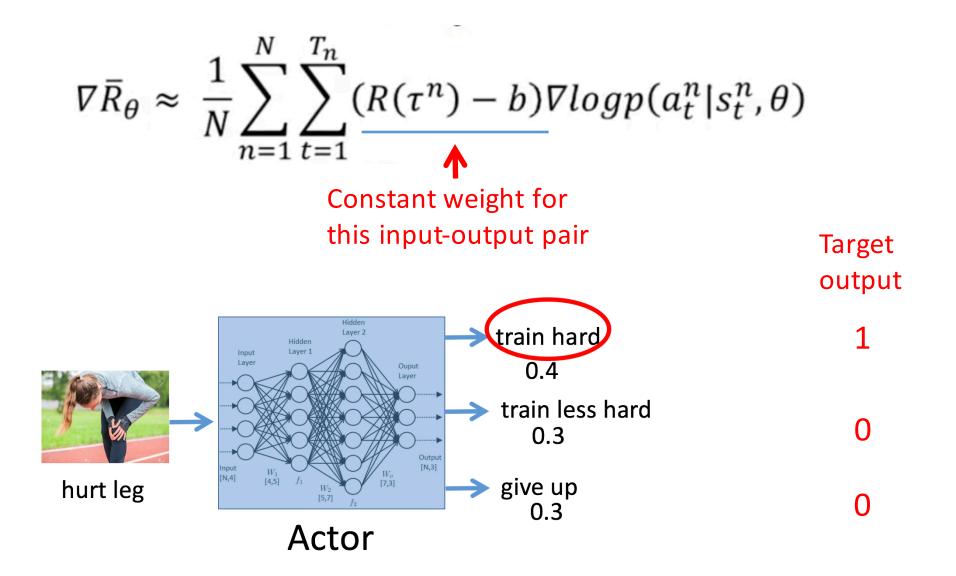


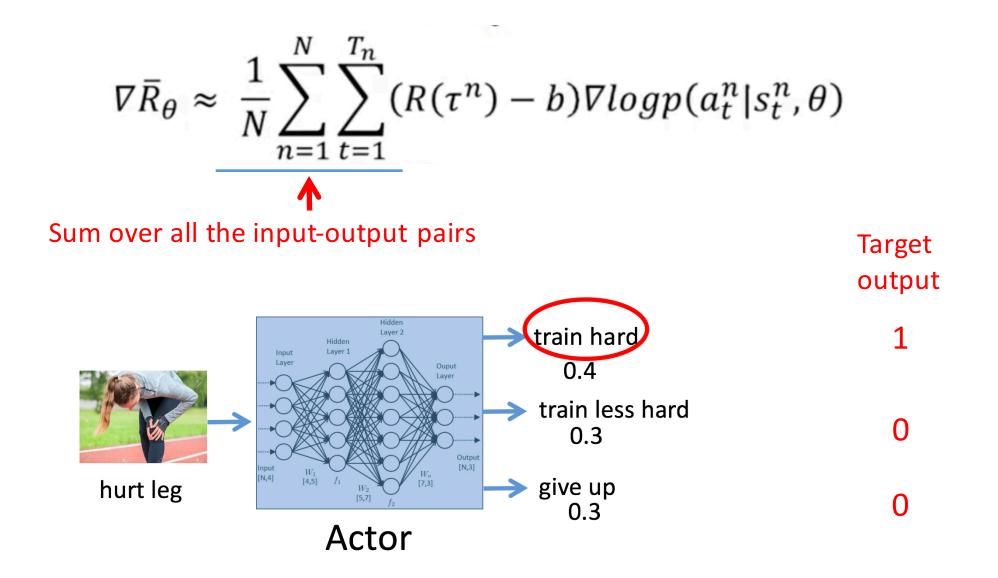












1. Use the current neural network (actor) to play the game, to get data from many episodes.

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla logp(a_t^n | s_t^n, \theta)$$

- 1. Use the current neural network (actor) to play the game, to get data from many episodes.
- 2. As a result, we get many triplets (observation, action, reward).

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla logp(a_t^n | s_t^n, \theta)$$

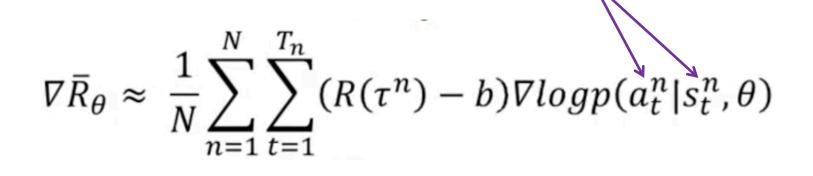
1. Use the current neural network (actor) to play the game, to get data from many episodes.

2. As a result, we get many triplets (observation, action, reward).

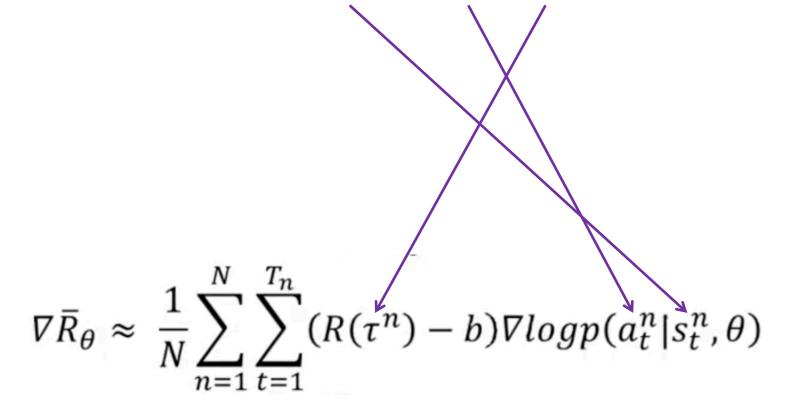
 $\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla logp(a_t^n | s_t^n, \theta)$ n=1 t=

1. Use the current neural network (actor) to play the game, to get data from many episodes.

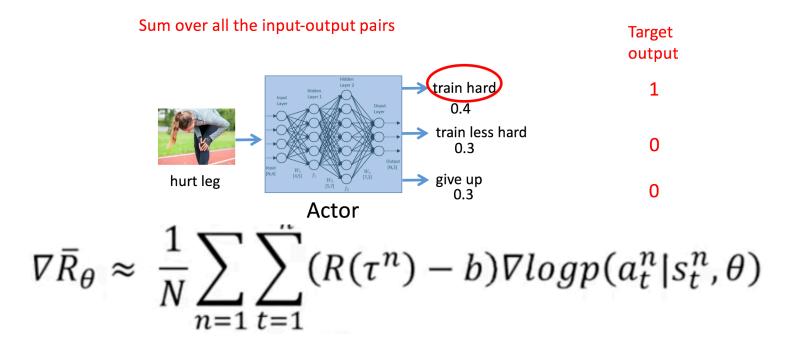
2. As a result, we get many triplets (observation, action, reward).



- 1. Use the current neural network (actor) to play the game, to get data from many episodes.
- 2. As a result, we get many triplets (observation, action, reward).



- 1. Use the current neural network (actor) to play the game, to get data from many episodes.
- 2. As a result, we get many triplets (observation, action, reward).
- 3. Turn the reinforcement learning problem into a classification problem. Train the network.



- 1. Use the current neural network (actor) to play the game, to get data from many episodes.
- 2. As a result, we get many triplets (observation, action, reward).
- 3. Turn the reinforcement learning problem into a classification problem. Train the network.
- 4. Use the new network to collect more data. Use the new data to train the new network.

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla logp(a_t^n | s_t^n, \theta)$$

- 1. Use the current neural network (actor) to play the game, to get data from many episodes.
- 2. As a result, we get many triplets (observation, action, reward).
- 3. Turn the reinforcement learning problem into a classification problem. Train the network.4. Use the new network to collect more data. Use the new data to train the new network.
- 5. Repeat the above steps, until the network's performance converges.

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla logp(a_t^n | s_t^n, \theta)$$

The following lecture is based on the interesting lecture of Prof. Hung-yi Lee "Deep Reinforcement Learning" https://www.youtube.com/watch?v=W8XF3ME8G2I&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=33

Given actor parameter θ

Given actor parameter θ

$$\tau^{1}: (s_{1}^{1}, a_{1}^{1}) \\ (s_{2}^{1}, a_{2}^{1}) \\ \vdots$$

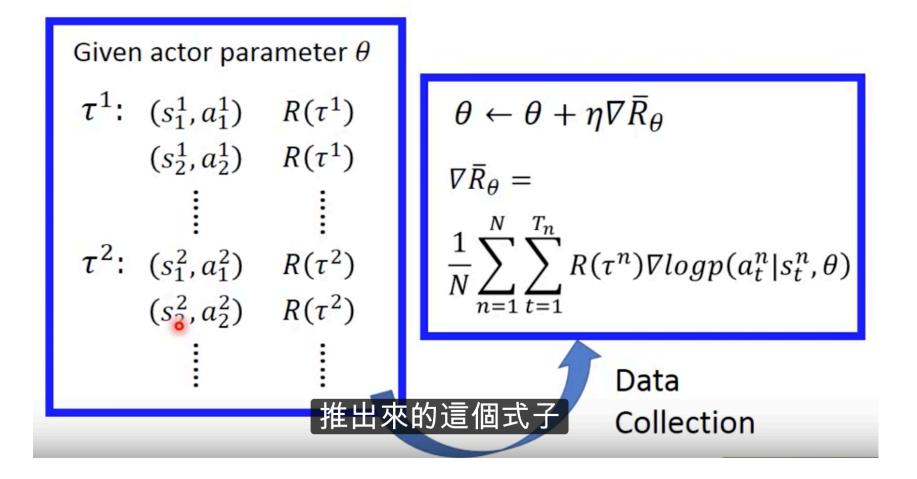
```
Policy Gradient
```

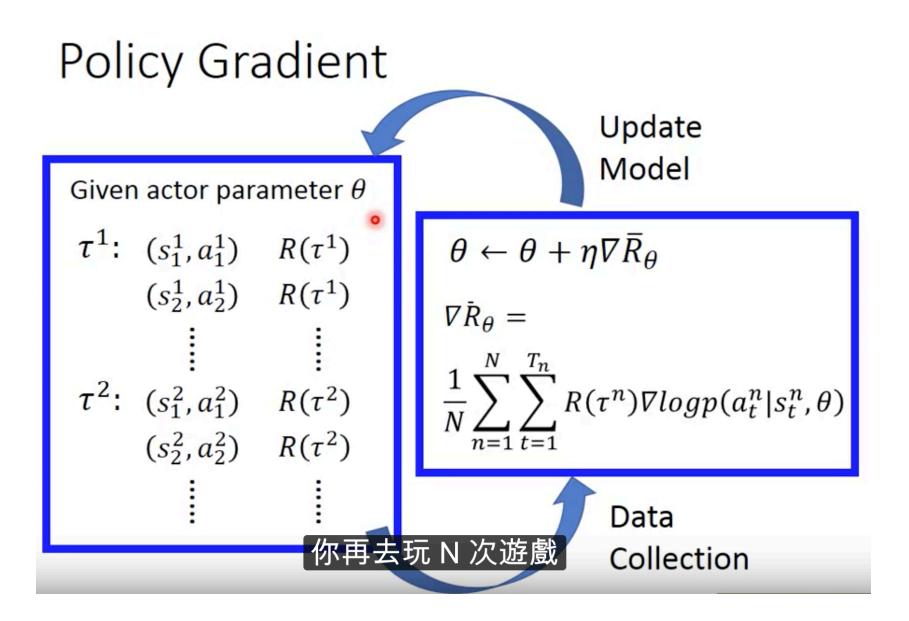
Given actor parameter θ

 $\tau^{1}: (s_{1}^{1}, a_{1}^{1}) \quad R(\tau^{1})$ $(s_{2}^{1}, a_{2}^{1}) \quad R(\tau^{1})$ \vdots

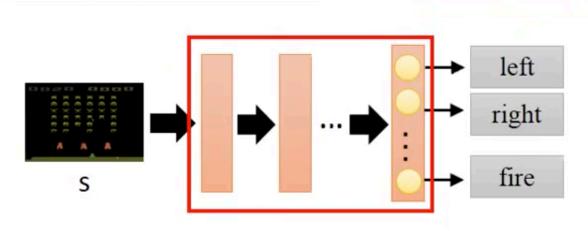
Given actor parameter θ

 $\tau^{1}: (s_{1}^{1}, a_{1}^{1}) \quad R(\tau^{1})$ $(s_{2}^{1}, a_{2}^{1}) \quad R(\tau^{1})$ $\vdots \qquad \vdots$ $\tau^{2}: (s_{1}^{2}, a_{1}^{2}) \quad R(\tau^{2})$ $(s_{0}^{2}, a_{2}^{2}) \quad R(\tau^{2})$ $\vdots \qquad \vdots$

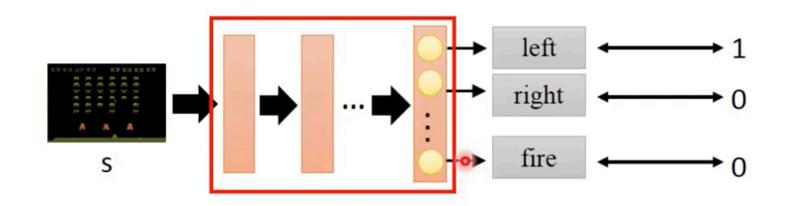




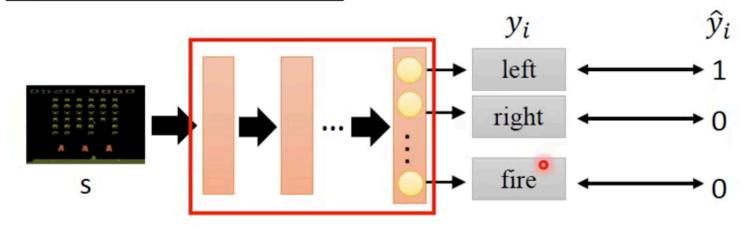
Considered as Classification Problem

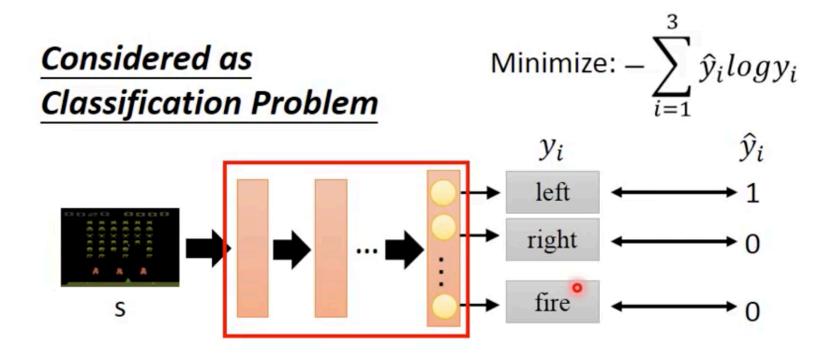


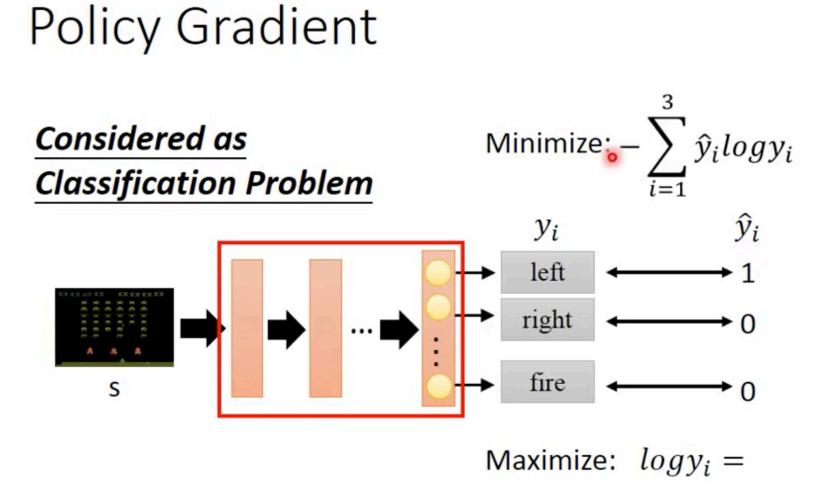
Considered as Classification Problem



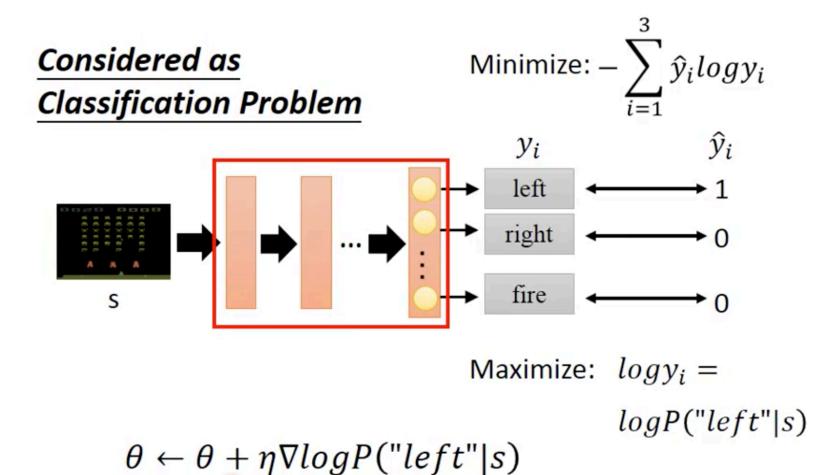
Considered as Classification Problem







Minimize: $-\sum \hat{y}_i log y_i$ **Considered** as **Classification Problem** \hat{y}_i y_i left 1 right 0 : fire S 0 Maximize: $logy_i =$ logP("left"|s)



$$\theta \leftarrow \theta + \eta \nabla \overline{R}_{\theta}$$
$$\nabla \overline{R}_{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \nabla logp(a_t^n | s_t^n, \theta)$$

Given actor parameter
$$\theta$$

 τ^{1} : $(s_{1}^{1}, a_{1}^{1}) \quad R(\tau^{1})$
 $(s_{2}^{1}, a_{2}^{1}) \quad R(\tau^{1})$
 \vdots
 τ^{2} : $(s_{1}^{2}, a_{2}^{2}) \quad R(\tau^{2})$
 $(s_{2}^{2}, a_{2}^{2}) \quad R(\tau^{2})$
 \vdots

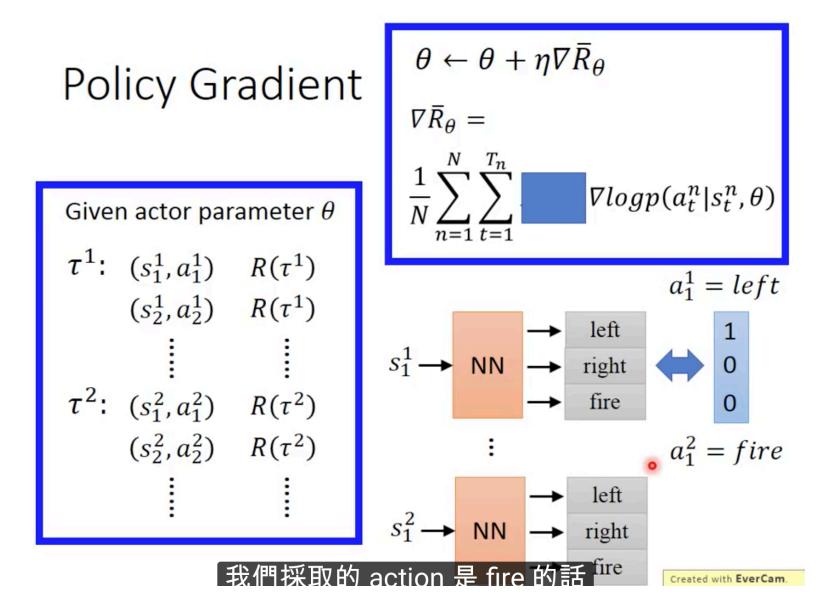
$$\theta \leftarrow \theta + \eta \nabla \overline{R}_{\theta}$$

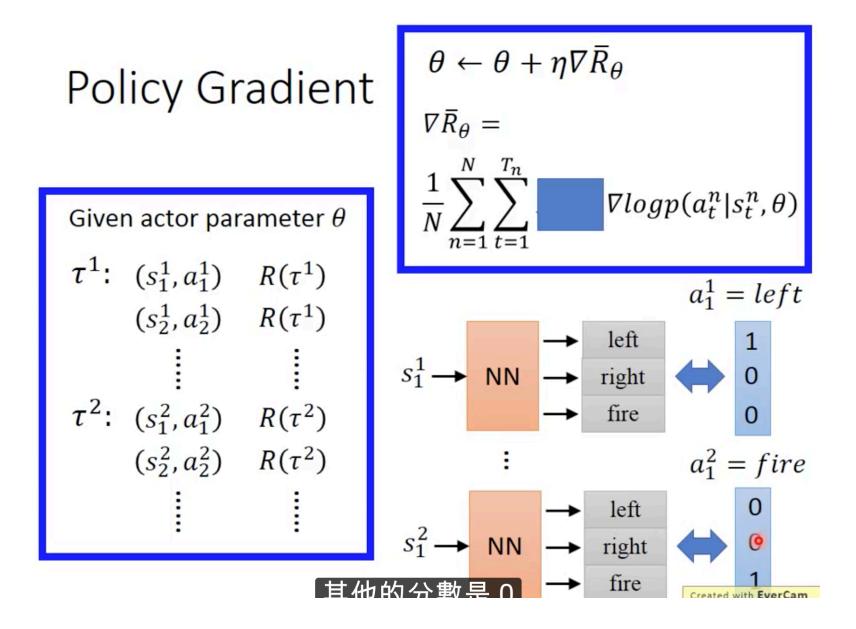
$$\nabla \overline{R}_{\theta} =$$

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \nabla logp(a_t^n | s_t^n, \theta)$$

$$a_1^1 = left$$

$$s_1^1 \rightarrow \begin{array}{c} \text{left} \\ \text{ight} \\ \text{ofire} \end{array} = 0$$





$$\begin{split} \theta &\leftarrow \theta + \eta \nabla \bar{R}_{\theta} \\ \nabla \bar{R}_{\theta} &= \\ \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta) \\ \bullet \end{split}$$

$$\begin{aligned} \theta &\leftarrow \theta + \eta \nabla \bar{R}_{\theta} \\ \nabla \bar{R}_{\theta} &= \\ \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta) \end{aligned}$$

Each training data is weighted by $R(\tau^n)$

Given actor parameter
$$\theta$$

 τ^{1} : (s_{1}^{1}, a_{1}^{1}) $R(\tau^{1})$ 2
 (s_{2}^{1}, a_{2}^{1}) $R(\tau^{1})$ 2
 τ^{2} : (s_{1}^{2}, a_{2}^{2}) $R(\tau^{2})$ 1
 (s_{2}^{2}, a_{2}^{2}) $R(\tau^{2})$ 1

$$\begin{split} \theta &\leftarrow \theta + \eta \nabla \bar{R}_{\theta} \\ \nabla \bar{R}_{\theta} &= \\ \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta) \\ \bullet \end{split}$$

Each training data is weighted by $R(\tau^n)$

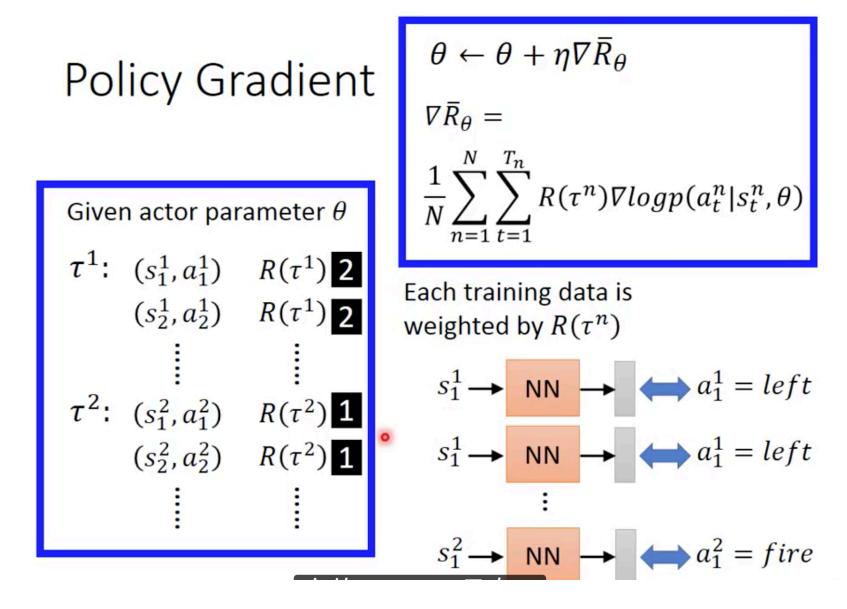
Given actor parameter
$$\theta$$

 τ^1 : (s_1^1, a_1^1) $R(\tau^1)$ 2
 (s_2^1, a_2^1) $R(\tau^1)$ 2
 τ^2 : (s_1^2, a_2^2) $R(\tau^2)$ 1
 (s_2^2, a_2^2) $R(\tau^2)$ 1

$$\begin{split} \theta &\leftarrow \theta + \eta \nabla \bar{R}_{\theta} \\ \nabla \bar{R}_{\theta} &= \\ \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta) \end{split}$$

Each training data is weighted by $R(\tau^n)$

$$s_1^1 \longrightarrow \text{NN} \longrightarrow \bigoplus a_1^1 = left$$
$$s_1^1 \longrightarrow \text{NN} \longrightarrow \bigoplus a_1^1 = left$$



- 1. Use the current neural network (actor) to play the game, to get data from many episodes.
- 2. As a result, we get many triplets (observation, action, reward).
- 3. Turn the reinforcement learning problem into a classification problem. Train the network.4. Use the new network to collect more data. Use the new data to train the new network.
- 5. Repeat the above steps, until the network's performance converges.

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla logp(a_t^n | s_t^n, \theta)$$