CSCE 636 Neural Networks (Deep Learning)

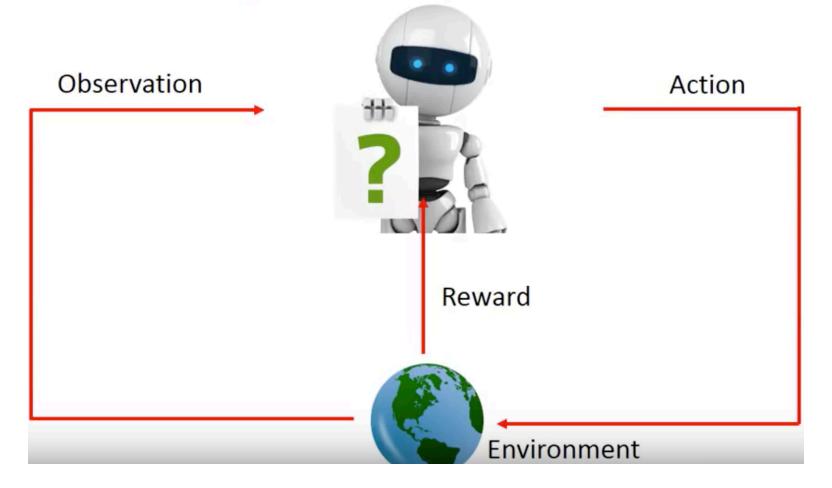
Lecture 12: Deep Reinforcement Learning (continued)

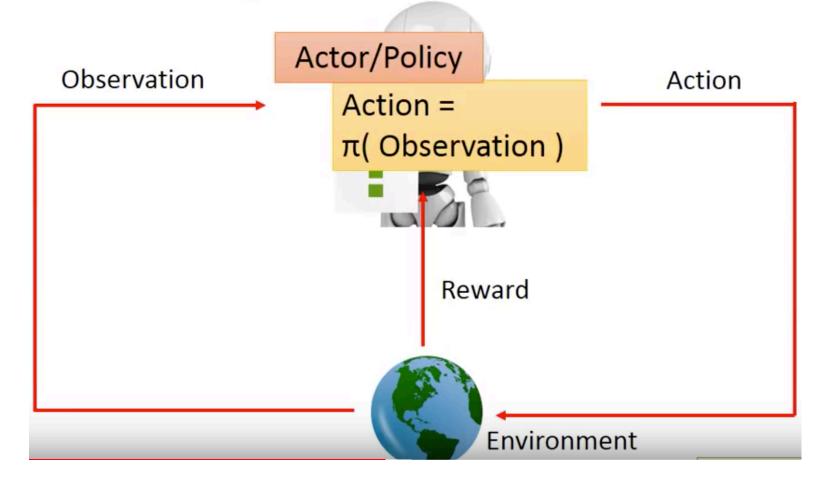
Anxiao (Andrew) Jiang

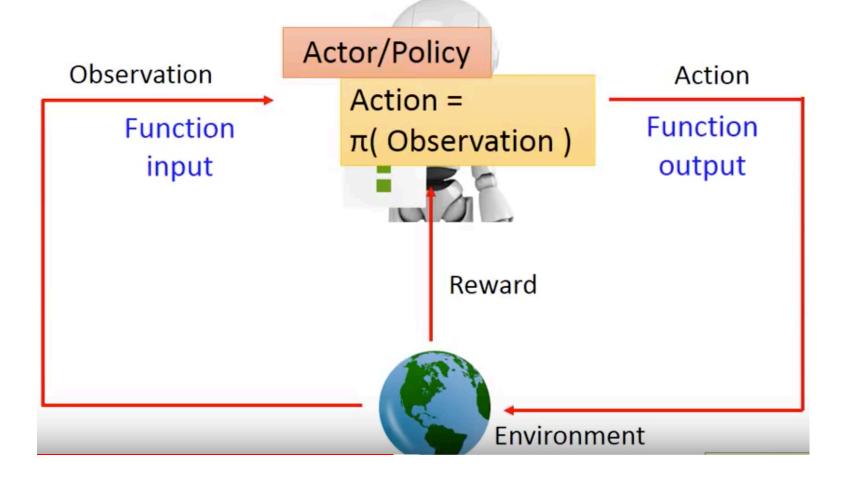
Based on the interesting lecture of Prof. Hung-yi Lee "Deep Reinforcement Learning" https://www.youtube.com/watch?v=W8XF3ME8G2I&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=33

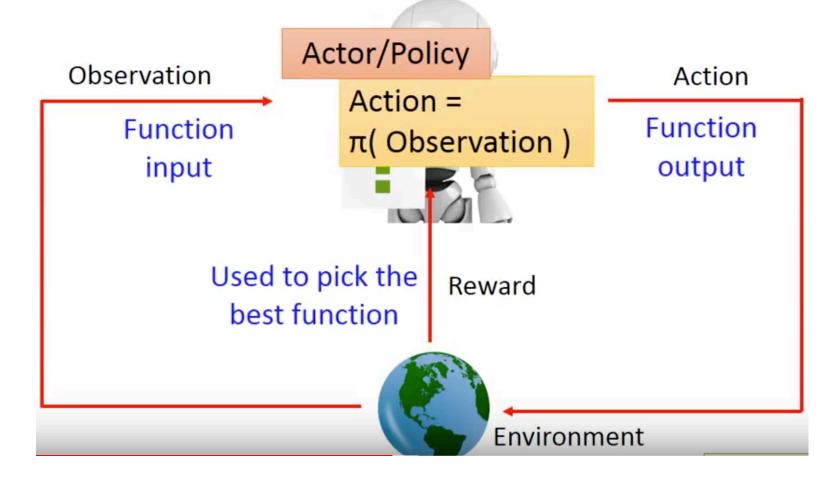
Policy-based Approach Learning an Actor

Note: Actor means "Agent"





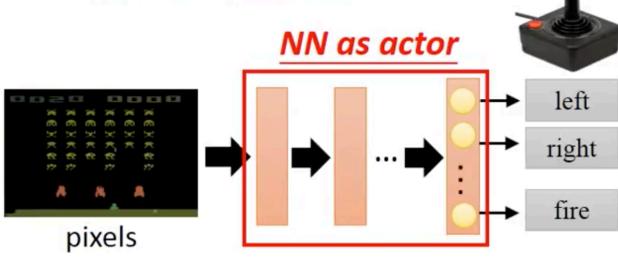




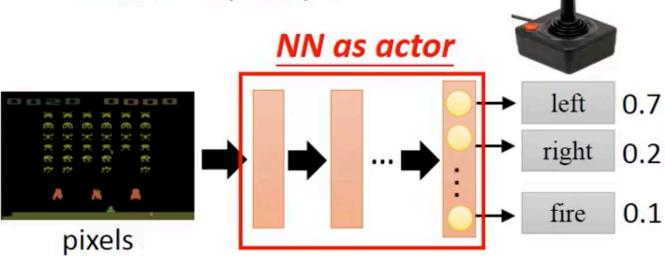
 Input of neural network: the observation of machine represented as a vector or a matrix

- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network : each action corresponds to a neuron in output layer

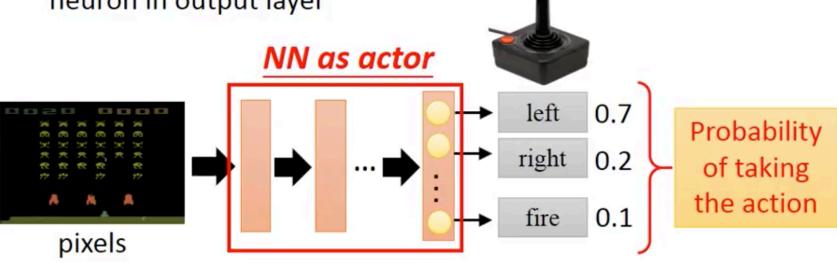
- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network : each action corresponds to a neuron in output layer

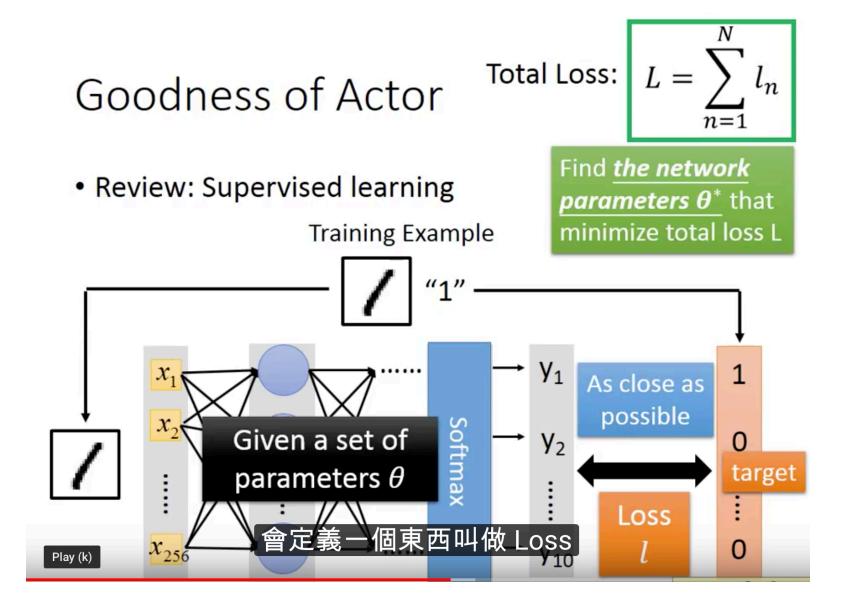


- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network : each action corresponds to a neuron in output layer



- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network : each action corresponds to a neuron in output layer





• Given an actor $\pi_{\theta}(s)$ with network parameter θ

- Given an actor $\pi_{\theta}(s)$ with network parameter θ
- Use the actor $\pi_{\theta}(s)$ to play the video game
 - Start with observation s₁
 - Machine decides to take a₁
 - Machine obtains reward r₁
 - Machine sees observation s2
 - Machine decides to take a₂
 - Machine obtains reward r₂
 - Machine sees observation s₃
 -
 - Machine decides to take a_T
 - Machine obtains reward r_T END

Total reward: $R_{\theta} = \sum_{t=1}^{T} r_t$

• Given an actor $\pi_{\theta}(s)$ with network parameter θ

END

- Use the actor $\pi_{\theta}(s)$ to play the video game
 - Start with observation s₁
 - Machine decides to take a₁
 - Machine obtains reward r₁
 - Machine sees observation s₂
 - Machine decides to take a₂
 - Machine obtains reward r₂
 - Machine sees observation s₃
 -
 - Machine decides to take a_T
 - Machine obtains reward r_T

Total reward: $R_{\theta} = \sum_{t=1}^{T} r_t$

Even with the same actor, R_{θ} is different each time

• Given an actor $\pi_{\theta}(s)$ with network parameter θ

END

- Use the actor $\pi_{\theta}(s)$ to play the video game
 - Start with observation s₁
 - Machine decides to take a₁
 - Machine obtains reward r₁
 - Machine sees observation s₂
 - Machine decides to take a₂
 - Machine obtains reward r₂
 - Machine sees observation s₃
 -
 - Machine decides to take a_T
 - Machine obtains reward r_T

Total reward: $R_{\theta} = \sum_{t=1}^{T} r_t$

Even with the same actor, R_{θ} is different each time

Randomness in the actor and the game

• Given an actor $\pi_{\theta}(s)$ with network parameter θ

END

- Use the actor $\pi_{\theta}(s)$ to play the video game
 - Start with observation s₁
 - Machine decides to take a₁
 - Machine obtains reward r₁
 - Machine sees observation s₂
 - Machine decides to take a₂
 - Machine obtains reward r₂
 - Machine sees observation s₃
 -
 - Machine decides to take a_T
 - Machine obtains reward r_T

Total reward: $R_{\theta} = \sum_{t=1}^{T} r_t$

Even with the same actor, R_{θ} is different each time

Randomness in the actor and the game

We define \overline{R}_{θ} as the <u>expected value</u> of R_{θ}

• An episode is considered as a trajectory τ

- An episode is considered as a trajectory τ
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$

- An episode is considered as a trajectory τ
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$

•
$$R(\tau) = \sum_{n=1}^{N} r_n$$

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{n=1}^{N} r_n$
 - If you use an actor to play the game, each τ has a probability to be sampled

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{n=1}^{N} r_n$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ : $P(\tau|\theta)$

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{n=1}^{N} r_n$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ : $P(\tau|\theta)$

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{n=1}^{N} r_n$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ : $P(\tau|\theta)$

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta)$$

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{n=1}^{N} r_n$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ:
 P(τ|θ)

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta)$$
Sum over all
possible trajectory
Use π_{θ} to play the
game N times,
obtain $\{\tau^{1}, \tau^{2}, \cdots, \tau^{N}\}$
Sum over all
N times

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{n=1}^{N} r_n$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ : $P(\tau|\theta)$

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau|\theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \quad \begin{array}{l} \text{Use } \pi_{\theta} \text{ to play the} \\ \text{game N times,} \\ \text{obtain } \{\tau^{1}, \tau^{2}, \cdots, \tau^{N}\} \end{array}$$

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{n=1}^{N} r_n$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ : $P(\tau|\theta)$

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n})$$

Use π_{θ} to play the ¹) game N times, obtain $\{\tau^1, \tau^2, \cdots, \tau^N\}$

Gradient Ascent

Problem statement

$$\theta^* = \arg \max_{\theta} \overline{R}_{\theta} \quad \overline{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau|\theta)$$

- Gradient ascent
 - Start with θ^0

•
$$\theta^1 \leftarrow \theta^0 + \eta \nabla \bar{R}_{\theta^0}$$

 $\bullet \; \theta^2 \leftarrow \theta^1 + \eta \nabla \bar{R}_{\theta^1}$

Gradient Ascent

Problem statement

$$\theta^* = \arg \max_{\theta} \overline{R}_{\theta} \quad \overline{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau|\theta)$$

Gradient ascent

•

- Start with θ^0
- $\theta^1 \leftarrow \theta^0 + \eta \nabla \bar{R}_{\theta^0}$
- $\bullet \; \theta^2 \leftarrow \theta^1 + \eta \nabla \bar{R}_{\theta^1}$

$$\theta = \{w_1, w_2, \cdots, b_1, \cdots\}$$

 $\nabla \bar{R}_{\theta}$

Gradient Ascent

Problem statement

$$\theta^* = \arg \max_{\theta} \overline{R}_{\theta} \quad \overline{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau|\theta)$$

Gradient ascent

•

- Start with θ^0
- $\theta^1 \leftarrow \theta^0 + \eta \nabla \bar{R}_{\theta^0}$
- $\bullet \; \theta^2 \leftarrow \theta^1 + \eta \nabla \bar{R}_{\theta^1}$

$$\theta = \{w_1, w_2, \cdots, b_1, \cdots\}$$
$$\nabla \bar{R}_{\theta} = \begin{bmatrix} \partial \bar{R}_{\theta} / \partial w_1 \\ \partial \bar{R}_{\theta} / \partial w_2 \\ \vdots \\ \partial \bar{R}_{\theta} / \partial b_1 \\ \vdots \end{bmatrix}$$

Gradient Ascent

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta) \quad \nabla \bar{R}_{\theta} = ?$$

Gradient Ascent

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau|\theta) \quad \nabla \bar{R}_{\theta} = ?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla P(\tau|\theta)$

Gradient Ascent

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau)P(\tau|\theta) \quad \nabla \bar{R}_{\theta} =?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau)\nabla P(\tau|\theta)$
 $R(\tau)$ do not have to be differentiable
It can even be a black box.

Gradient Ascent

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau)P(\tau|\theta) \quad \nabla \bar{R}_{\theta} = ?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau)\nabla P(\tau|\theta) = \sum_{\tau} R(\tau)P(\tau|\theta)\frac{\nabla P(\tau|\theta)}{P(\tau|\theta)}$

 $R(\tau)$ do not have to be differentiable It can even be a black box.

Gradient Ascent

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau)P(\tau|\theta) \quad \nabla \bar{R}_{\theta} =?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau)\nabla P(\tau|\theta) = \sum_{\tau} R(\tau)P(\tau|\theta) \frac{\nabla P(\tau|\theta)}{P(\tau|\theta)}$
 $R(\tau)$ do not have to be differentiable
It can even be a black box.

$$= \sum_{\tau} R(\tau) P(\tau|\theta) \nabla log P(\tau|\theta)$$

Gradient Ascent

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau)P(\tau|\theta) \quad \nabla \bar{R}_{\theta} =?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau)\nabla P(\tau|\theta) = \sum_{\tau} R(\tau)P(\tau|\theta)\frac{\nabla P(\tau|\theta)}{P(\tau|\theta)}$
 $R(\tau)$ do not have to be differentiable
It can even be a black box.

$$= \sum_{\tau} R(\tau) P(\tau|\theta) \nabla log P(\tau|\theta) \qquad \frac{d}{d\tau}$$

$$\frac{dlog(f(x))}{dx} = \frac{1}{f(x)}\frac{df(x)}{dx}$$

Gradient Ascent

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau)P(\tau|\theta) \quad \nabla \bar{R}_{\theta} =?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau)\nabla P(\tau|\theta) = \sum_{\tau} R(\tau)P(\tau|\theta)\frac{\nabla P(\tau|\theta)}{P(\tau|\theta)}$
 $R(\tau)$ do not have to be differentiable
It can even be a black box.

$$= \sum_{\tau} R(\tau) \frac{P(\tau|\theta)}{\nabla \log P(\tau|\theta)} \frac{dle}{\nabla \log P(\tau|\theta)}$$

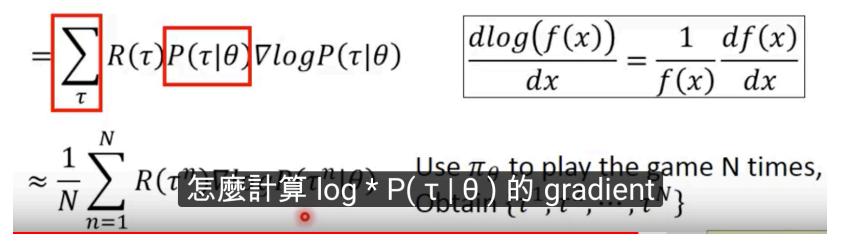
$$\frac{dlog(f(x))}{dx} = \frac{1}{f(x)}\frac{df(x)}{dx}$$

Gradient Ascent

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau)P(\tau|\theta) \quad \nabla \bar{R}_{\theta} =?$$

 $\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau)\nabla P(\tau|\theta) = \sum_{\tau} R(\tau)P(\tau|\theta)\frac{\nabla P(\tau|\theta)}{P(\tau|\theta)}$
 $R(\tau)$ do not have to be differentiable

It can even be a black box.



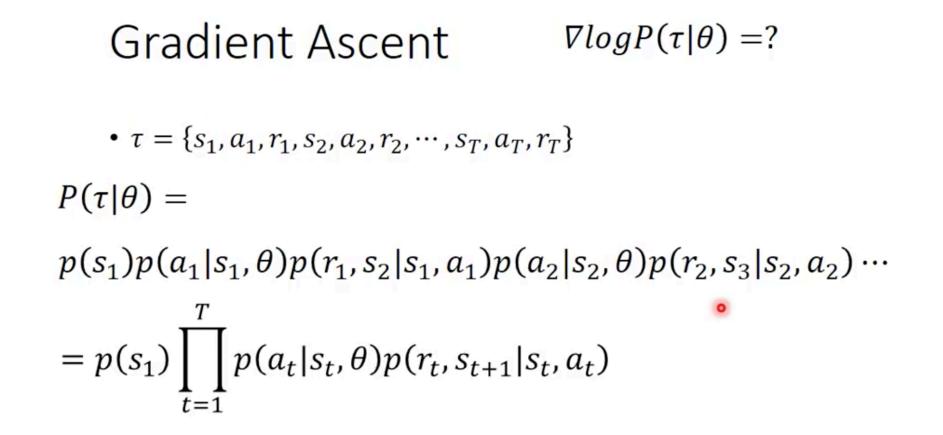
•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T\}$$

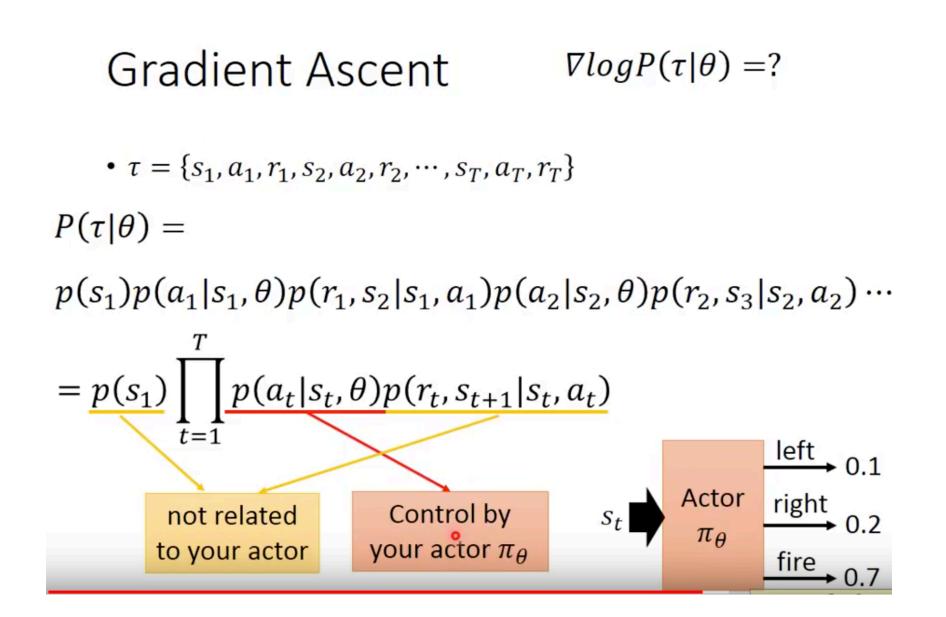
 $P(\tau | \theta) =$

• $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$

 $P(\tau|\theta) =$

 $p(s_1)p(a_1|s_1,\theta)p(r_1,s_2|s_1,a_1)p(a_2|s_2,\theta)p(r_2,s_3|s_2,a_2)\cdots$





•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

 $P(\tau|\theta) = p(s_1) \prod_{t=1}^T p(a_t|s_t, \theta) p(r_t, s_{t+1}|s_t, a_t)$

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

 $P(\tau|\theta) = p(s_1) \prod_{t=1}^{T} p(a_t|s_t, \theta) p(r_t, s_{t+1}|s_t, a_t)$
 $logP(\tau|\theta)$
 $= logp(s_1) + \sum_{t=1}^{T} logp(a_t|s_t, \theta) + logp(r_t, s_{t+1}|s_t, a_t)$

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

 $P(\tau|\theta) = p(s_1) \prod_{t=1}^{T} p(a_t|s_t, \theta)p(r_t, s_{t+1}|s_t, a_t)$
 $logP(\tau|\theta)$
 $= logp(s_1) + \sum_{t=1}^{T} logp(a_t|s_t, \theta) + logp(r_t, s_{t+1}|s_t, a_t)$

Ignore the terms not related to θ

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

$$P(\tau|\theta) = p(s_1) \prod_{t=1}^{T} p(a_t|s_t, \theta) p(r_t, s_{t+1}|s_t, a_t)$$

$$logP(\tau|\theta)$$

$$= logp(s_1) + \sum_{t=1}^{T} logp(a_t|s_t, \theta) + logp(r_t, s_{t+1}|s_t, a_t)$$

$$\nabla logP(\tau|\theta) = \sum_{t=1}^{T} logp(a_t|s_t, \theta)$$
Ignore the terms not related to θ

$$\begin{array}{l} \mbox{Gradient Ascent} \\ \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \end{array} \\ \overline{\nabla R_{\theta}} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log P(\tau^{n}|\theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla log p(a_{t}^{n}|s_{t}^{n},\theta) \\ = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla log p(a_{t}^{n}|s_{t}^{n},\theta) \end{array}$$

$$\begin{aligned} & \text{Gradient Ascent} \\ \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \\ \nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log P(\tau^{n}|\theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla log p(a_{t}^{n}|s_{t}^{n},\theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla log p(a_{t}^{n}|s_{t}^{n},\theta) \end{aligned}$$

If in τ^n machine takes a_t^n when seeing s_t^n in

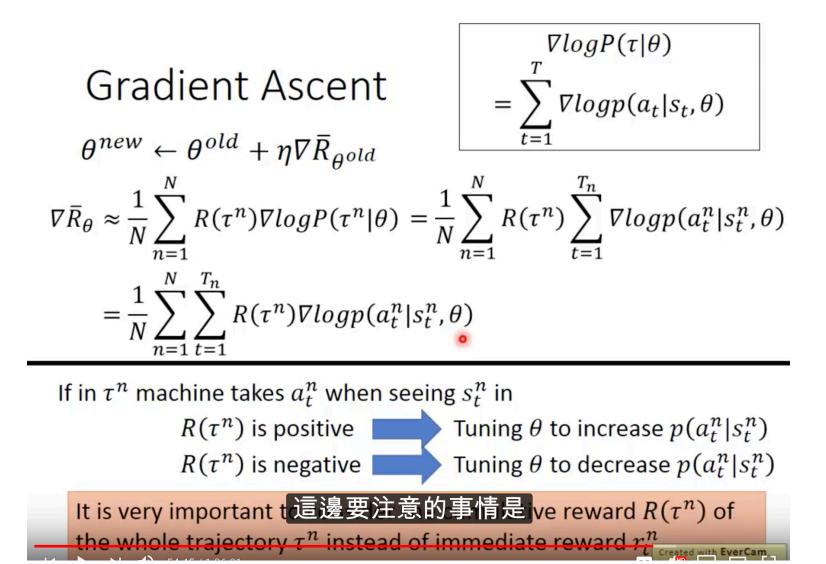
$$\begin{aligned} & \text{Gradient Ascent} \\ & \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \\ & \nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla log P(\tau^n | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla log p(a_t^n | s_t^n, \theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p(a_t^n | s_t^n, \theta) \end{aligned}$$

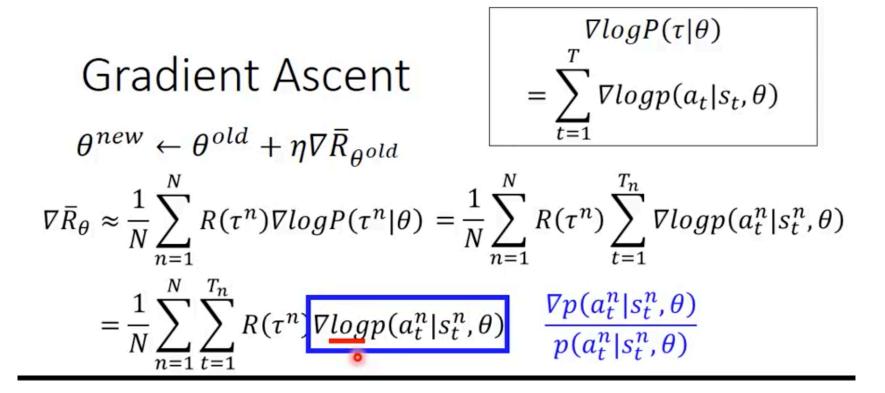
If in τ^n machine takes a_t^n when seeing s_t^n in $R(\tau^n)$ is positive Tuning θ to increase $p(a_t^n | s_t^n)$

$$\begin{array}{l} \text{Gradient Ascent} \\ \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \end{array} \\ \overline{\nabla R_{\theta}} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log P(\tau^{n}|\theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla log p(a_{t}^{n}|s_{t}^{n},\theta) \\ = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla log p(a_{t}^{n}|s_{t}^{n},\theta) \end{array}$$

If in τ^n machine takes a_t^n when seeing s_t^n in

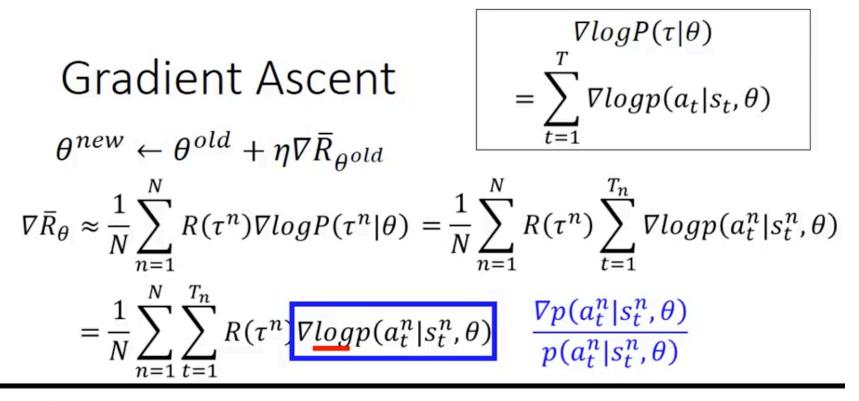
 $R(\tau^n)$ is positiveTuning θ to increase $p(a_t^n | s_t^n)$ $R(\tau^n)$ is negativeTuning θ to decrease $p(a_t^n | s_t^n)$





$$\begin{aligned} & \text{Gradient Ascent} \\ \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \\ \nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla log P(\tau^n | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla log p(a_t^n | s_t^n, \theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log P(\tau^n | \theta) = \frac{1}{N} \sum_{n=1}^{N} \frac{\nabla p(a_t^n | s_t^n, \theta)}{p(a_t^n | s_t^n, \theta)} \end{aligned}$$

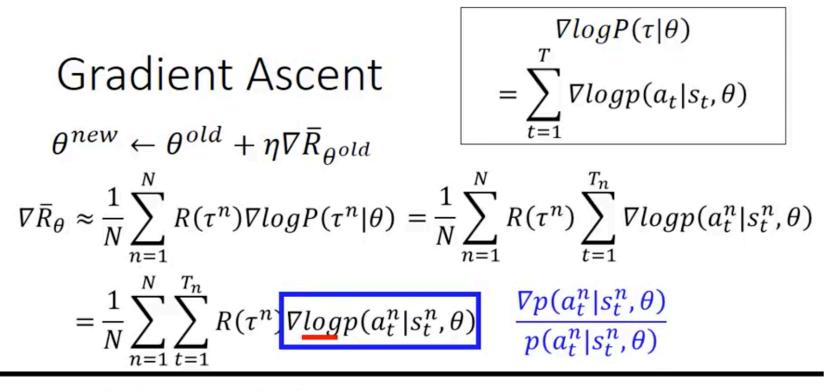
e.g. in the sampling data ...



$$\begin{aligned} & \text{Gradient Ascent} \\ \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \\ \nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log P(\tau^{n}|\theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla log p(a_{t}^{n}|s_{t}^{n},\theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla log P(\tau^{n}|\theta) = \frac{1}{N} \sum_{n=1}^{N} \frac{\nabla p(a_{t}^{n}|s_{t}^{n},\theta)}{p(a_{t}^{n}|s_{t}^{n},\theta)} \end{aligned}$$

e.g. in the sampling data ... s has been seen in τ^{13} , τ^{15} , τ^{17} , τ^{33}

In au^{13} , take action a



$$\begin{aligned} & \text{Gradient Ascent} \\ & \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \\ & \nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log P(\tau^{n}|\theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla \log p(a_{t}^{n}|s_{t}^{n},\theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla \log p(a_{t}^{n}|s_{t}^{n},\theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R(\tau^{n}) \nabla \log p(a_{t}^{n}|s_{t}^{n},\theta) \\ & \frac{\nabla p(a_{t}^{n}|s_{t}^{n},\theta)}{p(a_{t}^{n}|s_{t}^{n},\theta)} \end{aligned}$$

$$\begin{aligned} & \text{Gradient Ascent} \\ \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \\ \nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log P(\tau^n | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla \log p(a_t^n | s_t^n, \theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n | s_t^n, \theta) = \frac{1}{N} \sum_{n=1}^{N} \frac{\nabla p(a_t^n | s_t^n, \theta)}{p(a_t^n | s_t^n, \theta)} \end{aligned}$$

$$\begin{aligned} & \text{Gradient Ascent} \\ \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \\ \nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log P(\tau^n | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla \log p(a_t^n | s_t^n, \theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n | s_t^n, \theta) = \frac{1}{N} \sum_{n=1}^{N} \frac{\nabla p(a_t^n | s_t^n, \theta)}{p(a_t^n | s_t^n, \theta)} \end{aligned}$$

In
$$\tau^{13}$$
, take action a $R(\tau^{13}) = 2$ In τ^{15} , take action b
In τ^{17} , take action b $R(\tau^{17}) = 1$ In τ^{33} , take action b

$$\begin{aligned} & \text{Gradient Ascent} \\ \theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}} \\ \nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log P(\tau^n | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla \log p(a_t^n | s_t^n, \theta) \\ & = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n | s_t^n, \theta) = \frac{1}{N} \sum_{n=1}^{N} \frac{\nabla p(a_t^n | s_t^n, \theta)}{p(a_t^n | s_t^n, \theta)} \end{aligned}$$

In
$$\tau^{13}$$
, take action a $R(\tau^{13}) = 2$ $\ln \tau^{15}$, take action b $R(\tau^{15}) = 1$
In τ^{17} , take action b $R(\tau^{17}) = 1$ $\ln \tau^{33}$, take action b $R(\tau^{33}) = 1$

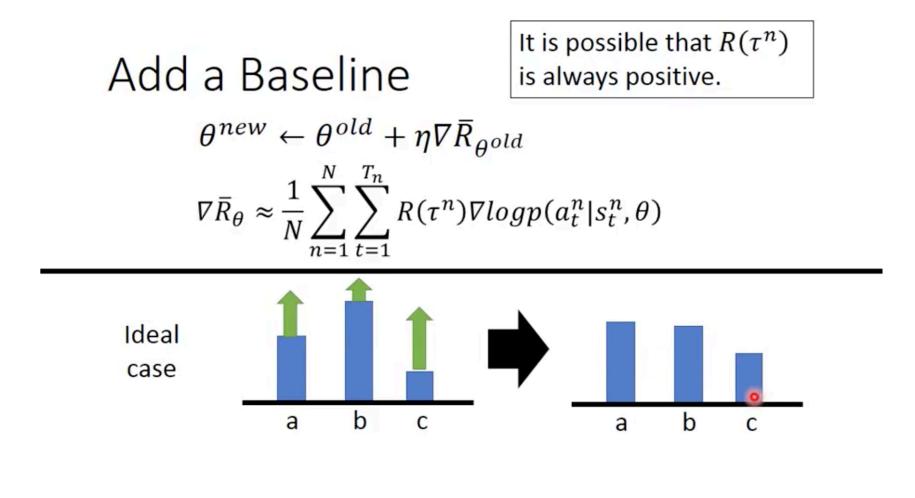
Add a Baseline

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

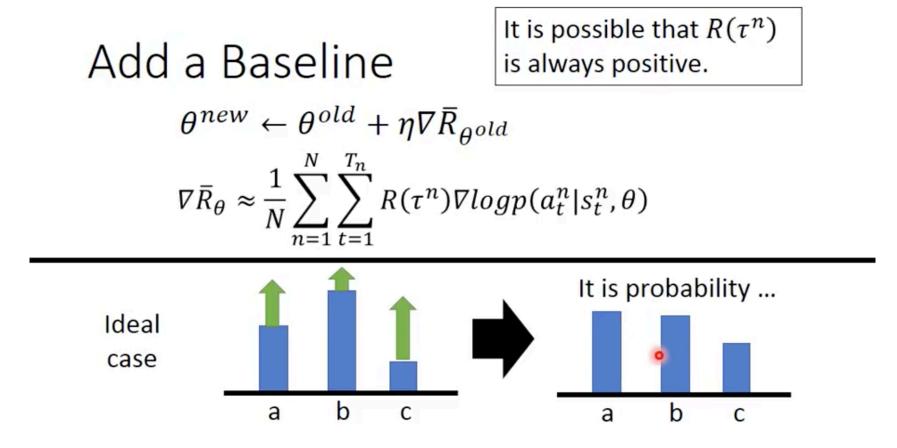
 $\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta)$

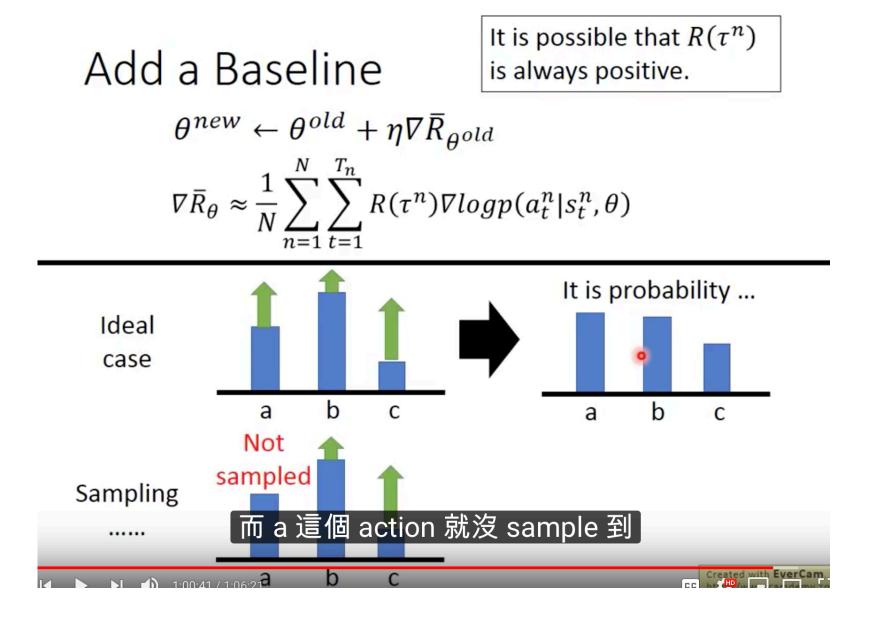
Add a Baseline $\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$ $\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta)$

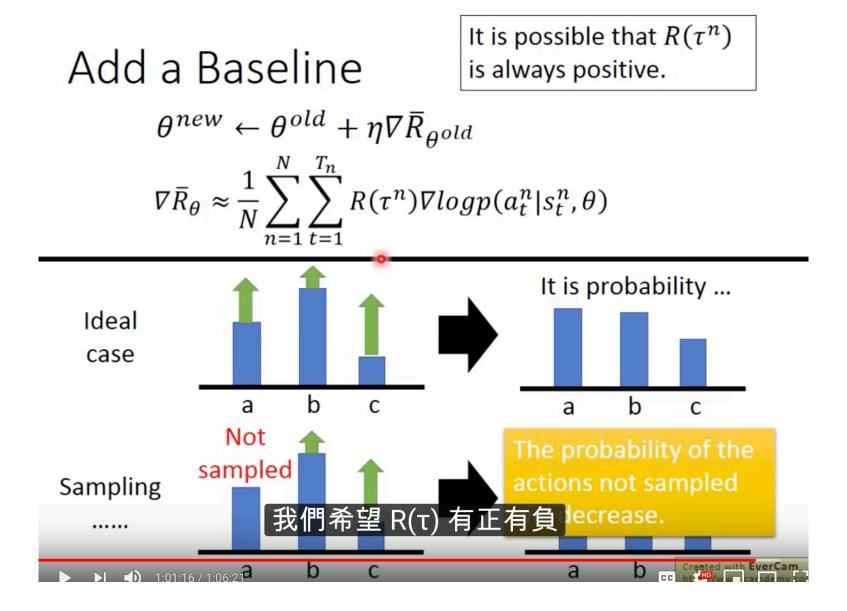
It is possible that $R(\tau^n)$ is always positive.



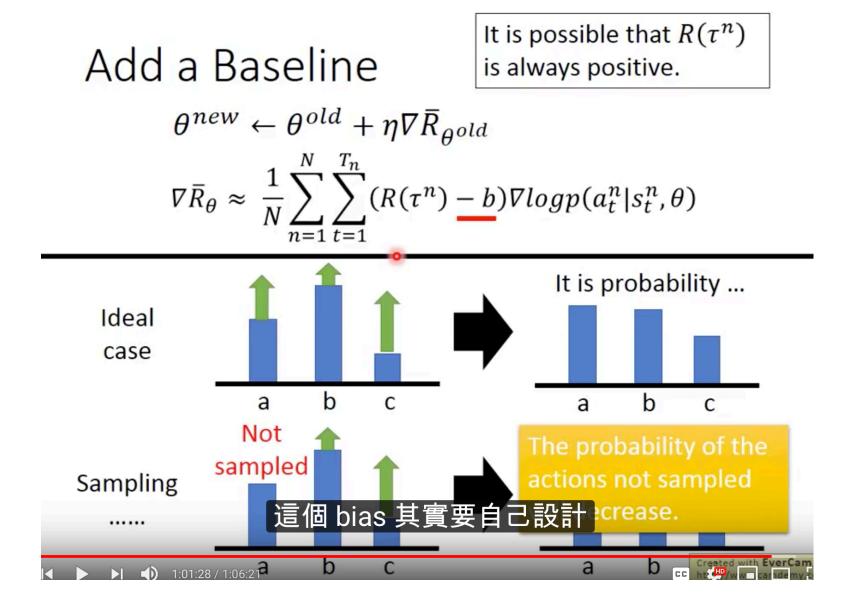
因為這邊是個機率,所以它會做 normalization

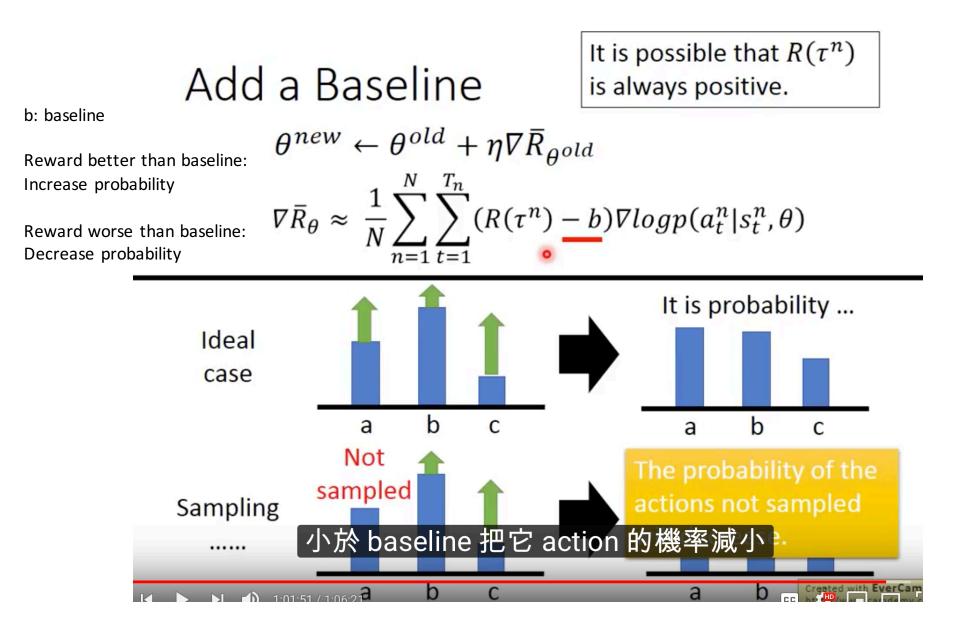






It is possible that $R(\tau^n)$ Add a Baseline is always positive. $\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$ $\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{k=1}^{N} \sum_{k=1}^{T_{n}} (R(\tau^{n}) - b) \nabla logp(a_{t}^{n} | s_{t}^{n}, \theta)$ n=1 t=1It is probability ... Ideal case b а С b а С Not The probability of the sampled actions not sampled Sampling 要把 R(τ) 減掉一個 bias lecrease. b 1.01.24 / 1.06.21 a b

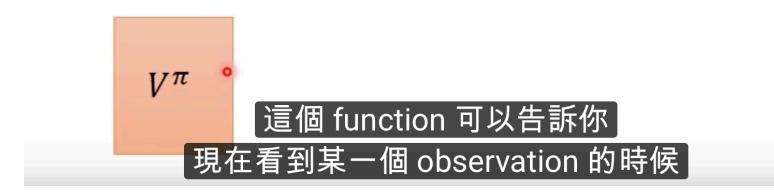




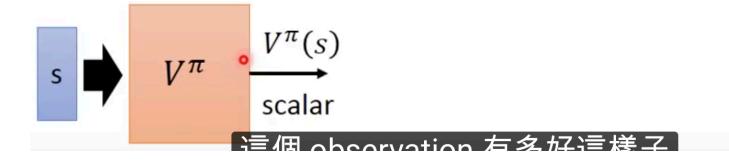
Critic

- A critic does not determine the action.
- Given an actor, it evaluates the how good the actor is

- A critic is a function depending on the actor π it is evaluated
 - The function is represented by a neural network
- State value function $V^{\pi}(s)$
 - When using actor π, the *cumulated* reward expects to be obtained after seeing observation (state) s

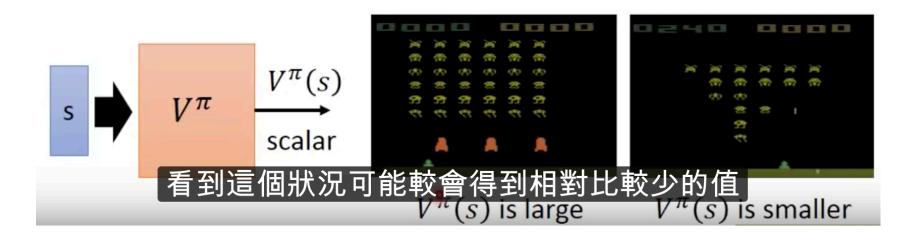


- A critic is a function depending on the actor π it is evaluated
 - The function is represented by a neural network
- State value function $V^{\pi}(s)$
 - When using actor π, the *cumulated* reward expects to be obtained after seeing observation (state) s

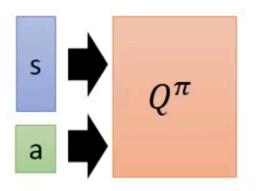


- A critic is a function depending on the actor π it is evaluated
 - The function is represented by a neural network
- State value function $V^{\pi}(s)$
 - When using actor π, the *cumulated* reward expects to be obtained after seeing observation (state) s

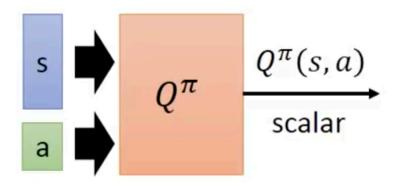
- A critic is a function depending on the actor π it is evaluated
 - The function is represented by a neural network
- State value function $V^{\pi}(s)$
 - When using actor π, the *cumulated* reward expects to be obtained after seeing observation (state) s



- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a



- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a

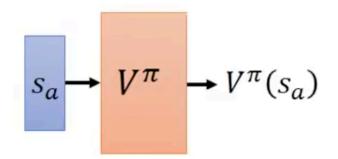


How to estimate $V^{\pi}(s)$

- Monte-Carlo based approach
 - The critic watches π playing the game

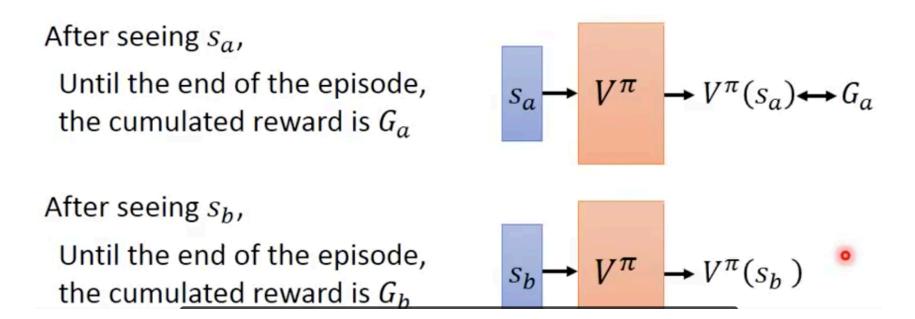
After seeing s_a, Until the end of the episode,

the cumulated reward is G_a



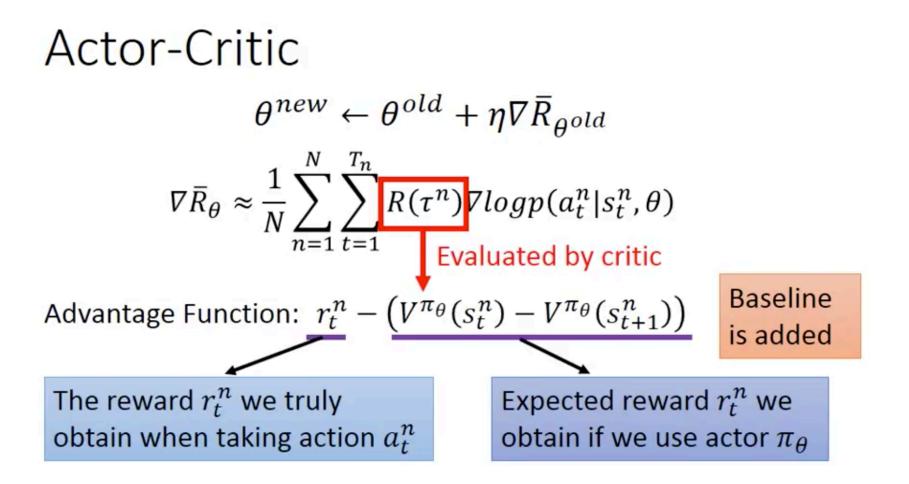
How to estimate $V^{\pi}(s)$

- Monte-Carlo based approach
 - The critic watches π playing the game



How to estimate $V^{\pi}(s)$

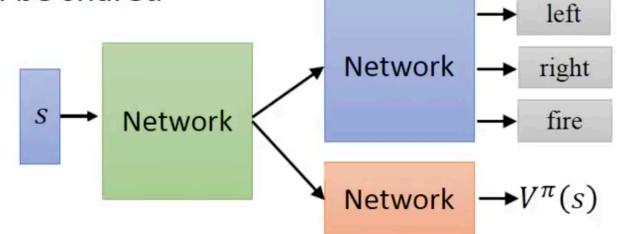
• Temporal-difference approach $\cdots s_a, a, r, s_b \cdots$ $v^{\pi}(s_a) + r = V^{\pi}(s_b)$ $s_a \rightarrow V^{\pi} \rightarrow V^{\pi}(s_a)$ $s_b \rightarrow V^{\pi} \rightarrow V^{\pi}(s_b)$



Actor-Critic

• Tips

• The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$ can be shared



• Use output entropy as regularization for $\pi(s)$

Asynchronous

