CSCE 636 Neural Networks
(Deep Learning)

Lecture 8: Deep Learning for Text and Sequences

Anxiao (Andrew) Jiang

Based on the interesting lecture of Prof. Hung-yi Lee “Recurrent Neural Network”
https://www.yout ube.com/watch?v=xCGidAeyS4M&list=PLJV_el3uVTsPy90oCRY300B PNLCo89yu49&index=30
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Example Application

Destination Time of arrival

V V,
Solving slot filling by : 72

Feedforward network? I 1

Input: a word I I

(Each word is represented
as a vector) -

Taipei mmmp | X 2




1-of-N encoding (thatis, one-hot encoding)

How to represent each word as a vector?

1-of-N Encoding lexicon = {apple, bag, cat, dog, elephant}

The vector is lexicon size. apple=[1 0 0 0 O
Each dimension corresponds bag =¢0 1 0 0 O
to a word in the lexicon cat =[0 0 1 0 O
The dimension for the word dog =[0 0 O 1 O]
is 1, and others are 0 elephant =[0 0 O 0O 1]




Beyond 1-of-N encoding

Dimension for “Other”

apple .,
bag ‘,
cat &
dog ‘,

elephant

0
0
0
0
0

/ot%l
]

w = “Gandalf”

w = “Sauron”

Dense word embedding

Word2Vec (pre-trained)
GloVe (pre-trained)

Train your own embedding



Example Application

Destination Time of arrival
: te y Vv,
Solving slot filling by : .
Feedforward network? I

I
Input: a word I I

(Each word is represented
as a vector)

Output: I j‘

Probability distribution that 4
the input word belonging to

the slots
Taipei mmmp | X 2
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Example Application time of

dest departure
M Y2

Jarrive Taipei on November 2
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other dest other time time
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place of departure

X X

Neural network needs memory! v g2
" Taipei mmmp| X X,
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Recurrent Neural Network (RNN)

N V2

. I I
The output of hidden layer f f
are stored in the memory. “

. y be

Memory can be considered v X
as another input.
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All the weights are “1”, no bias
o AR fEEm A ZE —{EEm A [1 1] 1
All activation functions are linear
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given Initial 2 2

values 2 2 /7

B 7132 {E neuron B9 output th —H =2 2 I
All activation Tunctions are linear



Input sequence: H ll] [2 ......
Exam P le output sequence: lj
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Input sequence:

Exam P le output sequence:
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store

All the weights are “1”

FTLA memory 2 H BV {E R update 5% 2 , T RIE

All activation functions are linear
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Example  output sequence:
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Input sequence:
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All activation functions are linear
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Examp|e output sequence: |, | 12]
N V2
I I
4 4

store

6 6° / /

All the weights are
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Input sequence:

Example  outputsequence:
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All the weights are

B 58412 neuron BY output T2 32 S
All activation Tunctions are linear




Input sequence:

1
1.
Exam P le output sequence: Z [12][32

121132
N V2
] |32 { 152
/3
store
116 16
6 o 6 A P,

All the weights are “1”

B FTEA input 2 BR 2 RYBFIRAE |, output & 32
All activation functions are linear




Input sequence:

RS

1
L1
Exam P le output sequence: i Hg][gg

N V2
Changing the sequence 32 (j

8

order will change the output. gl & \/,

All the weights are “1”, no bias e

All activation functions are linear
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RNN

Probability of Probability of
“arrive” in each slot  “Taipei” in each slot
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RN N The same network is used again and again.

Probability of Probability of Probability of
“arrive” in each slot  “Taipei” in each slot  “on” in each slot
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RN N The same network is used again and again.

Probability of Probability of Probability of
“arrive” in each slot  “Taipei” in each slot  “on” in each slot

Note: they are not three
networks. They are the same
network used three times.




RNN

Prob of “leave”
in each slot

Different

Prob of “arrive”
in each slot

Prob of “Taipel’
in each slot

Prob of “Taipei’
in each slot
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Of course it can be deep ...
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Of course it can be deep ...
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Elman Network & Jordan Network

ElIman Network °
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Elman Network & Jordan Network

Elman Network o Jordan Network




Bidirectional RNN
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Bidirectional RNN




Bidirectional RNN

Benefit: every part of output considers the whole input sequence




The above is actually just a simple version of RNN (called SimpleRNN).
Issues with the SimpleRNN: training is difficult, due to issues including
“exploding gradient” or “vanishing gradient” in the gradient

descent method.

More advanced types of RNN:
LSTM, and GRU (a simpler version than LSTM).

When people use RNN, they mostly use LSTM or GRU.

Keras let you create SimpleRNN, LSTM or GRU using just one line of code.
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Memory
Cell
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| Input Gate
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Long Short-term Memory (LSTM)

NS

’ " Memory |

7 Neural network learns when to open/close
!

Signal control
the input gate
(Other part
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Other part of the network

I

Output Gate °
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Signal control ‘
& — Input Gate

the input gate | |

(Sl geclade I @) 1Y 3t 75 th 5 — {8 output gate
the network ; -

4 P Pl o) 19:20/4859




Long Short-term Memory (LSTM)

Other part of the network

1

Signal control — Gitalincss o
the output gate pI

(Other part of
Memory
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Signal control | ‘
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Pl o) 19:42/48:59



Long Short-term Memory (LSTM)

Other part of the network

1

Signal control — s L
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Long Short-term Memory (LSTM)

Other part of the network

1

Signal control
5 Output Gate °

the output gate
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Long Short-term Memory (LSTM)

Other part of the network

Special Neuron:
4 inputs,
1 output

Signal control
the output gate

(Other part of
the network)

Output Gate

Signal control
the forget gate

(Other part of
the network)

Signal control
the input gate
(Other part of




A

A more detailed look at its structure:

: :Output Gate !

Every input and output here
is a real number.

The whole thing can be seen as
replacing the “activation function”

of an ordinary neuron.

Input Gate

_/g. Block

Pl o) 22:45/48:59
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A a

ZO_’®—” . o . M
Output Gate Activation function fis

usually a sigmoid function

A Between Oand 1

Mimic open and close gate

-G

@ Block
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A a

f . : . .
Output Gate Activation function f is

usually a sigmoid function

Between Oand 1

Forget Gate o
Mimic open and close gate

-~ 7f

f(z) |9(2)f(z)
multiply

g9(2)

Input Gate

)  24:42 / 48:59



f(z;)

Input Gate

Forget Gate

f(z)

9(2)f (z;)

multiply
9(2)

>

| o) 245374859

Activation function f is
usually a sigmoid function

Between O and 1

Mimic open and close gate

< Zf

53 f(zf) , TR




Zo—> _ﬁ

Output Gate Activation function f is
usually a sigmoid function

Between O and 1

Forget Gate

Mimic open and close gate
c flz)

(Sof— 7
cf (z)
f(z) |9@)f(z)
“ C ) ,multiply
Input Gate g(z)

%) ez
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Output Gate

Forget Gate

Activation function f is
usually a sigmoid function
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Mimic open and close gate
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Output Gate Activation function f is

usually a sigmoid function
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Forget Gate
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Forget Gate
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Activation function f is
usually a sigmoid function

Between O and 1

Mimic open and close gate
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Output Gate Activation function f is

f (o) h(c") usually a sigmoid function

Between 0 and 1

Mimic open and close gate
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LSTM - Example
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LSTM - Example

X1 | 3 2 4 2 1 3 6 1
" S

x: ol [ §6 o (o [l [a] |o
x; O 0 0 0 0 1 0 0 1

When x, = 1, add the numbers of x, into the memory
When x, = -1, reset the memory

When x5 = 1, output the number in the memory.
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Original Network:

How to understand LSTM as the original network:
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Original Network:

» Simply replace the neurons with LSTM
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Forget Gate
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Input Gate

Block

Input Gate

Forget Gate
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Input

Each edge has a different weight



nput




How to understand LSTM as RNN

Irgut Gate




LSTM

ctl

The vector of

memory values at
time t-1

(where each memory’s
value is a real number)




ct-l

vector

Linear transformation
(multiple input vector by a matrix to

4

get a vector z)

Input vector at
time t
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vector

Linear
transformation
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LSTM
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Forget Gate
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Element-wise vector operation for the layer
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Extension: “peephole”

LST M Real LSTM
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The first time a person sees

LSTM




The first time a person sees

LSTM
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Don’t worry if you cannot understand this.
Keras can handle it.

. N
Keras supports

“LSTM”, “GRU”, “SimpleRNN” layers



