
CSCE	636	Neural	Networks	
(Deep	Learning)

Lecture	6:	Fundamentals	 of	Machine	 Learning

Anxiao (Andrew)	Jiang



Supervised	Learning

• Input	and	output	are	both	known.	Just	learn	the	function.

• The	four	applications	introduced	so	far	in	our	class	are	all	supervised	
learning.



Unsupervised	 Learning

• Output	is	unknown.	Learn	the	relationship	between	data.

Figures	by	Prof.	Hung-yi Lee.



Semi-supervised	Learning

• Some	outputs	are	known,	but	not	all.	(Most	data	are	unlabeled.)

Figures	by	Prof.	Hung-yi Lee.



Self-supervised	 Learning

• Output	is	generated	from	input	data,	without	human	help.
• Example:	auto-encoder



Reinforcement	Learning

• Learn	from	feedback	(penalty	or	reward)	from	environment.	
• But	the	environment	does	not	tell	what	to	do.

Figure	by	Prof.	Hung-yi Lee.



Underfitting:	training	performance	 is	bad
• This	is	the	first	thing	we	should	worry	about.

Overfitting:	training	performance	 is	good,	but	
test	performance	 is	bad

• This	is	the	next	thing	we	should	worry	about.

To	prevent	underfitting:	 change	our	model	or	make	 it	general	 (to	include	the	correct	function	
in	our	solution	 set).	Then	train	our	NN	well	to	find	that	correct	function.
To	prevent	overfitting:	after	we	have	found	a	NN	with	good	training	performance,	simplify
the	NN	model	(e.g.,	reduce	NN	size,	or	use	regularization	techniques).	 Or	get	more	data.



Regularization	 techniques

• Weight	regularization:	add	a	function	of	weights	to	the	loss	function,	
to	prevent	the	weights	from	becoming	too	large.

L2	regularization

L1	regularization

A	reason	for	weight	regularization:	 large	weight	can	make	the	model	more	sensitive	 to	
noise/variance	 in	data.

L2	regularization:	 it	tends	to	make	all	weights	small.
L1	regularization:	 it	tends	to	make	weights	sparser	(namely,	more	0s).



L2	regularization:	example

The	above	example	uses	 L2	regularization	on	first	layer	and	second	layer,	
but	not	third	layer.



L2	regularization:	example

More	resistant	 to	overfitting

Note:	with	weight	regularization,	the	loss	will	become	higher	during	training	(due	to	the	
extra	term	in	loss	function).	In	testing,	the	extra	term	is	not	used,	so	loss	will	get	lower.



L1	regularization,	and	combine	L1	and	L2



Another	regularization	technique:	Dropout

The	following	 slides	 are	based	 on	Prof.	Hung-yi Lee’s	 interesting	 lecture	 on	machine	 learning:
“Tips	 for	Training	DNN”	
https://www.youtube.com/watch?v=xki61j7z-30&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=16



When	a	node	drops	out,	its	output	and	its	outgoing	edges	are	all	removed	for	this	weight	update.



Use	the	new	network	to	train	its	weights,	 for	this	mini-batch	 of	data.



For	each	mini-batch,	we	re-sample	the	nodes	to	drop	out.	



With	dropout,	training	performance	will	worsen.	
(But	we	hope	the	test	performance	will	become	better
due	to	less	overfitting).	



With	dropout,	training	performance	will	worsen.	
(But	we	hope	the	test	performance	will	become	better
due	to	less	overfitting).	

If	the	NN	is	underfitting
(namely,	training	performance	 is	bad),
don’t	use	dropout.



Keras will	take	care	of	it	automatically	 for	us.	So	don’t	worry	about	 it.



Note:	Dropout	is	considered	 a	layer	in	Keras.
Dropout	applies	 to	the	 layer	right	before	it.
The	dropout	rate	is	usually	between	 0.2	and	0.5.

dropout	 rate	is	0.5



In	the	above	figure,	the	model	with	dropout	is	more	resistant	 to	overfitting.	
Remember	 that	dropout	makes	training	performance	worse.	
So	its	test	performance	will	 likely	be	better	than	training	without	dropout.



Intuitions	for	dropout

• Weights	have	less	chance	of	“collusion”	for	overfitting.

• Each	weight	“trains	harder”	to	capture	a	feature,	since	other	weights	
may	dropout	during	training.	(If	my	teammates	do	not	work	hard,	
then	I	have	to	work	harder.)


