CSCE 636 Neural Networks
(Deep Learning)

Lecture 5: Getting Started with Neural Networks (continued)

Anxiao (Andrew) Jiang

What a neural network does: learn a function

X Neural Network

The neural network learns the function f(x),
either exactly or approximately.

value
of

f(x)

Multi-class Classification

More specifically:
the example hereis single-label, multi-class classification

Because every sample belongs to just one class

Application: Topic classification for texts
Task: Classify a newswire text by its topic

<DATELINE> CHICAGO.March2-</DATELINE=<BODY=>=The AmericanPork Congress kicks off tomorrow.
March 3. in Indianapolis with 160 ofthe nations pork producers from 44 member states determining industry positions
on a number ofissues, according to the National Pork Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including the future
direction of farm policv and the tax law as it applies to the agriculture sector. The delegates will also debate whether to
endorse concepts ofa national PRV (pseudorabies virus) control and eradication program, the NPPC said.

Neural Network — livestock

How to start?

Step 1: Load the dataset

* Reuters dataset: a set of short newswires and their topics.

* There are 46 different topics. Some topics are more represented than
others.

Step 1: Load the dataset

from keras.datasets import reuters

(train_data, train_labels), (test _data, test _labels) = reuters.load_data
num_words=10000)

There are 8,982 training examples and 2,246 test examples.

Each example is a list of integers (word indices).

<DATELINE> CHICAGO,March 2 - </DATELINE><BODY>The AmericanPork Congress kicks offtomorrow,
March 3. in Indianapolis with 160 of the nations pork producers from 44 member states determining industry positions
ona number ofissues. according to the National Pork Producers Council. NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning variousissues, including the future
direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also debate whether to
endorse concepts of a national PRV (pseudorabies virus) control and eradication program. the NPPC said.

Words are represented by a list of integers.

q

- 3

Step 2: Prepare the data

One-hot encode training and test data

We get:

X_train (newswires in training data): shapeis 8982 x 10000
X_test (newswires in test data): shape is 2246 x 10000
one_hot_train_labels (labels in training data): shape is 8982 x 46

one_hot_test labels (labels in test data): shape is 2246 x 46

[1, 245,

3554,

14,

273,
46,

207,
4689,

156, 53,

4329,

86,

74,

61,

160, 26,

3499,

14,
4795,

46,
14,

296,
61,

26,
451,

39, 74,
4329,

2979,

17,

12]

—

- 3

Step 3: Build neural network

Output
(probability)
A
4 R
Dense (units
\ LD
4 * N\
Dense (units=
& B4
4 * N
Dense (units=.
N\ J
Sequential T
Input

(vectorized text) The three-layer network

Listing 3.15 Model definition

from keras import models
from keras import layers

model = models.Sequential ()

model.add(layers.Dense (64, activation='relu',

model.add(layers.Dense (64, activation='relu'))
model .add(layers.Dense (46, activation='softmax'))

N\
e

Y

-

\\"
N

S
D %

Va\

3
X

AR

Vi

Y
NS

64 neurons

64 neurons

46 neurons

input_shape=(10000,)))

Probability for topic O

Probability for topic 1

Probability for topic 2

Probability for topic 45

Step 4: choose loss function, optimizer, and
target metrics

model.compile(optimizer="'rmsprop',
loss='categorical_crossentropy',
metrics=["'accuracy'])

N J

I A A
CCE = - NZ D,y log(®) + (1 —y) - log(1 = §))
i=0 j=0

Step 4: get validation set

Listing 3.17 Setting aside a validation set

x_val = x_train[:1000]
partial_x_train = x_train[1000:]

y_val = one_hot_train_labels[:1000]
partial_y train = one_hot_train_labels[1000:]

Shape of x_val: 1000 x 10000
Shape of partial_x_train: 7982 x 10000

Shape of y val: 1000 x 46
Shape of partial_y train: 7982 x 46

validation
set

training
set

1,000 newswires
and their labels.

7982 reviews
and their labels.

Step 5: Train neural network

Listing 3.18 Training the model

history = model.fit (partial_ x_train,
partial_y train,
epochs=20,
batch _size=512,
validation_data=(x_val, y_val))

Loss

Training and validation loss

r R0

2.0 1

) -

s B L

0.5 -

® Training loss
- \Jalidation loss

0.0

L] . L]

2D 5.0 7.5 100 125 150 175 20.0
Epochs

Accuracy

Training and validation accuracy

¢ o
0.9 - 5}
o
0.8 -
s}
0.7 -
0.6 -
® Training acc

0.5 - - \/alidation acc

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

Loss

NN starts to overfit after about 9 epochs

Training and validation loss

2.5 1

2.0 1

1.5

1.0 1

0.5 1

0.0

® Training loss
— Validation loss

T T T

2.5 5.0 7.5 100 125 150 175 20.0
Epochs

Training and validation accuracy

0.9 1 [5]
©
. l
0.8 4 e ——
°
0.7 1
0.6
® Training acc

0.5 1 —— Validation acc

2.5 5.0 7.5 10.0 125 150 175 20.0

Epochs

Train a new network from scratch for 9 epochs

model.fit (partial_x_train,
partial vy train,
epochs=9,
batch size=512,
validation_data=(x_val, y wval))

Step 6: Test the trained neural network

results = model.evaluate(x test, one hot test labels)

Show test results:

>>> results
[0.9565213431445807, 0.79697239536954589]

loss Accuracy: about 80%

Step 7: Use trained network for prediction

Listing 3.22 Generating predictions for new data

predictions = model.predict (x_test)

Each entry in predictions is a vector of length 46:

>>> predictions[0].shape
(46,)

The coefficients in this vector sum to 1:

>>> np.sum(predictions[0])
1.0

The largest entry is the predicted class—the class with the highest probability:

>>> np.argmax (predictions[0])
4

A different way to handle the labels and the loss

We mentioned earlier that another way to encode the labels would be to cast them as
an integer tensor, like this:

y_train = np.array(train_labels) Shape of y_train: (8982,)
y_test = np.array(test_labels) Shape of y_test: (2246,)

The only thing this approach would change is the choice of the loss function. The loss
function used in listing 3.21, categorical_crossentropy, expects the labels to follow
a categorical encoding. With integer labels, you should use sparse_categorical_
crossentropy:

model .compile (optimizer="'rmsprop"',
loss='sparse_categorical_crossentropy',
metrics=['acc'])

This new loss function is still mathematically the same as categorical_crossentropy;
it just has a different interface.

Regression

Predict a continuous value (e.g., price, temperature) instead of a discrete label.

Application: Predicting House Prices

Task: Given data points about a suburb, predict the median price of homes in the suburb.

Data about a suburb:

Crime rate: 1.21%

Local property tax rate: 2.5%

Average number of rooms per home: 5.5
Distance to highway: 18.1 miles

Neural Network

$43.2K

How to start?

Step 1: Load the dataset

* Boston Housing Price dataset: data about 506 suburbsin Boston in
the mid-1970s, and the median home price of each suburb.

* Dataset is very small: only 506 samples.

* Training set: 404 samples.

* Test set: 102 samples.

e Each sample has 13 numerical features in its input data.

Step 1: Load the dataset

Listing 3.24 Loading the Boston housing dataset

from keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) =
boston_housing.load_data()

train_data: input training data of shape (404, 13)
train_targets: output training data of shape (404,)

test_data: input test data of shape (102, 13)
test_targets: output test data of shape (102,)

Data about a suburb:

Crime rate: 1.21%

Local property taxrate: 2.5% ——
Average number of rooms per home: 5.5
Distance to highway: 18.1 miles

—p S43.2K

Step 2: Prepare the data

* The 13 features in input data have quite different range.

e Good solution: normalize features to mean 0 and variance 1.
 Benefit: Make the NN easier to train.

Listing 3.25 Normalizing the data

mean = train_data.mean (axis=0)
train_data -= mean

std = train_data.std(axis=0)
train_data /= std

test_data -= mean
test_data /= std

Step 3: Build the neural network, compile it

No activation function in
the last layer, because it is
a regression problem.

/

median home price

13 features _y'

64 neurons 64 neurons

. : , 1

model = models.Sequential () Shape: (404, 13)

model .add (layers.Dense (64, activation='relu', A
input_shape=(train_data.shape[l],)))

model .add (layers.Dense (64, activation='relu'))

model .add (layers.Dense (1)) # No activation function in the last layer
model .compile (optimizer="'rmsprop', loss='mse', metrics=['mae'])

N\

median home price

13 features _.y'

]
12|/

64 neurons 64 neurons

MSE: Mean Square Error

MAE: Mean Absolute Error

Optimizer: RMSprop and Adam (which is RMSprop + momentum method)

are both good choices.

Step 4: partition training data into training data
and validation data

Training set is too small: only 404 samples

Validation set will also be too small: say, only 101 samples

Validation performance can have high variance (i.e., not accurate and
far from the test performance), making it hard to tune parameters
(such as the number of epochs to train, and hyper-parameters in NN) well

Best practice in such situations

Use K-fold cross-validation

K-fold Cross Validation

* Split the training set into K parts (often K=4 or 5)
* |Initiate Kidentical NN models
* Train each NN on K-1 parts of data and validate on the other part

 Final validation score: use the average of the K validation scores.

Data split into 3 partitions
A

r N
Validation)
Fold 1 Validation Training Training —_—
score #1
Fold 2 Validation Validation Training __, Validation > Final score:
score #2 average
Fold 3 Validation Training Validation __, Validation
score #3

Figure 3.11 3-fold cross-validation

Step 5: Train and test neural network

Train neural network using K-fold Cross Validation.
Tune parameters based on the performance of K-fold Cross Validation.
After parameters are tuned, train a final NN using all the training data.

Test the trained NN’s performance on the test data.

A few more words on the shapes of data ...

Say that the mini-batch size is 5 during training.
What is the shape of data in each layer?

(13,)

0

1

2

13 features _.y'

12|/

median home price

Say that the mini-batch size is 5 during training.
What is the shape of data in each layer?

(13,) (64,) (64,)

0

It is OK to theoretically think so.
But in reality ...

(1,)

1

2

N

13 features _.y'

]
12|/

?

median home price

Say that the mini-batch size is 5 during training.
What is the shape of data in each layer?

In reality:

(5, 13) (5,64) (5,64) (5 1)

0

1

2 \ “' \

13 features _.y'

median home price

]
12|/

For GPU, same type of tensor operation (just one more dimension). Nearly same speed.

13 features w=pp median home price

For GPU, same type of tensor operation (just one more dimension). Nearly same speed.

So we can choose larger mini-batch size to speed up training, as long as it does not
exceed the memory size of the GPU.

(5, 13) (5,64) (5,64) (5 1)

0

0
Soda
S
‘,AX\ 2
‘7

aS

1

2

N

median home price

13 features _.y'

]
12

For GPU, same type of tensor operation (just one more dimension). Nearly same speed.

So we can choose larger mini-batch size to speed up training, as long as it does not
exceed the memory size of the GPU.

However, the mini-batch size should not be too large, either. Study shows that when
a mini-batch size is too large, the gradient-descent method may easily get trapped
and stop too early. The randomness in the descent directions of mini-batches actually

helps somehow.

