
CSCE	636	Neural	Networks	
(Deep	Learning)

Lecture	5:	Getting	 Started	with	Neural	Networks	(continued)

Anxiao (Andrew)	Jiang

What	a	neural	network	does:	learn	a	function

Neural	Networkx

value
of
f(x)

The	neural	network	learns	the	function	f(x),	
either	exactly	or	approximately.

Multi-class	Classification

More	specifically:	
the	example	here	is	single-label,	multi-class	classification

Because	 every	sample	 belongs	to	just	one	class

Application:	Topic	classification	for	texts

Neural	Network livestock

Task:	Classify	a	newswire	text	by	its	topic

How	to	start?

Step	1:	Load	the	dataset

• Reuters	dataset:	a	set	of	short	newswires	and	their	topics.
• There	are	46	different	topics.	Some	topics	are	more	represented	than	
others.

Step	1:	Load	the	dataset

There	are	8,982	training	examples	and	2,246	test	examples.
Each	example	is	a	list	of	integers	(word	indices).

3

Words	 are	represented	 by	a	list	of	integers.

Step	2:	Prepare	the	data
One-hot	encode	training	and	test	data

We	get:

x_train (newswires	 in	training	data):				shape	 is			8982	x	10000

x_test (newswires	 in	test	data):													shape	 is			2246	x	10000

one_hot_train_labels (labels	 in	training	data):	shape	 is	8982	x	46

one_hot_test_labels (labels	 in	test	data):										shape	 is	2246	x	46

3

Step	3:	Build	neural	network

64

64

46

Probability	 for	topic	0

review

0

1

2

0

1

2

64	neurons

0

1

2

63

64	neurons

9999 63

46	neurons

Probability	for	topic	1

Probability	for	topic	2

Probability	for	topic	45

Step	4:	choose	loss	function,	optimizer,	and	
target	metrics

Step	4:	get	validation	set

validation	
set

training
set

1,000	newswires
and	their	 labels.

7982	reviews
and	their	 labels.

Shape	of	 x_val:			1000	 x	10000
Shape	of	 partial_x_train:	 		7982	 x	10000

Shape	of	 y_val:	 		1000	 x	46
Shape	of	 partial_y_train:	 		7982	 x	46

Step	5:	Train	neural	network

Accuracy

NN	starts	to	overfit after	about	9	epochs

Train	a	new	network	from	scratch	for	9	epochs

Step	6:	Test	the	trained	neural	network

Show	test	results:

loss Accuracy:	about	80%

Step	7:	Use	trained	network	for	prediction

Shape	of	 y_train:	(8982,)
Shape	of	 y_test:	(2246,)

Regression

Predict	a	continuous	 value	(e.g.,	price,	temperature	….)	instead	 of	a	discrete	 label.

Application:	Predicting	House	Prices

Neural	Network $43.2K

Task:	Given	data	points	 about	a	suburb,	predict	the	median	 price	of	homes	 in	the	suburb.

Data	about	 a	suburb:

Crime	 rate:	1.21%
Local	property	 tax	rate:	2.5%
Average	number	 of	rooms	 per	home:	 5.5
Distance	 to	highway:	 18.1	miles
……

How	to	start?

Step	1:	Load	the	dataset

• Boston	Housing	Price	dataset:	data	about	506	suburbs	in	Boston	in	
the	mid-1970s,	and	the	median	home	price	of	each	suburb.							
• Dataset	is	very	small:	only	506	samples.
• Training	set:	404	samples.
• Test	set:	102	samples.
• Each	sample	has	13	numerical	features	in	its	input	data.

Step	1:	Load	the	dataset

train_data:						input	training	data	of	shape	(404,	13)

test_data:	input	test	data	of	shape	(102,	13)

train_targets:	output	training	data	of	shape	(404,)

test_targets:	output	test	data	of	shape	(102,)

$43.2K
Data	about	 a	suburb:

Crime	 rate:	1.21%
Local	property	 tax	rate:	2.5%
Average	number	 of	rooms	 per	home:	 5.5
Distance	 to	highway:	 18.1	miles
……

Step	2:	Prepare	the	data

• The	13	features	in	input	data	have	quite	different	range.
• Good	solution:	normalize	features	to	mean	0	and	variance	1.
• Benefit:	Make	the	NN	easier	to	train.

Step	3:	Build	the	neural	network,	compile	it

median	home	price13	features

0

1

2

0

1

2

63

64	neurons

0

1

2

63

64	neurons

12

No	activation	 function	 in
the	last	layer,	because	 it	is
a regression	 problem.

median	home	price13	features

0

1

2

0

1

2

63

64	neurons

0

1

2

63

64	neurons

12

Shape:	 (404,	 13)

13

#	No	activation	 function	 in	the	last	layer

MSE:	Mean	Square	Error

MAE:	Mean	Absolute	Error

Optimizer:	RMSprop and	Adam	(which	is	RMSprop +	momentum	method)
are	both	good	choices.

Step	4:	partition	training	data	into	training	data	
and	validation	data

Training	set	is	too	small:	only	404	samples
Validation	set	will	also	be	too	small:	say,	only	101	samples

Validation	performance	can	have	high	variance	(i.e.,	not	accurate	and	
far	from	the	test	performance),	making	it	hard	to	tune	parameters
(such	as	the	number	of	epochs	to	train,	and	hyper-parameters	in	NN)	well

Best	practice	in	such	situations

Use	K-fold	cross-validation

K-fold	Cross	Validation
• Split	the	training	set	into	K	parts	(often	K=4	or	5)
• Initiate	K	identical	NN	models
• Train	each	NN	on	K-1	parts	of	data	and	validate	on	the	other	part
• Final	validation	score:	use	the	average	of	the	K	validation	scores.

Step	5:	Train	and	test	neural	network

Train	neural	network	using	K-fold	Cross	Validation.

Tune	parameters	based	on	the	performance	of	K-fold	Cross	Validation.

After	parameters	are	tuned,	train	a	final	NN	using	all	 the	training	data.

Test	 the	trained	NN’s	performance	on	the	test	data.

A	few	more	words	on	the	shapes	of	data	…

median	home	price13	features

0

1

2

0

1

2

63

0

1

2

63
12

Say	that	the	mini-batch	size	 is	5 during	training.
What	is	the	shape	of	data	in	each	layer?

(13,) (64,) (64,) (1,) ?

median	home	price13	features

0

1

2

0

1

2

63

0

1

2

63
12

Say	that	the	mini-batch	size	 is	5 during	training.
What	is	the	shape	of	data	in	each	layer?

(13,) (64,) (64,) (1,) ?
It	is	OK	to	theoretically	 think	so.
But	in	reality	…

median	home	price13	features

0

1

2

0

1

2

63

0

1

2

63
12

Say	that	the	mini-batch	size	 is	5 during	training.
What	is	the	shape	of	data	in	each	layer?

(5,	13) (5,	64) (5,	64) (5,	1)

In	reality:

median	home	price13	features

0

1

2

0

1

2

63

0

1

2

63
12

(5,	13) (5,	64) (5,	64) (5,	1)

For	GPU,	same	 type	of	tensor	operation	(just	one	more	dimension).	 Nearly	same	speed.

median	home	price13	features

0

1

2

0

1

2

63

0

1

2

63
12

(5,	13) (5,	64) (5,	64) (5,	1)

For	GPU,	same	 type	of	tensor	operation	(just	one	more	dimension).	 Nearly	same	speed.

So	we	can	choose	 larger	mini-batch	size	to	speed	 up	training,	as	long	as	it	does	not	
exceed	the	memory	size	of	the	GPU.

For	GPU,	same	 type	of	tensor	operation	(just	one	more	dimension).	 Nearly	same	speed.

So	we	can	choose	 larger	mini-batch	size	to	speed	 up	training,	as	long	as	it	does	not	
exceed	the	memory	size	of	the	GPU.

However,	the	mini-batch	size	should	not	be	too	large,	either.	 Study	shows	that	when
a mini-batch	size	is	too	large,	the	gradient-descent	 method	may	easily	get	trapped
and	stop	too	early.	The	randomness	 in	the	descent	 directions	 of	mini-batches	 actually
helps	somehow.

