CSCE-411-HW-5

Pulakesh Upadhyaya

July 2018

29.4-1

The LP is :

$$
\text { maximize: } 18 x_{1}+12.5 x_{2}
$$

subject to:

$$
\begin{gathered}
x_{1}+x_{2} \leq 20 \\
x_{1} \leq 12 \\
x_{2} \leq 16 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

The dual LP is :

$$
\text { minimize: } 20 y_{1}+12 y_{2}+16 y_{3}
$$

subject to:

$$
\begin{gathered}
y_{1}+y_{2} \geq 18 \\
y_{1}+y_{3} \geq 12.5 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

29.5-5

The slack form of the equation will be given by :

$$
\begin{gathered}
z=x_{1}+3 x_{2} \\
x_{3}=8-x_{1}+x_{2} \\
x_{4}=-3+x_{1}+x_{2} \\
x_{5}=2+x_{1}+4 x_{2}
\end{gathered}
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
$$

The initial basic solution is not feasible, so form the auxiliary LP as follows

$$
\text { maximize: }-x_{0}
$$

subject to :

$$
\begin{gathered}
x_{1}-x_{2}-x_{0} \leq 8 \\
-x_{1}-x_{2}-x_{0} \leq-3 \\
-x_{1}+4 x_{2}-x_{0} \leq 2 \\
x_{1}, x_{2}, x_{0} \geq 0
\end{gathered}
$$

Now, we write this LP in slack form:

$$
\begin{gathered}
z=-x_{0} \\
x_{3}=8-x_{1}+x_{2}+x_{0} \\
x_{4}=-3+x_{1}+x_{2}+x_{0} \\
x_{5}=2+x_{1}-4 x_{2}+x_{0} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0} \geq 0
\end{gathered}
$$

PIVOT entering : x_{0}, leaving : x_{4}

$$
\begin{gathered}
z=-3+x_{1}+x_{2}-x_{4} \\
x_{0}=3-x_{1}-x_{2}+x_{4} \\
x_{3}=11-2 x_{1}+x_{4} \\
x_{5}=5-5 x_{2}+x_{4} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0} \geq 0
\end{gathered}
$$

The basic solution is feasible.
PIVOT entering : x_{1}, leaving : x_{0}

$$
\begin{gathered}
z=-x_{0} \\
x_{1}=3-x_{0}-x_{2}+x_{4} \\
x_{3}=5+2 x_{0}+2 x_{2}-x_{4} \\
x_{5}=5-5 x_{2}+x_{4} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0} \geq 0
\end{gathered}
$$

The basic solution is now optimal for the auxiliary LP, so now we update the objective function in the parent LP after we set x_{0} to 0 :

$$
\begin{gathered}
z=3+2 x_{2}+x_{4} \\
x_{1}=3-x_{2}+x_{4} \\
x_{3}=5+2 x_{2}-x_{4} \\
x_{5}=5-5 x_{2}+x_{4} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0} \geq 0
\end{gathered}
$$

PIVOT entering : x_{2}, leaving : x_{5}

$$
\begin{aligned}
& z=5+\frac{7}{5} x_{4}-\frac{2}{5} x_{5} \\
& x_{2}=1+\frac{1}{5} x_{4}-\frac{1}{5} x_{5} \\
& x_{1}=2+\frac{4}{5} x_{4}+\frac{1}{5} x_{5} \\
& x_{3}=7-\frac{3}{5} x_{4}-\frac{2}{5} x_{5} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0} \geq 0
\end{aligned}
$$

PIVOT entering : x_{4}, leaving : x_{3}

$$
\begin{aligned}
& z=\frac{64}{3}-\frac{7}{3} x_{3}-\frac{4}{3} x_{5} \\
& x_{4}=\frac{35}{3}-\frac{5}{3} x_{3}-\frac{2}{3} x_{5} \\
& x_{2}=\frac{10}{3}-\frac{1}{3} x_{3}-\frac{1}{3} x_{5} \\
& x_{1}=\frac{34}{3}-\frac{4}{3} x_{3}-\frac{1}{3} x_{5} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{0} \geq 0
\end{aligned}
$$

The optimal solution is $\left(x_{1}, x_{2}\right)=\left(\frac{34}{3}, \frac{10}{3}\right)$ and the optimal value of the objective function is $z=\frac{64}{3}$.

29.5-6

The slack form of this equation will be given by :

$$
\begin{gathered}
z=x_{1}-2 x_{2} \\
x_{3}=4-x_{1}-2 x_{2} \\
x_{4}=-12+2 x_{1}+6 x_{2} \\
x_{5}=1-x_{2}
\end{gathered}
$$

The initial basic solution isn't feasible, so we will need to form the auxiliary linear program:

$$
\text { maximize: }-x_{0}
$$

subject to:

$$
\begin{gathered}
x_{1}+2 x_{2}-x_{0} \leq 4 \\
-2 x_{1}-6 x_{2}-x_{0} \leq-12 \\
x_{2}-x_{0} \leq 1 \\
x_{1}, x_{2}, x_{0} \geq 0
\end{gathered}
$$

The slack form is as follows

$$
\begin{gathered}
z=-x_{0} \\
x_{3}=4-x_{1}-2 x_{2}+x_{0} \\
x_{4}=-12+2 x_{1}+6 x_{2}+x_{0} \\
x_{5}=1-x_{2}+x_{0}
\end{gathered}
$$

PIVOT entering: x_{0} and leaving: x_{4}

$$
\begin{aligned}
& z=-12+2 x_{1}+6 x_{2}-x 4 \\
& x_{3}=16-3 x_{1}-8 x_{2}+x_{4} \\
& x_{0}=12+x_{4}-2 x_{1}-6 x_{2} \\
& x_{5}=13-2 x_{1}-8 x_{2}+x_{4}
\end{aligned}
$$

The basic solution is $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(12,0,0,16,0,13)$ which is feasible for the auxiliary LP.

PIVOT entering: x_{1} and leaving: x_{3}

$$
\begin{aligned}
& z=-\frac{4}{3}+\frac{2}{3} x_{2}-\frac{2}{3} x_{3}-\frac{1}{3} x_{4} \\
& x_{1}=\frac{16}{3}-\frac{8}{3} x_{2}-\frac{1}{3} x_{3}+\frac{1}{3} x_{4} \\
& x_{0}=\frac{4}{3}-\frac{2}{3} x_{2}+\frac{2}{3} x_{3}+\frac{1}{3} x_{4} \\
& x_{5}=\frac{7}{3}-\frac{8}{3} x_{2}+\frac{2}{3} x_{3}+\frac{1}{3} x_{4}
\end{aligned}
$$

$\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(\frac{4}{3}, \frac{16}{3}, 0,0,0, \frac{7}{3}\right)$ is the optimal solution for the auxiliary LP, and since $x_{0} \neq 0$, the original LP is infeasible.

