CSCE 411 Design and Analysis of Algorithms

HW7: Solutions

Q-29.3-5

$\operatorname{maximize}$	$18 x_{1}+12.5 x_{2}$
$x_{1}+x_{2}$	≤ 20
x_{1}	≤ 12
x_{2}	≤ 16
x_{1}, x_{2}	≥ 0

We first convert to slack form.

$$
\begin{aligned}
z & =18 x_{1}+12.5 x_{2} \\
x_{3} & =20-x_{1}-x_{2} \\
x_{4} & =12-x_{1} \\
x_{5} & =16-x_{2}
\end{aligned}
$$

The variable x_{1} has a positive coefficient in the objective function. With respect to x_{1}, the second constraint is the most restrictive. Thus, we substitute x_{1} using $x_{1}=12-x_{4}$.

$$
\begin{aligned}
z & =216+12.5 x_{2}-18 x_{4} \\
x_{3} & =8-x_{2}+x_{4} \\
x_{1} & =12-x_{4} \\
x_{5} & =16-x_{2}
\end{aligned}
$$

The variable x_{2} has a positive coefficient in the new objective function, and now the first constraint is the most restrictive. We replace it by $x_{2}=8-x_{3}+x_{4}$ and substitute x_{2} everywhere else.

$$
\begin{aligned}
z & =316+12.5 x_{3}-5.5 x_{4} \\
x_{2} & =8-x_{3}+x_{4} \\
x_{1} & =12-x_{4} \\
x_{5} & =8+x_{3}-x_{4}
\end{aligned}
$$

Now all coefficients are negative, so the basic solution, with $x_{1}=12$ and $x_{2}=8$, is optimal.

Q-29.3-6

$$
\begin{aligned}
\operatorname{maximize} & 5 x_{1}-3 x_{2} \\
x_{1}-x_{2} & \leq 1 \\
2 x_{1}+x_{2} & \leq 12 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

We first convert to slack form.

$$
\begin{aligned}
z & =5 x_{1}-3 x_{2} \\
x_{3} & =1-x_{1}+x_{2} \\
x_{4} & =2-2 x_{1}-x_{2}
\end{aligned}
$$

The nonbasic variables are x_{1} and x_{2}. Of these, only x_{1} has a positive coefficient in the objective function, so we must choose $x_{e}=x_{1}$. Both equations limit x_{1} by 1 , so we'll choose the first one to rewrite x_{1} with. Using $x_{1}=1-x_{3}+x_{2}$ we obtain the new system

$$
\begin{aligned}
z & =5-5 x_{3}+2 x_{2} \\
x_{1} & =1-x_{3}+x_{2} \\
x_{4} & =2 x_{3}-2 x_{2}
\end{aligned}
$$

Now x_{2} is the only nonbasic variable with positive coefficient in the objective function, so we set $x_{e}=x_{2}$. The last equation limits x_{2} by 0 which is most restrictive, so we set $x_{2}=x_{3}-0.5 x_{4}$. Rewriting, our new system becomes

$$
\begin{aligned}
z & =5-3 x_{3}-x_{4} \\
x_{1} & =1-0.5 x_{4} \\
x_{2} & =x_{3}-0.5 x_{4}
\end{aligned}
$$

Every nonbasic variable now has negative coefficient in the objective function, so we take the basic solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,0,0)$. The objective value this achieves is 5 .

