
CSCE 411 Design and Analysis of Algorithms

HW5: Solutions

Q - 23.1-9

Suppose that T ′ is not a minimum weight spanning tree in graph G′ and S′ is a minimum weight
spanning tree in G′. Then, if we joined the subset of edges T\T ′ to S′, then we would obtain a
spanning tree S in the graph G. The weight of S would be smaller than the weight of T and this
contradicts the condition that T is a minimum weight spanning tree. Thus, our assumption is false
and T ′ is a minimum weight spanning tree in the graph G′.

Q - 22.3
(a)

We can use the Bellman-Ford algorithm on a suitable weighted, directed graph G = (V,E),
which we form as follows. There is one vertex in V for each currency, and for each pair of currency
ci and cj , there is directed edges (vi, vj) and (vj , vi). (Thus, |V | = n and |E| =

(
n
2

)
)

To determine edge weights, we start by observing that

R[i1, i2] ·R[i2, i3] · · ·R[ik−1, ik] ·R[ik, i1] > 1

if and only if

1

R[i1, i2]
· 1

R[i2, i3]
· · · 1

R[ik−1, ik]
· 1

R[ik, i1]
< 1

Taking logs of both sides of the inequality above, we express this condition as

ln
1

R[i1, i2]
+ ln

1

R[i2, i3]
+ · · ·+ ln

1

R[ik−1, ik]
+ ln

1

R[ik, i1]
< 0

Therefore, if we define the weight of edge (vi, vj) as

w(vi, vj) = ln
1

R[i, j]

= −lnR[i, j]

then we want to find whether there exists a negative-weight cycle in G with these edge weights.
We can determine whether there exists a negative-weight cycle in G by adding an extra vertex

v0 with 0-weight edges (v0, vi) for all vi ∈ V , running BELLMAN-FORD from v0, and using the
boolean result of BELLMAN-FORD (which is TRUE if there are no negative-weight cycles and
FALSE if there is a negative-weight cycle) to guide our answer. That is,we invert the boolean resul
tof BELLMAN-FORD.

This method works because adding the new vertex v0 with 0-weight edges from v0 to all other
vertices cannot introduce any new cycles,yet it ensures that all negative-weight cycles are reachable
from v0.

It takes θ(n2) time to createG, which has θ(n2) edges.Then it takes θ(n3) time to run BELLMAN-
FORD. Thus, the total time is θ(n3).

Another way to determine whether a negative-weight cycle exists is to create G and,without
adding v0 and its incident edges, run either of the all-pairs shortest-paths algorithms. If the
resulting shortest-path distance matrix has any negative values on the diagonal, then there is a
negative-weight cycle.

Algorithm 1 Algorithm for (a)

1: procedure hasNegCyc((V,E,c) : WeightedGraph) : boolean
2: n = card(V)
3: distance : Array[0, ..., n][0, ..., n]ofReal
4:

5: for i = 0 to n− 1 do
6: for j = 0 to n− 1 do
7: if (i, j) ∈ E then
8: distance[i][j] = c(i, j)
9: else

10: distance[i][j] = +∞
11:

12: for k = 0 to n− 1 do
13: for i = 0 to n− 1 do
14: for j = 0 to n− 1 do
15: if distance[i][j] > distance[i][k] + distance[k][j] then
16: distance[i][j] = distance[i][k] + distance[k][j]

17:

18: for i = 0 to n− 1 do
19: if distance[i][i] < 0 then return true

return false

(b)

We ran BELLMAN-FORD to solve part(a), we only need to find the vertices of a negative-weight
cycle. We can do so as follows. First,relax all the edges once more. Since there is a negative-weight
cycle,the d value of some vertex u will change. We just need to repeatedly follow the π values until
we get back to u. In other words, above routine has to be modified such that it memorizes the
shortest path.

The running time of this algorithm is still O(n3), because the nextNodeloop loops n times at
maximum.

Page 2

Algorithm 2 Algorithm for (b)

1: procedure hasNegCyc((V,E,c) : WeightedGraph) : List of List of Node
2: n = card(V)
3: distance : Array[0, ..., n][0, ..., n]ofReal
4: nextNode = Array[0, ..., n− 1][0, ..., n− 1]ofNode
5:

6: for i = 0 to n− 1 do
7: for j = 0 to n− 1 do
8: if (i, j) ∈ E then
9: distance[i][j] = c(i, j)

10: nextNode[i][j] = j
11: else
12: distance[i][j] = +∞
13: nextNode[i][j] = nil

14:

15: for k = 0 to n− 1 do
16: for i = 0 to n− 1 do
17: for j = 0 to n− 1 do
18: if distance[i][j] > distance[i][k] + distance[k][j] then
19: distance[i][j] = distance[i][k] + distance[k][j]
20: nextNode[i][j] = nextNode[i][k]

21:

22: result : ListofListofNode = φ
23: for i = 0 to n− 1 do
24: if distance[i][i] < 0 then
25: negcyc : ListofNode =< i >
26: runnode = i
27: repeat
28: runnode = nextNode[runnode][i]
29: negcyc.pushBack(runnode)
30: until runnode == i
31: result.pushFront(negcyc)

return result

Page 3

