CSCE 411 Design and Analysis of Algorithms

HW5: Solutions

Q-23.1-9

Suppose that T^{\prime} is not a minimum weight spanning tree in graph G^{\prime} and S^{\prime} is a minimum weight spanning tree in G^{\prime}. Then, if we joined the subset of edges $T \backslash T^{\prime}$ to S^{\prime}, then we would obtain a spanning tree S in the graph G. The weight of S would be smaller than the weight of T and this contradicts the condition that T is a minimum weight spanning tree. Thus, our assumption is false and T^{\prime} is a minimum weight spanning tree in the graph G^{\prime}.

Q-22.3

(a)

We can use the Bellman-Ford algorithm on a suitable weighted, directed graph $G=(V, E)$, which we form as follows. There is one vertex in V for each currency, and for each pair of currency c_{i} and c_{j}, there is directed edges $\left(v_{i}, v_{j}\right)$ and $\left(v_{j}, v_{i}\right)$. (Thus, $|V|=n$ and $|E|=\binom{n}{2}$) To determine edge weights, we start by observing that

$$
R\left[i_{1}, i_{2}\right] \cdot R\left[i_{2}, i_{3}\right] \cdots R\left[i_{k-1}, i_{k}\right] \cdot R\left[i_{k}, i_{1}\right]>1
$$

if and only if

$$
\frac{1}{R\left[i_{1}, i_{2}\right]} \cdot \frac{1}{R\left[i_{2}, i_{3}\right]} \cdots \frac{1}{R\left[i_{k-1}, i_{k}\right]} \cdot \frac{1}{R\left[i_{k}, i_{1}\right]}<1
$$

Taking logs of both sides of the inequality above, we express this condition as

$$
\ln \frac{1}{R\left[i_{1}, i_{2}\right]}+\ln \frac{1}{R\left[i_{2}, i_{3}\right]}+\cdots+\ln \frac{1}{R\left[i_{k-1}, i_{k}\right]}+\ln \frac{1}{R\left[i_{k}, i_{1}\right]}<0
$$

Therefore, if we define the weight of edge $\left(v_{i}, v_{j}\right)$ as

$$
\begin{aligned}
w\left(v_{i}, v_{j}\right) & =\ln \frac{1}{R[i, j]} \\
& =-\ln R[i, j]
\end{aligned}
$$

then we want to find whether there exists a negative-weight cycle in G with these edge weights.
We can determine whether there exists a negative-weight cycle in G by adding an extra vertex v_{0} with 0 -weight edges $\left(v_{0}, v_{i}\right)$ for all $v_{i} \in V$, running BELLMAN-FORD from v_{0}, and using the boolean result of BELLMAN-FORD (which is TRUE if there are no negative-weight cycles and FALSE if there is a negative-weight cycle) to guide our answer. That is, we invert the boolean resul tof BELLMAN-FORD.

This method works because adding the new vertex v_{0} with 0 -weight edges from v_{0} to all other vertices cannot introduce any new cycles, yet it ensures that all negative-weight cycles are reachable from v_{0}.

It takes $\theta\left(n^{2}\right)$ time to create G, which has $\theta\left(n^{2}\right)$ edges. Then it takes $\theta\left(n^{3}\right)$ time to run BELLMANFORD. Thus, the total time is $\theta\left(n^{3}\right)$.

Another way to determine whether a negative-weight cycle exists is to create G and, without adding v_{0} and its incident edges, run either of the all-pairs shortest-paths algorithms. If the resulting shortest-path distance matrix has any negative values on the diagonal, then there is a negative-weight cycle.

```
Algorithm 1 Algorithm for (a)
    procedure hasNegCyc((V,E,c) : WeightedGraph) : boolean
        \(n=\operatorname{card}(V)\)
        distance : Array \([0, \ldots, n][0, \ldots, n]\) of Real
        for \(i=0\) to \(n-1\) do
            for \(j=0\) to \(n-1\) do
                if \((i, j) \in E\) then
                    distance \([i][j]=c(i, j)\)
                else
                    distance \([i][j]=+\infty\)
        for \(k=0\) to \(n-1\) do
            for \(i=0\) to \(n-1\) do
                for \(j=0\) to \(n-1\) do
                    if distance \([i][j]>\) distance \([i][k]+\) distance \([k][j]\) then
                        distance \([i][j]=\) distance \([i][k]+\) distance \([k][j]\)
        for \(i=0\) to \(n-1\) do
            if distance \([i][i]<0\) then return true
        return false
```


(b)

We ran BELLMAN-FORD to solve part(a), we only need to find the vertices of a negative-weight cycle. We can do so as follows. First,relax all the edges once more. Since there is a negative-weight cycle,the d value of some vertex u will change. We just need to repeatedly follow the π values until we get back to u. In other words, above routine has to be modified such that it memorizes the shortest path.

The running time of this algorithm is still $O\left(n^{3}\right)$, because the nextNodeloop loops n times at maximum.

```
Algorithm 2 Algorithm for (b)
    procedure hasNegCyc((V,E,c) : WeightedGraph) : List of List of Node
        \(n=\operatorname{card}(V)\)
        distance : Array \([0, \ldots, n][0, \ldots, n]\) of Real
        nextNode \(=\) Array \([0, \ldots, n-1][0, \ldots, n-1]\) of Node
        for \(i=0\) to \(n-1\) do
            for \(j=0\) to \(n-1\) do
            if \((i, j) \in E\) then
                distance \([i][j]=c(i, j)\)
                next Node \([i][j]=j\)
            else
                distance \([i][j]=+\infty\)
                nextNode \([i][j]=\) nil
        for \(k=0\) to \(n-1\) do
        for \(i=0\) to \(n-1\) do
            for \(j=0\) to \(n-1\) do
                if distance \([i][j]>\) distance \([i][k]+\) distance \([k][j]\) then
                    distance \([i][j]=\) distance \([i][k]+\) distance \([k][j]\)
                    nextNode \([i][j]=\) nextNode \([i][k]\)
        result: Listof Listof Node \(=\phi\)
        for \(i=0\) to \(n-1\) do
            if distance \([i][i]<0\) then
            negcyc: Listof Node \(=<i>\)
            runnode \(=i\)
            repeat
                runnode \(=\) nextNode[runnode \(][i]\)
                negcyc.pushBack(runnode)
            until runnode \(==i\)
            result.pushFront(negcyc)
        return result
```

