
CSCE 411 Design and Analysis of Algorithms

HW4: Solutions

Q - 22.4-2
Idea:

We will use additional variable paths for each node u ∈ V to store the number of simple paths
from node u to v. For each node u, the number of paths will be given by summing all the number of
paths from each node u’s neighbors. We will invoke the function as COUNT SIMPLE PATHS(s,t)

Pseudocode:
Input: Graph G = (V,E), s, t
Output: s.paths
1: if s == t
2: return 1
3: else if s.paths 6= NIL then
4: return s.pahts
5: else
6: for each (s, u) ∈ E do
7: let s.paths+ = COUNT SIMPLE PATHS(u, t)
8: end for
9: return s.paths
10: end if

Correctness:
The recursive approach will exhaustively search all the nodes starting from s. The recursion will
break if it met the node t or have visited all the nodes. Since the search is exhaustive, it ensures
that all the path will be included in the paths to be returned.

Time Complexity:
Time Complexity is O(V + E)

Q - 22.3
(a)
If G has Euler tour then in-degree(v) = out-degree(v) for each vertex v belongs to V .

As G has Euler tour and the Euler tour in made up of multiple edge-disjoint cycles. For each
of these cycles, every vertex has to have an edge coming into it and an edge going out of it ot
complete the cycle. The implies that in-degress(v) = out-degree(v) for each vertex v part of the
cycle. Now, for the entire graph as we have an Euler tour, each disjoint cycle should be connected
such that each cycle has an edge going out of it and edge coming into it. Thus, we can say that for
each vertex v in V , in-degree(v) = out-degree(v).



If in-degree(v) = out-degree(v) for each vertex v belong to V , then G has a Euler
tour.

Let us start at a vertex u and, via random traversal of edges, create a cycle. We know that
once we take any edge entering a vertex v 6= u, we can find an edge leaving v that we have not yet
taken. Eventually, we get back to vertex u, and if there are still edges leaving u that we have not
taken, we can continue the cycle. Eventually, we get back to vertex u ans there are no untaken
edges leaving u. If we have visited every edge in the graph G, we are done. Otherwise, since G is
connected, there must be some unvisited edge leaving a vertex, say v, on the cycle. We can traverse
a new cycle starting at v, visiting only previously unvisited edges, and we can merge this cycle into
the cycle we already know. That is, if the original cycle is u, ..., v, w, ..., u, and the new cycle is
v, x, ..., v, then we can create the cycle u, ..., v, x, ..., v, w, ..., u. We continue this process of finding
a vertex with the unvisited leaving edge on the visited cycle, visiting a cycle starting and ending at
this vertex, and merging in the newly visited cycle, until we have visited every edge forming Euler
tour. Thus, we can say that G has Euler tour, if in-degree(v) = out-degree(v) for each vertex v
belongs to V .

(b)
Idea: See (a) Part II explanation for algorithm idea.

Pseudocode:
Input: G = (V,E)
Output: T
1: for each vertex v ∈ V do
2: if in-degree(u) 6= out-degree(v) then
3: return ”NO EULER TOUR”
4: end if
5: end for
6: start from an arbitrary vertex u ∈ V and find a cycle C without repetitive edges
7: let T = C
8: remove edges of C from E
9: while E 6= φ do
10: find a vertex u ∈ T such that there is an edge (u, v) ∈ E
11: find a cycle C starting with (u, v) without repetitive edges in G = (V,E)
12: remove edges of C from E
13: let T = T ∪ C
14: end while
15: return T

Correctness:
Traversal in cycle and visiting unvisited edges ensures that all the edges will be visited. In (a),
it has been proven that if in-degree(v) = out-degree(v), there exist a Euler tour. With this two
conditions, the algorithm will provide a Euler tour.

Time Complexity:
Time complexity of this algorithm will be O(|E|)
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