Problem 1 (25 points, Problem 16.1-3). Not just any greedy approach to the
activity-selection problem produces a maximum- size set of mutually compatible
activities. Give an example to show that the approach of selecting the activity

of least duration from among those that are compatible with previously selected
activities do not work. Do the same for the approaches of always selecting

the compatible activity that overlaps the fewest other remaining activities and

always selecting the compatible remaining activity with the earliest start time.

Solution. Counter example for always selecting the activity with the least
duration:

Let (s1, f1) = (3,5), (s2, f2) = (1.4), (s3, f3) = (4, 7). The greedy solution is
{activity 1}. The optimal solution is {activity 2. activity 3}.

Counter example for always selecting the task with fewest overlaps: Let
(.‘5’1. fl) == (3. li)) (.‘5’2. fz) == (0 2) (53 fg) — ((_) 8) (.‘5’4. f-L) — (2—1) (.‘5’5. f5) —
Greedy solution is {activity 1, activity 2, activity 3}, optimal solution is {activity
2, activity 3, activity 4, activity 5}.

Problem 2 (25 points, Problem 16.3-3). What is an optimal Huffman code for

the following set of frequencies, based on the first 8 Fibonacci numbers?
a:1b:1c:2d:3e:5f:8g:13h:21

Can you generalize your answer to find the optimal code when the frequencies

are the first n Fibonacci numbers?

Solution. The following figure is the optimal Huffman code for the first 8 num-
bers: Now, we generalize this the first n Fibonacci numbers. Let f; be the ith

Symbol Huffman Code
a 1111110

b 1111111

c 111110

d 11110

e 1110

f 110

g 10

h 0

Figure 1: Problem 16.3-3

Fibonacci number and fe¢; be the Huffman code for f;, then fe; = 17720, fco =
1" fe; =170 (i = 3,4, ...,n), where 17 denotes the concatenation of j 1’s.
Now let’s prove the correctness. Let S; = E;:l [j- We claim that .S; < fi .

Let’s prove it by induction.
Base step: for j =1, S1 = f; < f3 obviously holds.

Inductive step: Let’s assume S; < fj40 for all 7 =1,2,...,7 — 1. Now let’s

show S; < f;19 holds.
Si = Sic1+ fi < fixr + fi = fita.

Hence the node with the value S; will always combine with f;1 ;. Therefore,

we obtain the Huffman tree similar to the figure.

Problem 3 (50 points, Problem 16-1). Coin changing
Consider the problem of making change for n cents using the fewest number

of coins. Assume that each coin's value is an integer.

Solution. (a). Given n cents, let ng = [n/25].ry = n—25n4.nq = |ry/10|, 74 =
rq — 10ng.n, = |rq/5],re = rq — 5ng.n, = ri. Thus, we can make change for
n dollars by obtaining n, quarters, ng dimes, n nickels, and n, pennies. This
Greedy algorithm requires O(1) time.

Next, we’ll prove the correctness.

We prove it by induction. First, the Greedy algorithm produces optimal
solutions for arbitrary n if there are only nickels and pennies, and let’s denote
the Greedy algorithm by As. Assume that the optimal solution is x; nickels
and x;, pennies. If ;, > 5, then it’s not optimal because r}, = xy + |[x,/5], 7}, =
r, —5|x,/5] gives fewer number of coins, contradiction.

Next, we prove that the Greedy algorithm also works if there are only dimes,
nickels, and pennies, and we denote this Greedy algorithm by A3. Otherwise,
assume the optimal solution is x4,), x,. Then x,, < 5; otherwise we can employ
Aj to bxy + 1, to get a better solution. If 5xry +x, < 10, then (r4, 23, 7,) is also
the greedy solution to Az and is optimal. If 5z 4, > 10, which implies 5xj, <
10 since x,, < 5, then we can get a better solution (rq+|x1 /2|, 1 —2| 21 /2], 7).
Therefore, A3z produces optimal solution.

Finally, we prove that the Greedy algorithm is correct if there are quarters,
dimes, nickels, and pennies, and we denote this algorithm by Ay4. Otherwise,
assume the optimal solution is x4, x4, 7, r,. We know that x; < 2 and x, <
5: otherwise, we can use algorithm As to get a better solution on the input
10xq + 5z +xp. Let ng = |n/25]. If x4 = ng, then this optimal solution is also
the solution to algorithm Ay. If 2, < ng, then by As, each quarters will lead to
1 more coins, which means that (24,24, 7%, 7,) is not optimal.

Altogether, the greedy algorithm yields optimal solution.

(b). Given an optimal solution (xg, x1, ...,z), where x; indicates the number
of coins of denomination ¢*. First, 2; < ¢ fore every i = 1,2, ...,k — 1. Suppose
we have some x; > ¢, then we could decrease x; by ¢ and increase ;.1 by 1.
This connection of coins has the same value and has ¢ — 1 fewer coins, so the
original solution must be non-optimal. This configuration of coins is exactly the
same as you would get if you kept greedily picking the largest coin possible. Let
S; = Z;:l (¢ —1). Then S; < ¢+t for i = 0,1,...,k. Thus (xo,z1,...,7x) is
the only solution that satisfies the property z; < ¢ (i = 1,2, ..., k—1). Therefore,
the greedy algorithm always yields an optimal solution.

(¢). Let the coin denominations be {1,3,4}, and the value to make change

for be 6. The greedy solution would result in the collection of coins {1, 1,4},
but the optimal solution is {3, 3}.

(d) Let numcoins[i] be the fewest number of coins to make change for i cents

and S be the collection of £ distinct coin denominations. Then numecoins[0] = 0,
and numcoins|i] = min;>. .cs numcoinsfi — c| + 1.

Algorithm 1 Pseudocode for Problem 16.1

Input: S.n
Output: numcoins[n| and coins

e e e e e el e
e B AR I i =

© XN T R Wy

numeoins[0] =0
for i=1tondo
numecoins|i] = 400
for ¢in S do
if ¢ < i and numecoins[i] > numcoins[i — ¢] + 1 then
numcoins|i] = 1 + numcoins[i — ¢|
end if
end for
end for
iter =n
let coins be an empty set
while iter >0 do

for ¢in S do
if ¢ <iter and numcoinsliter] — 1 == numcons[iter — ¢| then
add ¢ to coins
iter = iter — ¢
end if
end for
. end while

The time complexity is O(nk), where k = |S|.

