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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors WXi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε~W ! 5 O
i

U WXi2SjWij
WXjU

2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost
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Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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function subject to two constraints: first, that
each data point WXi is reconstructed only from
its neighbors (5), enforcing Wij 5 0 if WXj does

not belong to the set of neighbors of WXi;
second, that the rows of the weight matrix
sum to one: SjWij 5 1. The optimal weights

Wij subject to these constraints (6 ) are found
by solving a least-squares problem (7 ).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
,, D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation WXi is mapped to a low-dimensional
vector WYi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates WYi to minimize the
embedding cost function

F~Y ! 5 O
i

U WYi 2 SjWij
WYjU

2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates WYi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors WYi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N 3 N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates WYi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point WXi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct WXi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors WYi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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computed by standard methods in linear al-
gebra. The algorithm involves a single pass
through the three steps in Fig. 2 and finds
global minima of the reconstruction and em-
bedding costs in Eqs. 1 and 2.

In addition to the example in Fig. 1, for
which the true manifold structure was known
(10), we also applied LLE to images of faces
(11) and vectors of word-document counts
(12). Two-dimensional embeddings of faces
and words are shown in Figs. 3 and 4. Note
how the coordinates of these embedding
spaces are related to meaningful attributes,
such as the pose and expression of human
faces and the semantic associations of words.

Many popular learning algorithms for
nonlinear dimensionality reduction do not
share the favorable properties of LLE. Itera-
tive hill-climbing methods for autoencoder
neural networks (13, 14 ), self-organizing
maps (15), and latent variable models (16 ) do
not have the same guarantees of global opti-
mality or convergence; they also tend to in-
volve many more free parameters, such as
learning rates, convergence criteria, and ar-

chitectural specifications. Finally, whereas
other nonlinear methods rely on deterministic
annealing schemes (17 ) to avoid local mini-
ma, the optimizations of LLE are especially
tractable.

LLE scales well with the intrinsic mani-
fold dimensionality, d, and does not require a
discretized gridding of the embedding space.
As more dimensions are added to the embed-
ding space, the existing ones do not change,
so that LLE does not have to be rerun to
compute higher dimensional embeddings.
Unlike methods such as principal curves and
surfaces (18) or additive component models
(19), LLE is not limited in practice to mani-
folds of extremely low dimensionality or
codimensionality. Also, the intrinsic value of
d can itself be estimated by analyzing a re-
ciprocal cost function, in which reconstruc-
tion weights derived from the embedding
vectors WYi are applied to the data points WXi.

LLE illustrates a general principle of mani-
fold learning, elucidated by Martinetz and
Schulten (20) and Tenenbaum (4), that over-
lapping local neighborhoods—collectively an-

alyzed—can provide information about global
geometry. Many virtues of LLE are shared by
Tenenbaum’s algorithm, Isomap, which has
been successfully applied to similar problems in
nonlinear dimensionality reduction. Isomap’s
embeddings, however, are optimized to pre-
serve geodesic distances between general pairs
of data points, which can only be estimated by
computing shortest paths through large sublat-
tices of data. LLE takes a different approach,
analyzing local symmetries, linear coefficients,
and reconstruction errors instead of global con-
straints, pairwise distances, and stress func-
tions. It thus avoids the need to solve large
dynamic programming problems, and it also
tends to accumulate very sparse matrices,
whose structure can be exploited for savings in
time and space.

LLE is likely to be even more useful in
combination with other methods in data anal-
ysis and statistical learning. For example, a
parametric mapping between the observation
and embedding spaces could be learned by
supervised neural networks (21) whose target
values are generated by LLE. LLE can also
be generalized to harder settings, such as the
case of disjoint data manifolds (22), and spe-
cialized to simpler ones, such as the case of
time-ordered observations (23).

Perhaps the greatest potential lies in ap-
plying LLE to diverse problems beyond those
considered here. Given the broad appeal of
traditional methods, such as PCA and MDS,
the algorithm should find widespread use in
many areas of science.
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