
CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 1 

L9: Principal components analysis 

• The curse of dimensionality 

• Dimensionality reduction 

• Feature selection vs. feature extraction 

• Signal representation vs. signal classification 

• Principal components analysis 
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The curse of dimensionality 

• The curse of dimensionality 
– A term coined by Bellman in 1961 

– Refers to the problems associated with multivariate data analysis as 
the dimensionality increases 

• Consider a 3-class pattern recognition problem 
– A simple approach would be to  

• Divide the feature space into uniform bins 

• Compute the ratio of examples for each class at each bin and,  

• For a new example, choose the predominant class in its bin 

– In our toy problem we decide to start with one single feature and 
divide the real line into 3 segments 

 

 

– After doing this, we notice that there exists too much overlap among 
the classes, so we decide to incorporate a second feature to try and 
improve separability 
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• We decide to preserve the granularity of each axis, which 
raises the number of bins from 3 (in 1D) to 32 = 9 (in 2D) 
– At this point we need to make a decision: do we maintain the density 

of examples per bin or do we keep the number of examples had for 
the one-dimensional case? 

– Choosing to maintain the density increases the number of examples  
from 9 (in 1D) to 27 (in 2D) 

– Choosing to maintain the number of examples results in a 2D scatter  
plot that is very sparse 
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• Moving to three features makes the  
problem worse 

– The number of bins grows to 33 = 27 

– For the same density of examples the  
number of needed examples becomes 81 

– For the same number of examples,  
the 3D scatter  plot is almost empty 

• Obviously, our approach to divide the sample space into 
equally spaced bins was quite inefficient 
– There are other approaches that are much less susceptible to the 

curse of dimensionality, but the problem still exists 

• How do we beat the curse of dimensionality? 
– By incorporating prior knowledge 

– By providing increasing smoothness of the target function 

– By reducing the dimensionality 
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• What does the curse of dimensionality mean, in practice? 
– For a given sample size, there is a maximum number of features above 

which the performance of our classifier will degrade rather than 
improve 

– In most cases, the additional information that is lost by discarding 
some features is (more than) compensated by a more accurate 
mapping in the lower-dimensional space 
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• Additional implications 

– Exponential growth in the #examples required to maintain a given 
sampling density 

• For a density of 𝑁 examples/bin and 𝐷 dimensions, the total number of 
examples is 𝑁𝐷 

– Exponential growth in the complexity of the target function (a density 
estimate) with increasing dimensionality 

• “A function defined in high-dimensional space is likely to be much more 
complex than a function defined in a lower-dimensional space, and those 
complications are harder to discern” –J. Friedman 

• This means that, in order to learn it well, a more complex target function 
requires denser sample points! 

– What to do if it ain’t Gaussian? 

• For 1D a large number of density functions can be found in textbooks, but for 
high-dimensions only the multivariate Gaussian density is available.   

• Moreover, for large 𝐷 the Gaussian can only be handled in a simplified form! 

– Humans have an extraordinary capacity to discern patterns and clusters in 
1D, 2D and 3D, but these capabilities break down for 𝐷 ≥ 4 
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Dimensionality reduction 

• Two approaches are available to reduce dimensionality 
– Feature extraction: creating a subset of new features by combinations 

of the existing features 

– Feature selection: choosing a subset of all the features 

𝑥1

𝑥2

𝑥𝑁

→

𝑥𝑖1 

𝑥𝑖2

𝑥𝑖𝑀

   

𝑥1

𝑥2

𝑥𝑁

→

𝑦1

𝑦2

𝑦𝑀

= 𝑓

𝑥1

𝑥2

𝑥𝑁

 

• The problem of feature extraction can be stated as 
– Given a feature space 𝑥𝑖 ∈ ℜ𝑁 find a mapping 𝑦 = 𝑓 𝑥 : 𝑅𝑁 → 𝑅𝑀 

with 𝑀 < 𝑁 such that the transformed feature vector 
𝑦 ∈ 𝑅𝑀 preserves (most of) the information or structure in 𝑅𝑁 

– An optimal mapping 𝑦 = 𝑓(𝑥) is one that does not increase 𝑃 𝑒𝑟𝑟𝑜𝑟  

– This is, a Bayes decision rule applied to the initial space 𝑅𝑁 and to the 
reduced space 𝑅𝑀 yield the same classification rate 
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• Linear dimensionality reduction 
– In general, the optimal mapping 𝑦 = 𝑓(𝑥) will be a non-linear function 

• However, there is no systematic way to generate non-linear transforms 

• The selection of a particular subset of transforms is problem dependent 

– For these reasons, feature extraction is commonly based on linear 
transforms, of the form 𝑦 = 𝑊𝑥  

𝑥1

𝑥2

𝑥𝑁

→

𝑦1

𝑦2

𝑦𝑀

=
𝑤11 𝑤12 𝑤1𝑁

𝑤𝑀1 𝑤𝑀𝑁

𝑥1

𝑥2

𝑥𝑁

 

• NOTE: When the mapping is a non-linear function, the reduced space is 
called a manifold 

– We will focus on linear feature extraction for now, and revisit non-
linear techniques when we cover multi-layer perceptrons, manifold 
learning, and kernel methods 
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Signal representation versus classification 

• Finding the mapping 𝑦 = 𝑓(𝑥) is guided by an objective 
function that we seek to maximize (or minimize) 
– Depending on the criteria used by the objective function, feature 

extraction techniques are grouped into two categories: 

• Signal representation: The goal of the feature extraction mapping is to 
represent the samples accurately in a lower-dimensional space 

• Classification: The goal of the feature extraction mapping is to enhance 
the class-discriminatory information in the lower-dimensional space 

– Within the realm of linear feature  
extraction, two techniques are  
commonly used 

• Principal components analysis (PCA):  
uses a signal representation criterion 

• Linear discriminant analysis (LDA):  
uses a signal classification criterion 
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Principal components analysis  (PCA) 

• PCA seeks preserve as much of the randomness (variance) in 
the high-dimensional space as possible 

– Let 𝑥 ∈ ℜ𝑁 be represented as a linear combination of orthonormal 
basis vectors 𝜑1 𝜑2 …𝜑𝑁  as 

 𝑥 = ∑𝑖=1
𝑁 𝑦𝑖𝜑𝑖 where 𝜑𝑖

𝑇𝜑𝑗 =  
0; 𝑖 ≠ j 
1; 𝑖 = 𝑗

 

– Suppose we want to represent 𝑥 with only 𝑀 (𝑀 < 𝑁) basis vectors 

– We can do this by replacing the components 𝑦𝑀+1, … 𝑦𝑁
𝑇 with some 

pre-selected constants 𝑏𝑖 

𝑥 𝑀 = ∑𝑖=1
𝑀 𝑦𝑖𝜑𝑖 + ∑𝑖=𝑀+1

𝑁 𝑏𝑖𝜑𝑖 

– The representation error is then 

Δ𝑥 𝑀 = 𝑥 − 𝑥 𝑀 = 
∑𝑖=1

𝑁 𝑦𝑖𝜑𝑖 − ∑𝑖=1
𝑀 𝑦𝑖𝜑𝑖 + ∑𝑖=𝑀+1

𝑁 𝑏𝑖𝜑𝑖 = 

∑𝑖=𝑀+1
𝑁 𝑦𝑖 − 𝑏𝑖 𝜑𝑖 
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– We can measure this representation error by the mean-squared 
magnitude of Δ𝑥 

– Our goal is to find the basis vectors 𝜑𝑖 and constants 𝑏𝑖 that minimize 
this mean-square error 

𝜖 2 𝑀 = 𝐸 Δ𝑥 𝑀 2 = 

E ∑𝑖=𝑀+1
𝑁 ∑𝑗=𝑀+1

𝑁 𝑦𝑖 − 𝑏𝑖 𝑦𝑗 − 𝑏𝑗 𝜑𝑖
𝑇𝜑𝑗 = 

∑𝑖=𝑀+1
𝑁 𝐸 𝑦𝑖 − 𝑏𝑖

2  

– To find the optimal values of 𝑏𝑖 we compute the partial derivative of 
the objective function and equate it to zero 

 
𝜕

𝜕𝑏𝑖
𝐸 𝑦𝑖 − 𝑏𝑖

2 = −2 𝐸 𝑦𝑖 − 𝑏𝑖 = 0 

⇒ 𝑏𝑖 = 𝐸 𝑦𝑖  

– Therefore, we will replace the discarded dimensions by their expected 
value, which is an intuitive result 
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– The MSE can then be written as 

𝜖 2 𝑀 = ∑𝑖=𝑀+1
𝑁 𝐸 𝑦𝑖 − 𝐸 𝑦𝑖

2 =

= ∑𝑖=𝑀+1
𝑁 𝐸 𝑥𝜑𝑖 − 𝐸 𝑥𝜑𝑖

𝑇 𝑥𝜑𝑖 − 𝐸 𝑥𝜑𝑖 =

= ∑𝑖=𝑀+1
𝑁 𝜑𝑖

𝑇𝐸 𝑥 − 𝐸 𝑥 𝑥 − 𝐸 𝑥 𝑇 𝜑𝑖 = 
        = ∑𝑖=𝑀+1

𝑁 𝜑𝑖
𝑇Σ𝑥𝜑𝑖 

– We seek the solution that minimizes this expression, subject to the 
orthonormality constraint, which we incorporate into the expression 
using a set of Lagrange multipliers 𝜆𝑖 

𝜖 2 𝑀 = ∑𝑖=𝑀+1
𝑁 𝜑𝑖

𝑇Σ𝑥𝜑𝑖 + ∑𝑖=𝑀+1
𝑁 𝜆𝑖 1 − 𝜑𝑖

𝑇𝜑𝑖   

– Computing the partial derivative with respect to the basis vectors 
𝜕𝜖 2 𝑀

𝜕𝜑𝑖
=

𝜕

𝜕𝜑𝑖
∑𝑖=𝑀+1

𝑁 𝜑𝑖
𝑇Σ𝑥𝜑𝑖 + ∑𝑖=𝑀+1

𝑁 𝜆𝑖 1 − 𝜑𝑖
𝑇𝜑𝑖 =

= 2 Σ𝑥𝜑𝑖 − 𝜆𝑖𝜑𝑖 = 0 ⇒ Σ𝑥𝜑𝑖 = 𝜆𝑖𝜑𝑖 

• NOTE: 
𝑑

𝑑𝑥
𝑥𝑇𝐴𝑥 = 𝐴 + 𝐴𝑇 𝑥 = 2𝐴𝑥 (for A symmetric) 

– So 𝝋𝒊and 𝝀𝒊 are the eigenvectors and eigenvalues of 𝚺𝒙 
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– We can then express the sum-squared error as 

𝜖 2 𝑀 = ∑𝑖=𝑀+1
𝑁 𝜑𝑖

𝑇Σ𝑥𝜑𝑖 = ∑𝑖=𝑀+1
𝑁 𝜑𝑖

𝑇𝜆𝑖𝜑𝑖 = ∑𝑖=𝑀+1
𝑁 𝜆𝑖 

– In order to minimize this measure, 𝜆𝑖 will have to be smallest 
eigenvalues 

– Therefore, to represent 𝑥 with minimum MSE, we will choose the 
eigenvectors 𝜑𝑖 corresponding to the largest eigenvalues 𝜆𝑖 

 

 

 

PCA dimensionality reduction 
 
The optimal* approximation of a random vector 𝑥 ∈ ℜ𝑁 by a linear 
combination of 𝑀 < 𝑁 independent vectors is obtained by projecting 𝑥 
onto the eigenvectors 𝜑𝑖  corresponding to the largest eigenvalues 𝜆𝑖  of 
the covariance matrix Σ𝑥  
 
*optimality is defined as the minimum of the sum-square magnitude of 
the approximation error  
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• NOTES 

– Since PCA uses the eigenvectors of the covariance matrix Σ𝑥, it is able to 
find the independent axes of the data under the unimodal Gaussian 
assumption  

• For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the 
axes 

– The main limitation of PCA is that it does not consider class separability 
since it does not take into account the class label of the feature vector 

• PCA simply performs a coordinate rotation that aligns the transformed axes 
with the directions of maximum variance 

• There is no guarantee that the directions of maximum variance will contain 
good features for discrimination 

– Historical remarks 

• Principal Components Analysis is the oldest technique in multivariate analysis 

• PCA is also known as the Karhunen-Loève transform (communication theory) 

• PCA was first introduced by Pearson in 1901, and it experienced several 
modifications until it was generalized by Loève in 1963 
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Example I 

• 3D Gaussian distribution 𝑁 𝜇, Σ  

𝜇 = 0 5 2 𝑇 and Σ =
25 −1 7

4 −4
10

 

– The three pairs of PCA projections are  
shown below 

• Notice that PC1 has the largest 
variance, followed by PC2  

• Also notice how PCA decorrelates the 
axes 
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Example II 

• The example in the next slide shows a projection of a 3D 
data set into two dimensions 
– Initially, there is no apparent structure in the dataset, except for the 

elongation of the point cloud 

– Choosing an appropriate rotation unveils the underlying structure 

• You can think of this rotation as "walking around" the 3D dataset, looking 
for the best viewpoint 

– PCA can help find such underlying structure 

• It selects a rotation such that most of the variability within the data set is 
represented in the first few dimensions of the rotated data 

• In our 3D case, this may seem of little use 

• However, when the data is highly multidimensional (10’s of dimensions), 
this analysis is quite powerful 
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Example III 

• Problem statement 
– Compute the PCA for dataset  
𝑋 = {(1,2), (3,3), (3,5), (5,4), (5,6), (6,5), (8,7), (9,8)} 

– Let’s first plot the data to get an idea of  
which solution we should expect 

 

• Solution 
– The sample covariance is 

Σ𝑥 =
6.25 4.25
4.25 3.5

 

– The eigenvalues are the zeros of the characteristic equation 
Σ𝑥𝑣 = 𝜆𝑣 ⇒ Σ𝑥 − 𝜆𝐼 = 0 

⇒
6.25 − 𝜆 4.25

4.25 3.5 − 𝜆
= 0 

⇒ 𝝀𝟏 = 𝟗. 𝟑𝟒; 𝝀𝟐 = 𝟎. 𝟒𝟏  
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– The eigenvectors are the solutions of the system 

6.25 4.25
4.25 3.5

𝑣11

𝑣12
=

𝜆1𝑣11

𝜆1𝑣12
⇒

𝑣11

𝑣12
=

0.81
0.59

 

6.25 4.25
4.25 3.5

𝑣21

𝑣22
=

𝜆2𝑣21

𝜆2𝑣22
⇒

𝑣21

𝑣22
=

−0.59
0.81

 

 

– HINT: To solve each system manually, first assume that one of the 
variables is equal to one (i.e. 𝑣𝑖1 = 1), then find the other one and 
finally normalize the vector to make it unit-length 

 




