L9: Principal components analysis

The curse of dimensionality
Dimensionality reduction
Feature selection vs. feature extraction
Signal representation vs. signal classification
Principal components analysis

The curse of dimensionality

The curse of dimensionality

- A term coined by Bellman in 1961
- Refers to the problems associated with multivariate data analysis as the dimensionality increases

Consider a 3-class pattern recognition problem

- A simple approach would be to
- Divide the feature space into uniform bins
- Compute the ratio of examples for each class at each bin and,
- For a new example, choose the predominant class in its bin
- In our toy problem we decide to start with one single feature and divide the real line into 3 segments

- After doing this, we notice that there exists too much overlap among the classes, so we decide to incorporate a second feature to try and improve separability

We decide to preserve the granularity of each axis, which raises the number of bins from 3 (in 1D) to $3^{2}=9$ (in 2D)

- At this point we need to make a decision: do we maintain the density of examples per bin or do we keep the number of examples had for the one-dimensional case?
- Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
- Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

Moving to three features makes the problem worse

- The number of bins grows to $3^{3}=27$
- For the same density of examples the number of needed examples becomes 81
- For the same number of examples, the 3D scatter plot is almost empty

Obviously, our approach to divide the sample space into equally spaced bins was quite inefficient

- There are other approaches that are much less susceptible to the curse of dimensionality, but the problem still exists
How do we beat the curse of dimensionality?
- By incorporating prior knowledge
- By providing increasing smoothness of the target function
- By reducing the dimensionality

What does the curse of dimensionality mean, in practice?

- For a given sample size, there is a maximum number of features above which the performance of our classifier will degrade rather than improve
- In most cases, the additional information that is lost by discarding some features is (more than) compensated by a more accurate mapping in the lower-dimensional space

Additional implications

- Exponential growth in the \#examples required to maintain a given sampling density
- For a density of N examples/bin and D dimensions, the total number of examples is N^{D}
- Exponential growth in the complexity of the target function (a density estimate) with increasing dimensionality
- "A function defined in high-dimensional space is likely to be much more complex than a function defined in a lower-dimensional space, and those complications are harder to discern" -J. Friedman
- This means that, in order to learn it well, a more complex target function requires denser sample points!
- What to do if it ain't Gaussian?
- For 1D a large number of density functions can be found in textbooks, but for high-dimensions only the multivariate Gaussian density is available.
- Moreover, for large D the Gaussian can only be handled in a simplified form!
- Humans have an extraordinary capacity to discern patterns and clusters in 1D, 2D and 3D, but these capabilities break down for $D \geq 4$

Dimensionality reduction

Two approaches are available to reduce dimensionality

- Feature extraction: creating a subset of new features by combinations of the existing features
- Feature selection: choosing a subset of all the features

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\\
x_{N}
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{i_{1}} \\
x_{i_{2}} \\
x_{i_{M}}
\end{array}\right] \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\\
x_{N}
\end{array}\right] \rightarrow\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{M}
\end{array}\right]=f\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\\
x_{N}
\end{array}\right]\right)
$$

The problem of feature extraction can be stated as

- Given a feature space $x_{i} \in \Re^{N}$ find a mapping $y=f(x): R^{N} \rightarrow R^{M}$ with $M<N$ such that the transformed feature vector $y \in R^{M}$ preserves (most of) the information or structure in R^{N}
- An optimal mapping $y=f(x)$ is one that does not increase P [error]
- This is, a Bayes decision rule applied to the initial space R^{N} and to the reduced space R^{M} yield the same classification rate

Linear dimensionality reduction

- In general, the optimal mapping $y=f(x)$ will be a non-linear function
- However, there is no systematic way to generate non-linear transforms
- The selection of a particular subset of transforms is problem dependent
- For these reasons, feature extraction is commonly based on linear transforms, of the form $y=W x$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\\
x_{N}
\end{array}\right] \rightarrow\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\\
y_{M}
\end{array}\right]=\left[\begin{array}{lll}
w_{11} & w_{12} & w_{1 N} \\
w_{M 1} & & w_{M N}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\\
x_{N}
\end{array}\right]
$$

- NOTE: When the mapping is a non-linear function, the reduced space is called a manifold
- We will focus on linear feature extraction for now, and revisit nonlinear techniques when we cover multi-layer perceptrons, manifold learning, and kernel methods

Signal representation versus classification

Finding the mapping $y=f(x)$ is guided by an objective function that we seek to maximize (or minimize)

- Depending on the criteria used by the objective function, feature extraction techniques are grouped into two categories:
- Signal representation: The goal of the feature extraction mapping is to represent the samples accurately in a lower-dimensional space
- Classification: The goal of the feature extraction mapping is to enhance the class-discriminatory information in the lower-dimensional space
- Within the realm of linear feature extraction, two techniques are commonly used
- Principal components analysis (PCA): uses a signal representation criterion
- Linear discriminant analysis (LDA): uses a signal classification criterion

Principal components analysis (PCA)

PCA seeks preserve as much of the randomness (variance) in the high-dimensional space as possible

- Let $x \in \Re^{N}$ be represented as a linear combination of orthonormal basis vectors $\left[\varphi_{1}\left|\varphi_{2}\right| \ldots \varphi_{N}\right]$ as

$$
x=\sum_{i=1}^{N} y_{i} \varphi_{i} \text { where } \varphi_{i}^{T} \varphi_{j}=\left\{\begin{array}{l}
0 ; i \neq \mathrm{j} \\
1 ; i=j
\end{array}\right.
$$

- Suppose we want to represent x with only $M(M<N)$ basis vectors
- We can do this by replacing the components $\left[y_{M+1}, \ldots y_{N}\right]^{T}$ with some pre-selected constants b_{i}

$$
\hat{x}(M)=\sum_{i=1}^{M} y_{i} \varphi_{i}+\sum_{i=M+1}^{N} b_{i} \varphi_{i}
$$

- The representation error is then

$$
\begin{aligned}
& \Delta x(M)=x-\hat{x}(M)= \\
& \sum_{i=1}^{N} y_{i} \varphi_{i}-\left(\sum_{i=1}^{M} y_{i} \varphi_{i}+\sum_{i=M+1}^{N} b_{i} \varphi_{i}\right)= \\
& \sum_{i=M+1}^{N}\left(y_{i}-b_{i}\right) \varphi_{i}
\end{aligned}
$$

- We can measure this representation error by the mean-squared magnitude of Δx
- Our goal is to find the basis vectors φ_{i} and constants b_{i} that minimize this mean-square error

$$
\begin{aligned}
& \bar{\epsilon}^{2}(M)=E\left[|\Delta x(M)|^{2}\right]= \\
& \mathrm{E}\left[\sum_{i=M+1}^{N} \sum_{j=M+1}^{N}\left(y_{i}-b_{i}\right)\left(y_{j}-b_{j}\right) \varphi_{i}^{T} \varphi_{j}\right]= \\
& \sum_{i=M+1}^{N} E\left[\left(y_{i}-b_{i}\right)^{2}\right]
\end{aligned}
$$

- To find the optimal values of b_{i} we compute the partial derivative of the objective function and equate it to zero

$$
\begin{aligned}
& \frac{\partial}{\partial b_{i}} E\left[\left(y_{i}-b_{i}\right)^{2}\right]=-2\left(E\left[y_{i}\right]-b_{i}\right)=0 \\
& \quad \Rightarrow b_{i}=E\left[y_{i}\right]
\end{aligned}
$$

- Therefore, we will replace the discarded dimensions by their expected value, which is an intuitive result
- The MSE can then be written as

$$
\begin{aligned}
& \bar{\epsilon}^{2}(M)=\sum_{i=M+1}^{N} E\left[\left(y_{i}-E\left[y_{i}\right]\right)^{2}\right]= \\
& \quad=\sum_{i=M+1}^{N} E\left[\left(x \varphi_{i}-E\left[x \varphi_{i}\right]\right)^{T}\left(x \varphi_{i}-E\left[x \varphi_{i}\right]\right)\right]= \\
& \quad=\sum_{i=M+1}^{N} \varphi_{i}^{T} E\left[(x-E[x])(x-E[x])^{T}\right] \varphi_{i}= \\
& \quad=\sum_{i=M+1}^{N} \varphi_{i}^{T} \sum_{x} \varphi_{i}
\end{aligned}
$$

- We seek the solution that minimizes this expression, subject to the orthonormality constraint, which we incorporate into the expression using a set of Lagrange multipliers λ_{i}

$$
\bar{\epsilon}^{2}(M)=\sum_{i=M+1}^{N} \varphi_{i}^{T} \Sigma_{x} \varphi_{i}+\sum_{i=M+1}^{N} \lambda_{i}\left(1-\varphi_{i}^{T} \varphi_{i}\right)
$$

- Computing the partial derivative with respect to the basis vectors

$$
\begin{aligned}
\frac{\partial \bar{\epsilon}^{2}(M)}{\partial \varphi_{i}} & =\frac{\partial}{\partial \varphi_{i}}\left[\sum_{i=M+1}^{N} \varphi_{i}^{T} \Sigma_{x} \varphi_{i}+\sum_{i=M+1}^{N} \lambda_{i}\left(1-\varphi_{i}^{T} \varphi_{i}\right)\right]= \\
& =2\left(\Sigma_{x} \varphi_{i}-\lambda_{i} \varphi_{i}\right)=0 \Rightarrow \Sigma_{x} \varphi_{i}=\lambda_{i} \varphi_{i}
\end{aligned}
$$

- NOTE: $\frac{d}{d x}\left(x^{T} A x\right)=\left(A+A^{T}\right) x=2 A x$ (for A symmetric)
- So φ_{i} and λ_{i} are the eigenvectors and eigenvalues of $\boldsymbol{\Sigma}_{\boldsymbol{x}}$
- We can then express the sum-squared error as

$$
\bar{\epsilon}^{2}(M)=\sum_{i=M+1}^{N} \varphi_{i}^{T} \Sigma_{x} \varphi_{i}=\sum_{i=M+1}^{N} \varphi_{i}^{T} \lambda_{i} \varphi_{i}=\sum_{i=M+1}^{N} \lambda_{i}
$$

- In order to minimize this measure, λ_{i} will have to be smallest eigenvalues
- Therefore, to represent x with minimum MSE, we will choose the eigenvectors φ_{i} corresponding to the largest eigenvalues λ_{i}

PCA dimensionality reduction

The optimal* approximation of a random vector $x \in \mathfrak{R}^{N}$ by a linear combination of $M<N$ independent vectors is obtained by projecting x onto the eigenvectors φ_{i} corresponding to the largest eigenvalues λ_{i} of the covariance matrix Σ_{x}
*optimality is defined as the minimum of the sum-square magnitude of the approximation error

NOTES

- Since PCA uses the eigenvectors of the covariance matrix Σ_{x}, it is able to find the independent axes of the data under the unimodal Gaussian assumption
- For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the axes
- The main limitation of PCA is that it does not consider class separability since it does not take into account the class label of the feature vector
- PCA simply performs a coordinate rotation that aligns the transformed axes with the directions of maximum variance
- There is no guarantee that the directions of maximum variance will contain good features for discrimination
- Historical remarks
- Principal Components Analysis is the oldest technique in multivariate analysis
- PCA is also known as the Karhunen-Loève transform (communication theory)
- PCA was first introduced by Pearson in 1901, and it experienced several modifications until it was generalized by Loève in 1963

Example I

3D Gaussian distribution $N(\mu, \Sigma)$

$$
\mu=\left[\begin{array}{lll}
0 & 5 & 2
\end{array}\right]^{T} \text { and } \Sigma=\left[\begin{array}{ccc}
25 & -1 & 7 \\
& 4 & -4 \\
& & 10
\end{array}\right]
$$

- The three pairs of PCA projections are shown below
- Notice that PC1 has the largest variance, followed by PC2
- Also notice how PCA decorrelates the axes

Example II

The example in the next slide shows a projection of a 3D data set into two dimensions

- Initially, there is no apparent structure in the dataset, except for the elongation of the point cloud
- Choosing an appropriate rotation unveils the underlying structure
- You can think of this rotation as "walking around" the 3D dataset, looking for the best viewpoint
- PCA can help find such underlying structure
- It selects a rotation such that most of the variability within the data set is represented in the first few dimensions of the rotated data
- In our 3D case, this may seem of little use
- However, when the data is highly multidimensional (10's of dimensions), this analysis is quite powerful

Example III

Problem statement

- Compute the PCA for dataset
$X=\{(1,2),(3,3),(3,5),(5,4),(5,6),(6,5),(8,7),(9,8)\}$
- Let's first plot the data to get an idea of which solution we should expect

Solution

- The sample covariance is

$$
\Sigma_{x}=\left[\begin{array}{cc}
6.25 & 4.25 \\
4.25 & 3.5
\end{array}\right]
$$

- The eigenvalues are the zeros of the characteristic equation

$$
\begin{aligned}
& \Sigma_{x} v=\lambda v \Rightarrow\left|\Sigma_{x}-\lambda I\right|=0 \\
& \Rightarrow \left\lvert\, \begin{array}{cc}
6.25-\lambda & 4.25 \\
4.25 & 3.5-\lambda \mid=0 \\
\Rightarrow \lambda_{\mathbf{1}}=\mathbf{9 . 3 4} ; \lambda_{\mathbf{2}}=\mathbf{0 . 4 1}
\end{array}\right.
\end{aligned}
$$

- The eigenvectors are the solutions of the system

$$
\begin{aligned}
& {\left[\begin{array}{cc}
6.25 & 4.25 \\
4.25 & 3.5
\end{array}\right]\left[\begin{array}{l}
v_{11} \\
v_{12}
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} v_{11} \\
\lambda_{1} v_{12}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
v_{11} \\
v_{12}
\end{array}\right]=\left[\begin{array}{l}
0.81 \\
0.59
\end{array}\right]} \\
& {\left[\begin{array}{cc}
6.25 & 4.25 \\
4.25 & 3.5
\end{array}\right]\left[\begin{array}{l}
v_{21} \\
v_{22}
\end{array}\right]=\left[\begin{array}{l}
\lambda_{2} v_{21} \\
\lambda_{2} v_{22}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
v_{21} \\
v_{22}
\end{array}\right]=\left[\begin{array}{c}
-0.59 \\
0.81
\end{array}\right]}
\end{aligned}
$$

- HINT: To solve each system manually, first assume that one of the variables is equal to one (i.e. $v_{i 1}=1$), then find the other one and finally normalize the vector to make it unit-length

