
CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 1

L8: Nearest neighbors

• Nearest neighbors density estimation

• The k nearest neighbors classification rule

• kNN as a lazy learner

• Characteristics of the kNN classifier

• Optimizing the kNN classifier

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 2

Non-parametric density estimation: review

• Recap
– As we saw in the previous lecture that the general expression for non-

parametric density estimation is

𝑝 𝑥 ≅
𝑘

𝑁𝑉
 where

𝑉 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑥
𝑁 𝑡𝑜𝑡𝑎𝑙 #𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
𝑘 #𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑉

– At that time, we mentioned that this estimate could be computed by

• Fixing 𝑉 and determining the number 𝑘 of data points inside 𝑉

– This is the approach used in kernel density estimation

• Fixing 𝑘 and determining the minimum volume 𝑉 that encompasses 𝑘
points in the dataset

– This gives rise to the k-nearest-neighbors (kNN) approach, which is the
subject of this lecture

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 3

kNN density estimation

• Approach
– In kNN we grow the volume surrounding the estimation point 𝑥 until it

encloses a total of k data points

– The density estimate then becomes

𝑝 𝑥 ≅
𝑘

𝑁𝑉
=

𝑘

𝑁𝑐𝐷𝑅𝑘
𝐷 𝑥

• where 𝑅𝑘
𝐷 𝑥 is the distance between the estimation point 𝑥 and its 𝑘-th

closest neighbor

• and 𝑐𝐷 is the volume of the unit sphere in 𝐷 dimensions, which is equal to
(Bishop, 1995)

 𝑐𝐷 =
2𝜋𝐷 2

𝐷⋅Γ 𝐷/2

• Thus 𝑐1 = 2, 𝑐2 = 𝜋, 𝑐3 = 4𝜋/3, and so on
R

Vol=R2

x
2

RN

k

P(x)

π



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 4

– In general, the estimates that can be obtained with the kNN method
are not very satisfactory

• The estimates are prone to local noise

• The method produces estimates with very heavy tails

• Since the function 𝑅𝑘 𝑥 is not differentiable, the density estimate will
have discontinuities

• The resulting density is not a true probability density since its integral
over all the sample space diverges

– These properties are illustrated in the next few slides

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 5

– To illustrate the behavior of kNN we generated several density
estimates for a bimodal Gaussian: 𝑝(𝑥) = ½𝑁(0,1) + ½𝑁(10,4)

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 6

– The performance of kNN on 2D
is illustrated in these figures

• The top figure shows the true
density, a mixture of two
bivariate Gaussians

𝑝 𝑥 =
1

2
𝑁 𝜇1, Σ1 +

1

2
𝑁 𝜇2, Σ2

𝑤𝑖𝑡ℎ
𝜇1 = 0 5 𝑇 Σ1 =

1 1
1 2

𝜇2 = 5 0 𝑇 Σ2 =
1 −1
−1 4

• The bottom figure shows the
density estimate for 𝑘 = 10
neighbors and 𝑁 = 200
examples

• In the next slide we show the
contours of the two
distributions overlapped with
the training data used to
generate the estimate

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 7

True density contours kNN density estimate contours

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 8

kNN Density Estimation as a Bayesian classifier
• The main advantage of kNN is that it leads to a very simple

approximation of the (optimal) Bayes classifier
– Assume that we have a dataset with 𝑁 examples, 𝑁𝑖 from class 𝜔𝑖, and

that we are interested in classifying an unknown sample 𝑥𝑢
• We draw a hyper-sphere of volume 𝑉 around 𝑥𝑢. Assume this volume

contains a total of 𝑘 examples, 𝑘𝑖 from class 𝜔𝑖

– We can then approximate the likelihood functions as

 𝑝 𝑥|𝜔𝑖 =
𝑘𝑖

𝑁𝑖𝑉

– Similarly, the unconditional density can be estimated as

 𝑝 𝑥 =
𝑘

𝑁𝑉

– And the priors are approximated by

 𝑃 𝜔𝑖 =
𝑁𝑖

𝑁

– Putting everything together, the Bayes classifier becomes

𝑃 𝜔𝑖|𝑥 =
𝑝 𝑥|𝜔𝑖 𝑃 𝜔𝑖

𝑝 𝑥
=

𝑘𝑖
𝑁𝑖𝑉

⋅
𝑁𝑖
𝑁

𝑘
𝑁𝑉

=
𝑘𝑖
𝑘

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 9

The kNN classifier
• Definition

– The kNN rule is a very intuitive method that classifies unlabeled examples
based on their similarity to examples in the training set

– For a given unlabeled example 𝑥𝑢 ∈ ℜ𝐷, find the 𝑘 “closest” labeled
examples in the training data set and assign 𝑥𝑢 to the class that appears
most frequently within the k-subset

– The kNN only requires
• An integer k

• A set of labeled examples (training data)

• A metric to measure “closeness”

– Example
• In the example here we have three

classes and the goal is to find a class label
for the unknown example 𝑥𝑢

• In this case we use the Euclidean distance
and a value of 𝑘 = 5 neighbors

• Of the 5 closest neighbors, 4 belong to 𝜔1
and 1 belongs to 𝜔3, so 𝑥𝑢 is assigned to 𝜔1, the predominant class

xu

3

1 2

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 10

kNN in action

• Example I
– Three-class 2D problem with non-linearly

separable, multimodal likelihoods

– We use the kNN rule (𝑘 = 5) and the
Euclidean distance

– The resulting decision boundaries and
decision regions are shown below

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 11

• Example II
– Two-dim 3-class problem with unimodal

likelihoods with a common mean; these
classes are also not linearly separable

– We used the kNN rule (𝑘 = 5), and the
Euclidean distance as a metric

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 12

kNN as a machine learning algorithm

• kNN is considered a lazy learning algorithm

– Defers data processing until it receives a request to classify unlabeled data

– Replies to a request for information by combining its stored training data

– Discards the constructed answer and any intermediate results

• This strategy is opposed to an eager learning algorithm which

– Compiles its data into a compressed description or model

• A density estimate or density parameters (statistical PR)

• A graph structure and associated weights (neural PR)

– Discards the training data after compilation of the model

– Classifies incoming patterns using the induced model, which is retained for
future requests

• Tradeoffs

– Lazy algorithms have fewer computational costs than eager algorithms
during training

– Lazy algorithms have greater storage requirements and higher
computational costs on recall

[Aha, 1997]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 13

Characteristics of the kNN classifier
• Advantages

– Analytically tractable

– Simple implementation

– Nearly optimal in the large sample limit (𝑁 → ∞)
𝑃𝐵𝑎𝑦𝑒𝑠[𝑒𝑟𝑟𝑜𝑟] < 𝑃1𝑁𝑁[𝑒𝑟𝑟𝑜𝑟] < 2𝑃𝐵𝑎𝑦𝑒𝑠[𝑒𝑟𝑟𝑜𝑟]

– Uses local information, which can yield highly adaptive behavior

– Lends itself very easily to parallel implementations

• Disadvantages
– Large storage requirements

– Computationally intensive recall

– Highly susceptible to the curse of dimensionality

• 1NN versus kNN
– The use of large values of 𝑘 has two main advantages

• Yields smoother decision regions

• Provides probabilistic information, i.e., the ratio of examples for each class gives
information about the ambiguity of the decision

– However, too large a value of 𝑘 is detrimental
• It destroys the locality of the estimation since farther examples are taken into account

• In addition, it increases the computational burden

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 14

kNN versus 1NN
1-NN 5-NN 20-NN

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 15

Optimizing storage requirements
• The basic kNN algorithm stores all the examples in the training set,

creating high storage requirements (and computational cost)
– However, the entire training set need not be stored since the examples may

contain information that is highly redundant
• A degenerate case is the earlier example with the multimodal classes, where each of the

clusters could be replaced by its mean vector, and the decision boundaries would be
practically identical

– In addition, almost all of the information that is relevant for classification purposes
is located around the decision boundaries

• A number of methods, called edited kNN, have been derived to take
advantage of this information redundancy
– One alternative [Wilson 72] is to classify all the examples in the training set and

remove those examples that are misclassified, in an attempt to separate
classification regions by removing ambiguous points

– The opposite alternative [Ritter 75], is to remove training examples that are
classified correctly, in an attempt to define the boundaries between classes by
eliminating points in the interior of the regions

• A different alternative is to reduce the training examples to a set of
prototypes that are representative of the underlying data
– The issue of selecting prototypes will be the subject of the lectures on clustering

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 16

kNN and feature weighting
• kNN is sensitive to noise since it is based on the Euclidean distance

– To illustrate this point, consider the example below

• The first axis contains all the discriminatory information

• The second axis is white noise, and does not contain classification information

– In a first case, both
axes are scaled properly

• kNN (𝑘 = 5) finds
decision boundaries
fairly close to the optimal

– In a second case, the scale
of the second axis has been
increased 100 times
• kNN is biased by the large

values of the second axis
and its performance is
very poor

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 17

Feature weighting
• The previous example illustrated the Achilles’ heel of kNN: its sensitivity to

noisy features
– As a potential solution, one may attempt to normalize each feature to 𝑁(0,1)
– Unfortunately, the Euclidean distance (see below) becomes very noisy for high

dimensional problems if only a few of the features carry the classification information

𝑑 𝑥𝑢, 𝑥 = Σ𝑘=1
𝐷 𝑥𝑢,𝑘 − 𝑥𝑘

2

• Feature weighting
– The solution is to modify the Euclidean metric by a set of weights that capture the

information content or “goodness” of each feature

𝑑𝑤 𝑥𝑢, 𝑥 = Σ𝑘=1
𝐷 𝑤𝑘 𝑥𝑢,𝑘 − 𝑥𝑘

2

– Note this is equivalent to performing a linear transformation with a diagonal matrix
• Hence, feature weighting is a special case of feature extraction where the features are not

allowed to interact
• In turn, feature subset selection can be viewed as a special case of feature weighting where the

weights can only take binary [0,1] values

– Do not confuse feature-weighting with distance-weighting, a kNN variant that weights

the contribution of each neighbor according to its distance to the unlabeled example
• Distance-weighting distorts the kNN estimate of 𝑃(𝜔𝑖|𝑥) and is NOT recommended
• Studies have shown that distance-weighting does not improve kNN classification performance

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 18

Feature weighting methods

• Feature weighting methods are divided in two groups
– Performance bias methods

• These methods find a set of weights through an iterative procedure that
uses the classifier’s performance to select the next set of weights

• These methods generally give good solutions since they can incorporate
the classifier’s feedback into the selection of weights

– Preset bias methods

• These methods use a pre-determined function that measures the
information content of each feature, e.g., mutual information and
correlation between each feature and the class label

• These methods have the advantage of executing very fast

– The issue of performance bias versus preset bias will be revisited when
we cover feature subset selection (FSS)

• In FSS the performance bias methods are called wrappers and preset bias
methods are called filters

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 19

Improving the NN search procedure
• The NN search procedure can be stated as follows

– Given a set of 𝑁 points in 𝐷-dimensional space and an unlabeled example𝑥𝑢 ∈ ℜ𝐷, find
the point that minimizes the distance to 𝑥𝑢

– The naïve approach of computing a set of 𝑁 distances, and finding the (𝑘) smallest
becomes impractical for large values of 𝑁 and 𝐷

• Two classical algorithms can be used to speed up the NN search
– Bucketing (a.k.a Elias’s algorithm) [Welch 1971]

• The space is divided into identical cells; for each
cell, the data points inside it are stored in a list

• Cells are examined in order of increasing distance from
the query point; for each cell, the distance is computed
between its internal data points and the query point

• The search terminates when the distance from the query
point to the cell exceeds the distance to the closest point already visited

– k-d trees [Bentley, 1975; Friedman et al, 1977]
• A k-d tree is a generalization of a binary search tree in high dimensions

– Each internal node in a k-d tree is associated with a hyper-rectangle and a hyper-plane orthogonal to
one of the coordinate axis

– The hyper-plane splits the hyper-rectangle into two parts, which are associated with the child nodes
– The partitioning process goes on until the # data points in the hyper-rectangle falls below some given

threshold

• k-d trees partition the sample space according to the underlying distribution of the data: the
partitioning being finer in regions where the density of data points is higher

– For a given query point, the algorithm works by first descending the tree to find the data points lying in
the cell that contains the query point

– Then it examines surrounding cells if they overlap the ball centered at the query point and the closest
data point so far

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 20

k-d tree example

Data structure (3D case) Partitioning (2D case)

