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L8: Nearest neighbors 

• Nearest neighbors density estimation 

• The k nearest neighbors classification rule 

• kNN as a lazy learner 

• Characteristics of the kNN classifier 

• Optimizing the kNN classifier 
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Non-parametric density estimation: review 

• Recap 
– As we saw in the previous lecture that the general expression for non-

parametric density estimation is 

𝑝 𝑥 ≅
𝑘

𝑁𝑉
 where  

𝑉 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑥
𝑁 𝑡𝑜𝑡𝑎𝑙 #𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠            
𝑘 #𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑉      

 

– At that time, we mentioned that this estimate could be computed by 

• Fixing 𝑉 and determining the number 𝑘 of data points inside 𝑉 

– This is the approach used in kernel density estimation 

• Fixing 𝑘 and determining the minimum volume 𝑉 that encompasses 𝑘 
points in the dataset 

– This gives rise to the k-nearest-neighbors (kNN) approach, which is the 
subject of this lecture 
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kNN density estimation 

• Approach 
– In kNN we grow the volume surrounding the estimation point 𝑥 until it 

encloses a total of k data points 

– The density estimate then becomes 

𝑝 𝑥 ≅
𝑘

𝑁𝑉
=

𝑘

𝑁𝑐𝐷𝑅𝑘
𝐷 𝑥  

 

• where 𝑅𝑘
𝐷 𝑥  is the distance between the estimation point 𝑥 and its 𝑘-th 

closest neighbor 

• and 𝑐𝐷 is the volume of the unit sphere in 𝐷 dimensions, which is equal to 
(Bishop, 1995) 

 𝑐𝐷 =
2𝜋𝐷 2 

𝐷⋅Γ 𝐷/2
 

• Thus 𝑐1 = 2, 𝑐2 = 𝜋, 𝑐3 = 4𝜋/3, and so on  
R 

Vol=R2 
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2
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– In general, the estimates that can be obtained with the kNN method 
are not very satisfactory 

• The estimates are prone to local noise 

• The method produces estimates with very heavy tails 

• Since the  function 𝑅𝑘 𝑥  is not differentiable, the density estimate will 
have discontinuities  

• The resulting density is not a true probability density since its integral 
over all the sample space diverges  

– These properties are illustrated in the next few slides 
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– To illustrate the behavior of kNN we generated several density 
estimates for a bimodal Gaussian: 𝑝(𝑥) = ½𝑁(0,1) + ½𝑁(10,4) 
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– The performance of kNN on 2D 
is illustrated in these figures 

• The top figure shows the true 
density, a mixture of two 
bivariate Gaussians 

𝑝 𝑥 =
1

2
𝑁 𝜇1, Σ1 +

1

2
𝑁 𝜇2, Σ2  

𝑤𝑖𝑡ℎ  
𝜇1 = 0 5 𝑇 Σ1 =

1 1
1 2

𝜇2 = 5 0 𝑇 Σ2 =
1 −1
−1 4

 

• The bottom figure shows the 
density estimate for 𝑘 = 10 
neighbors and 𝑁 = 200 
examples 

• In the next slide we show the 
contours of the two 
distributions overlapped with 
the training data  used to 
generate the estimate 
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True density contours kNN density estimate contours 
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kNN Density Estimation as a Bayesian classifier 
• The main advantage of kNN is that it leads to a very simple 

approximation of the (optimal) Bayes classifier  
– Assume that we have a dataset with 𝑁 examples, 𝑁𝑖 from class 𝜔𝑖, and 

that we are interested in classifying an unknown sample 𝑥𝑢  
• We draw a hyper-sphere of volume 𝑉 around 𝑥𝑢.  Assume this volume 

contains a total of 𝑘 examples, 𝑘𝑖 from class 𝜔𝑖 

– We can then approximate the likelihood functions as 

 𝑝 𝑥|𝜔𝑖 =
𝑘𝑖

𝑁𝑖𝑉
 

– Similarly, the unconditional density can be estimated as 

 𝑝 𝑥 =
𝑘

𝑁𝑉
 

– And the priors are approximated by 

 𝑃 𝜔𝑖 =
𝑁𝑖

𝑁
 

– Putting everything together, the Bayes classifier becomes 

𝑃 𝜔𝑖|𝑥 =
𝑝 𝑥|𝜔𝑖 𝑃 𝜔𝑖

𝑝 𝑥
=

𝑘𝑖
𝑁𝑖𝑉

⋅
𝑁𝑖
𝑁

𝑘
𝑁𝑉

=
𝑘𝑖
𝑘
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The kNN classifier 
• Definition 

– The kNN rule is a very intuitive method that classifies unlabeled examples 
based on their similarity to examples in the training set 

– For a given unlabeled example 𝑥𝑢 ∈ ℜ𝐷, find the 𝑘 “closest” labeled 
examples in the training data set and assign 𝑥𝑢 to the class that appears 
most frequently within the k-subset 

– The kNN only requires 
• An integer k 

• A set of labeled examples (training data) 

• A metric to measure “closeness” 

– Example 
• In the example here we have three  

classes and the goal is to find a class label  
for the unknown example 𝑥𝑢 

• In this case we use the Euclidean distance  
and a value of 𝑘 = 5 neighbors 

• Of the 5 closest neighbors, 4 belong to 𝜔1 
and 1 belongs to 𝜔3, so 𝑥𝑢 is assigned to 𝜔1, the predominant class 

xu 

3 

1 2 
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kNN in action 

• Example I 
– Three-class 2D problem with non-linearly 

separable, multimodal likelihoods  

– We use the kNN rule (𝑘 =  5) and the 
Euclidean distance 

– The resulting decision boundaries and 
decision regions are shown below 
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• Example II 
– Two-dim 3-class problem with unimodal 

likelihoods with a common mean; these 
classes are also not linearly separable 

– We used the kNN rule (𝑘 =  5), and the 
Euclidean distance as a metric 
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kNN as a machine learning algorithm  

• kNN is considered a lazy learning algorithm 

– Defers data processing until it receives a request to classify unlabeled data 

– Replies to a request for information by combining its stored training data 

– Discards the constructed answer and any intermediate results 

• This strategy is opposed to an eager learning algorithm which  

– Compiles its data into a compressed description or model 

• A density estimate or density parameters (statistical PR) 

• A graph structure and associated weights (neural PR) 

– Discards the training data after compilation of the model 

– Classifies incoming patterns using the induced model, which is retained for 
future requests 

• Tradeoffs 

– Lazy algorithms have fewer computational costs than eager algorithms 
during training 

– Lazy algorithms have greater storage requirements and higher 
computational costs on recall 

 
[Aha, 1997] 
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Characteristics of the kNN classifier 
• Advantages 

– Analytically tractable 

– Simple implementation 

– Nearly optimal in the large sample limit (𝑁 → ∞) 
𝑃𝐵𝑎𝑦𝑒𝑠[𝑒𝑟𝑟𝑜𝑟]  < 𝑃1𝑁𝑁[𝑒𝑟𝑟𝑜𝑟] < 2𝑃𝐵𝑎𝑦𝑒𝑠[𝑒𝑟𝑟𝑜𝑟] 

– Uses local information, which can yield highly adaptive behavior 

– Lends itself very easily to parallel implementations 

• Disadvantages 
– Large storage requirements 

– Computationally intensive recall 

– Highly susceptible to the curse of dimensionality 

• 1NN versus kNN 
– The use of large values of 𝑘 has two main advantages 

• Yields smoother decision regions 

• Provides probabilistic information, i.e., the ratio of examples for each class gives 
information about the ambiguity of the decision 

– However, too large a value of 𝑘 is detrimental 
• It destroys the locality of the estimation since farther examples are taken into account 

• In addition, it increases the computational burden 
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kNN versus 1NN 
1-NN 5-NN 20-NN 
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Optimizing storage requirements 
• The basic kNN algorithm stores all the examples in the training set, 

creating high storage requirements (and computational cost) 
– However, the entire training set need not be stored since the examples may 

contain information that is highly redundant 
• A degenerate case is the earlier example with the multimodal classes, where each of the 

clusters could be replaced by its mean vector, and the decision boundaries would be 
practically identical 

– In addition, almost all of the information that is relevant for classification purposes 
is located around the decision boundaries 

• A number of methods, called edited kNN, have been derived to take 
advantage of this information redundancy 
– One alternative [Wilson 72] is to classify all the examples in the training set and 

remove those examples that are misclassified, in an attempt to separate 
classification regions by removing ambiguous points 

– The opposite alternative [Ritter 75], is to remove training examples that are 
classified correctly, in an attempt to define the boundaries between classes by 
eliminating points in the interior of the regions 

• A different alternative is to reduce the training examples to a set of 
prototypes that are representative of the underlying data 
– The issue of selecting prototypes will be the subject of the lectures on clustering 
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kNN and feature weighting 
• kNN is sensitive to noise since it is based on the Euclidean distance 

– To illustrate this point, consider the example below 

• The first axis contains all the discriminatory information 

• The second axis is white noise, and does not contain classification information 

 

– In a first case, both  
axes are scaled properly 

• kNN (𝑘 = 5) finds  
decision boundaries  
fairly close to the optimal 

 

 

– In a second case, the scale  
of the second axis has been  
increased 100 times  
• kNN is biased by the large  

values of the second axis  
and its performance is  
very poor  
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Feature weighting 
• The previous example illustrated the Achilles’ heel of kNN: its sensitivity to 

noisy features 
– As a potential solution, one may attempt to normalize each feature to 𝑁(0,1) 
– Unfortunately, the Euclidean distance (see below) becomes very noisy for high 

dimensional problems if only a few of the features carry the classification information 

𝑑 𝑥𝑢, 𝑥 = Σ𝑘=1
𝐷 𝑥𝑢,𝑘 − 𝑥𝑘  

2
 

• Feature weighting 
– The solution is to modify the Euclidean metric by a set of weights that capture the 

information content or “goodness” of each feature 

𝑑𝑤 𝑥𝑢, 𝑥 = Σ𝑘=1
𝐷 𝑤𝑘 𝑥𝑢,𝑘 − 𝑥𝑘  

2
 

– Note this is equivalent to performing a linear transformation with a diagonal matrix 
• Hence, feature weighting is a special case of feature extraction where the features are not 

allowed to interact 
• In turn, feature subset selection can be viewed as a special case of feature weighting where the 

weights can only take binary [0,1] values 

 
– Do not confuse feature-weighting with distance-weighting, a kNN variant that weights 

the contribution of each neighbor according to its distance to the unlabeled example 
• Distance-weighting distorts the kNN estimate of 𝑃(𝜔𝑖|𝑥) and is NOT recommended 
• Studies have shown that distance-weighting does not improve kNN classification performance 
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Feature weighting methods 

• Feature weighting methods are divided in two groups 
– Performance bias methods 

• These methods find a set of weights through an iterative procedure that 
uses the classifier’s performance to select the next set of weights 

• These methods generally give good solutions since they can incorporate 
the classifier’s feedback into the selection of weights 

– Preset bias methods 

• These methods use a pre-determined function that measures the 
information content of each feature, e.g., mutual information and 
correlation between each feature and the class label 

• These methods have the advantage of executing very fast 

 

– The issue of performance bias versus preset bias will be revisited when 
we cover feature subset selection (FSS) 

• In FSS the performance bias methods are called wrappers and preset bias 
methods are called filters 
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Improving the NN search procedure 
• The NN search procedure can be stated as follows 

– Given a set of 𝑁 points in 𝐷-dimensional space and an unlabeled example𝑥𝑢 ∈ ℜ𝐷, find 
the point that minimizes the distance to 𝑥𝑢 

– The naïve approach of computing a set of 𝑁 distances, and finding the (𝑘) smallest 
becomes impractical for large values of 𝑁 and 𝐷 

• Two classical algorithms can be used to speed up the NN search 
– Bucketing (a.k.a Elias’s algorithm) [Welch 1971] 

• The space is divided into identical cells; for each  
cell, the data points inside it are stored in a list  

• Cells are examined in order of increasing distance from  
the query point; for each cell, the distance is computed  
between its internal data points and the query point 

• The search terminates when the distance from the query  
point to the cell exceeds the distance to the closest point already visited 

– k-d trees [Bentley, 1975; Friedman et al, 1977] 
• A k-d tree is a generalization of a binary search tree in high dimensions 

– Each internal node in a k-d tree is associated with a hyper-rectangle and a hyper-plane orthogonal to 
one of the coordinate axis 

– The hyper-plane splits the hyper-rectangle into two parts, which are associated with the child nodes 
– The partitioning process goes on until the # data points in the hyper-rectangle falls below some given 

threshold 

• k-d trees partition the sample space according to the underlying distribution of the data: the 
partitioning being finer in regions where the density of data points is higher 

– For a given query point, the algorithm works by first descending the tree to find the data points lying in 
the cell that contains the query point 

– Then it examines surrounding cells if they overlap the ball centered at the query point and the closest 
data point so far 
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k-d tree example 

Data structure (3D case) Partitioning (2D case) 




