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L7: Kernel density estimation 

• Non-parametric density estimation 

• Histograms 

• Parzen windows 

• Smooth kernels 

• Product kernel density estimation 

• The naïve Bayes classifier 
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Non-parametric density estimation 

• In the previous two lectures we have assumed that either 
– The likelihoods 𝑝(𝑥|𝜔𝑖) were known (LRT), or 

– At least their parametric form was known (parameter estimation) 

• The methods that will be presented in the next two lectures 
do not afford such luxuries 
– Instead, they attempt to estimate the density directly from the data 

without assuming a particular form for the underlying distribution 

– Sounds challenging? You bet! 
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The histogram 

• The simplest form of non-parametric DE is the histogram 
– Divide the sample space into a number of bins and approximate the 

density at the center of each bin by the fraction of points in the 
training data that fall into the corresponding bin 

𝑝𝐻 𝑥 =
1

𝑁

# 𝑜𝑓 𝑥(𝑘  𝑖𝑛 𝑠𝑎𝑚𝑒 𝑏𝑖𝑛 𝑎𝑠 𝑥

𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑏𝑖𝑛
 

– The histogram requires two “parameters” to be defined: bin width and 
starting position of the first bin 
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• The histogram is a very simple form of density estimation, 
but has several drawbacks 
– The density estimate depends on the starting position of the bins 

• For multivariate data, the density estimate is also affected by the 
orientation of the bins 

– The discontinuities of the estimate are not due to the underlying 
density; they are only an artifact of the chosen bin locations 

• These discontinuities make it very difficult (to the naïve analyst) to grasp 
the structure of the data 

– A much more serious problem is the curse of dimensionality, since the 
number of bins grows exponentially with the number of dimensions 

• In high dimensions we would require a very large number of examples or 
else most of the bins would be empty 

– These issues make the histogram unsuitable for most practical 
applications except for quick visualizations in one or two dimensions 

– Therefore, we will not spend more time looking at the histogram 
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Non-parametric DE, general formulation 
• Let us return to the basic definition of probability to get a solid 

idea of what we are trying to accomplish 
– The probability that a vector 𝑥, drawn from a distribution 𝑝(𝑥), will fall in 

a given region ℜ of the sample space is 

𝑃 =  𝑝 𝑥′ 𝑑𝑥′

ℜ

 

– Suppose now that 𝑁 vectors 𝑥(1, 𝑥(2, … 𝑥(𝑁  are drawn from the 
distribution; the probability that 𝑘 of these 𝑁 vectors fall in ℜ is given by 
the binomial distribution 

𝑃 𝑘 =
𝑁

𝑘
𝑃𝑘 1 − 𝑃 𝑁−𝑘 

– It can be shown (from the properties of the binomial p.m.f.) that the mean 
and variance of the ratio 𝑘/𝑁 are 

𝐸
𝑘

𝑁
= 𝑃    and    𝑣𝑎𝑟

𝑘

N
= 𝐸

𝑘

𝑁
− 𝑃

2
=

𝑃 1−𝑃

𝑁
 

– Therefore, as 𝑁 → ∞ the distribution becomes sharper (the variance gets 
smaller), so we can expect that a good estimate of the probability 𝑃 can 
be obtained from the mean fraction of the points that fall within ℜ 

𝑃 ≅
𝑘

𝑁
 [Bishop, 1995] 
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– On the other hand, if we assume that ℜ is so small that 𝑝(𝑥) does not 
vary appreciably within it, then 

 𝑝 𝑥′ 𝑑𝑥′ ≅ 𝑝 𝑥 𝑉
ℜ

 

• where 𝑉 is the volume enclosed by region ℜ 

– Merging with the previous result we obtain 

𝑃 =  𝑝 𝑥′ 𝑑𝑥′ ≅ 𝑝 𝑥 𝑉
ℜ

𝑃 ≅
𝑘

𝑁
                                     

 ⇒ 𝑝 𝑥 ≅
𝑘

𝑁𝑉
  

– This estimate becomes more accurate as we increase the number of 
sample points 𝑁 and shrink the volume 𝑉 

• In practice the total number of examples is fixed 
– To improve the accuracy of the estimate 𝑝(𝑥) we could let 𝑉 approach 

zero but then ℜ would become so small that it would enclose no examples 

– This means that, in practice, we will have to find a compromise for 𝑉 
• Large enough to include enough examples within ℜ 

• Small enough to support the assumption that 𝑝(𝑥) is constant within ℜ 
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– In conclusion, the general expression for non-parametric density 
estimation becomes 

𝑝 𝑥 ≅
𝑘

𝑁𝑉
 where  

𝑉 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑥
𝑁 𝑡𝑜𝑡𝑎𝑙 #𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠            
𝑘 #𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑉      

 

– When applying this result to practical density estimation problems, 
two basic approaches can be adopted 

• We can fix 𝑉 and determine 𝑘 from the data. This leads to kernel density 
estimation (KDE), the subject of this lecture 

• We can fix 𝑘 and determine 𝑉 from the data. This gives rise to the k-
nearest-neighbor (kNN) approach, which we cover in the next lecture 

– It can be shown that both kNN and KDE converge to the true 
probability density as 𝑁 → ∞, provided that 𝑉 shrinks with 𝑁, and 
that 𝑘 grows with 𝑁 appropriately 
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Parzen windows 

• Problem formulation 
– Assume that the region ℜ that encloses  

the 𝑘 examples is a hypercube with sides  
of length ℎ centered at 𝑥 

• Then its volume is given by 𝑉 = ℎ𝐷,  
where 𝐷 is the number of dimensions 

 

– To find the number of examples that  
fall within this region we define a kernel function 𝐾(𝑢) 

𝐾 𝑢 =  
1 𝑢𝑗 < 1 2   ∀𝑗 = 1. . . 𝐷

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
 

• This kernel, which corresponds to a unit hypercube centered at the origin, 
is known as a Parzen window or the naïve estimator 

• The quantity 𝐾((𝑥 − 𝑥(𝑛)/ℎ) is then equal to unity if 𝑥(𝑛 is inside a 
hypercube of side ℎ centered on 𝑥, and zero otherwise 

x 

h 

h 

h 

[Bishop, 1995] 
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– The total number of points inside the 
hypercube is then 

𝑘 = ∑𝑛=1
𝑁 𝐾

𝑥 − 𝑥(𝑛

ℎ
 

Substituting back into the expression for 
the density estimate 

 𝑝𝐾𝐷𝐸 𝑥 =
1

𝑁ℎ𝐷
∑𝑛=1
𝑁 𝐾

𝑥−𝑥(𝑛

ℎ
 

 

– Notice how the Parzen window 
estimate resembles the histogram, 
with the exception that the bin 
locations are determined by the data 
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– To understand the role of the kernel function we compute the 
expectation of the estimate 𝑝𝐾𝐷𝐸 𝑥  

 𝐸 𝑝𝐾𝐷𝐸 𝑥 =
1

𝑁ℎ𝐷
∑𝑛=1
𝑁 𝐸 𝐾

𝑥−𝑥(𝑛

ℎ
 

                                     =
1

ℎ𝐷
𝐸 𝐾

𝑥 − 𝑥(𝑛

ℎ
=

1

ℎ𝐷
 𝐾

𝑥 − 𝑥(𝑛

ℎ
𝑝 𝑥′ 𝑑𝑥′ 

• where we have assumed that vectors 𝑥(𝑛 are drawn independently from 
the true density 𝑝(𝑥) 

– We can see that the expectation of 𝑝𝐾𝐷𝐸 𝑥  is a convolution of the 
true density 𝑝(𝑥) with the kernel function 
• Thus, the kernel width ℎ plays the role of a smoothing parameter: the 

wider ℎ is, the smoother the estimate 𝑝𝐾𝐷𝐸 𝑥  

– For ℎ → 0, the kernel approaches a Dirac delta function and 𝑝𝐾𝐷𝐸 𝑥  
approaches the true density 
• However, in practice we have a finite number of points, so ℎ cannot be 

made arbitrarily small, since the density estimate 𝑝𝐾𝐷𝐸 𝑥  would then 
degenerate to a set of impulses located at the training data points 
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• Exercise 
– Given dataset 𝑋 = 4, 5, 5, 6, 12, 14, 15, 15, 16, 17 , use Parzen 

windows to estimate the density 𝑝(𝑥) at 𝑦 = 3,10,15; use ℎ = 4 

– Solution 

• Let’s first draw the dataset to get an idea of the data 

 

 

 

• Let’s now estimate 𝑝(𝑦 = 3) 

𝑝 𝑦 = 3 =
1

𝑁ℎ𝐷
∑𝑛=1

𝑁 𝐾
𝑥 − 𝑥(𝑛

ℎ
=

1

10 × 41
𝐾

3 − 4

4
+ 𝐾

3 − 5

4
+⋯𝐾

3 − 17

4
= 0.0025 

• Similarly 

• 𝑝 𝑦 = 10 =
1

10×41
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0 

• 𝑝 𝑦 = 15 =
1

10×41
0 + 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 0 = 0.1 
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Smooth kernels 

• The Parzen window has several drawbacks 
– It yields density estimates that have discontinuities 

– It weights equally all points 𝑥𝑖, regardless of their distance to the 
estimation point 𝑥 

• For these reasons, the Parzen window is commonly replaced 
with a smooth kernel function 𝐾(𝑢) 

 𝐾 𝑥 𝑑𝑥
𝑅𝐷

= 1  

– Usually, but not always, 𝐾(𝑢) will be a radially symmetric and 

unimodal pdf, such as the Gaussian 𝐾 𝑥 = 2𝜋 −𝐷/2𝑒−
1

2
𝑥𝑇𝑥 

– Which leads to the density estimate 

 𝑝𝐾𝐷𝐸 𝑥 =
1

𝑁ℎ𝐷
∑𝑛=1
𝑁 𝐾

𝑥−𝑥(𝑘

ℎ
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• Interpretation 
– Just as the Parzen window estimate can be seen as a sum of boxes 

centered at the data, the smooth kernel estimate is a sum of “bumps” 

– The kernel function determines the shape of the bumps 

– The parameter ℎ, also called the smoothing parameter or bandwidth, 
determines their width 
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• The problem of choosing 𝒉 is crucial in density estimation 
– A large ℎ will over-smooth the DE and mask the structure of the data 

– A small ℎ will yield a DE that is spiky and very hard to interpret 
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– We would like to find a value of ℎ that minimizes the error between 
the estimated density and the true density 

• A natural measure is the MSE at the estimation point 𝑥, defined by 

𝐸 𝑝𝐾𝐷𝐸 𝑥 − 𝑝 𝑥 2 = 𝐸 𝑝𝐾𝐷𝐸 𝑥 − 𝑝 𝑥 2

𝑏𝑖𝑎𝑠

+ 𝑣𝑎𝑟 𝑝𝐾𝐷𝐸 𝑥
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 

– This expression is an example of the bias-variance tradeoff that we 
saw in an earlier lecture: the bias can be reduced at the expense of 
the variance, and vice versa 

• The bias of an estimate is the systematic error incurred in the estimation 

• The variance of an estimate is the random error incurred in the estimation 
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– The bias-variance dilemma applied to bandwidth selection simply 
means that 

• A large bandwidth will reduce the differences among the estimates of 
𝑝𝐾𝐷𝐸 𝑥  for different data sets (the variance), but it will increase the bias 
of 𝑝𝐾𝐷𝐸 𝑥  with respect to the true density 𝑝(𝑥) 

• A small bandwidth will reduce the bias of 𝑝𝐾𝐷𝐸 𝑥 , at the expense of a 
larger variance in the estimates 𝑝𝐾𝐷𝐸 𝑥   
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Bandwidth selection methods, univariate case 

• Subjective choice 
– The natural way for choosing ℎ is to plot out several curves and choose 

the estimate that best matches one’s prior (subjective) ideas 

– However, this method is not practical in pattern recognition since we 
typically have high-dimensional data 

• Reference to a standard distribution 
– Assume a standard density function and find the value of the 

bandwidth that minimizes the integral of the square error (MISE) 

ℎ𝑀𝐼𝑆𝐸 = argmin 𝐸  𝑝𝐾𝐷𝐸 𝑥 − 𝑝 𝑥 2𝑑𝑥  

– If we assume that the true distribution is Gaussian and we use a 
Gaussian kernel, it can be shown that the optimal value of ℎ is 

ℎ∗ = 1.06𝜎𝑁−1 5  

• where 𝜎 is the sample standard deviation and 𝑁 is the number of training 
examples 
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– Better results can be obtained by 

• Using a robust measure of the spread instead of the sample variance, and  

• Reducing the coefficient 1.06 to better cope with multimodal densities 

• The optimal bandwidth then becomes 

ℎ∗ = 0.9𝐴𝑁−1 5  where 𝐴 = min 𝜎,
𝐼𝑄𝑅 

1.34
 

– IQR is the interquartile range, a robust estimate of the spread 

• IQR is the difference between the 75th percentile (𝑄3) and the 25th 
percentile (𝑄1): 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

• A percentile rank is the proportion of examples in a distribution that a 
specific example is greater than or equal to 
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• Maximum likelihood cross-validation 
– The ML estimate of ℎ is degenerate since it yields ℎ𝑀𝐿 = 0, a density 

estimate with Dirac delta functions at each training data point 

– A practical alternative is to maximize the “pseudo-likelihood” 
computed using leave-one-out cross-validation 

ℎ∗ = argmax
1

𝑁
∑𝑛=1
𝑁 𝑙𝑜𝑔𝑝−𝑛 𝑥(𝑛  

𝑤ℎ𝑒𝑟𝑒 𝑝−𝑛 𝑥(𝑛 =
1

𝑁 − 1 ℎ
 𝐾

𝑥(𝑛 − 𝑥(𝑚

ℎ

𝑁

𝑚=1
𝑚≠n

 

[Silverman, 1986] 
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Multivariate density estimation 
• For the multivariate case, the KDE is 

𝑝𝐾𝐷𝐸 𝑥 =
1

𝑁ℎ𝐷
∑𝑛=1
𝑁 𝐾

𝑥−𝑥(𝑛

ℎ
  

– Notice that the bandwidth ℎ is the same for all the axes, so this density 
estimate will be weight all the axis equally 

– If one or several of the features has larger spread than the others, we 
should use a vector of smoothing parameters or even a full covariance 
matrix, which complicates the procedure 

• There are two basic alternatives to solve the scaling problem 
without having to use a more general KDE 
– Pre-scaling each axis (normalize to unit variance, for instance) 

– Pre-whitening the data (linearly transform so Σ = 𝐼), estimate the density, 
and then transform back [Fukunaga] 

• The whitening transform is 𝑦 = Λ−1/2𝑀𝑇𝑥,  
where Λ and 𝑀 are the eigenvalue and  
eigenvector matrices of Σ 

• Fukunaga’s method is equivalent to  
using a hyper-ellipsoidal kernel  
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Product kernels 

• A good alternative for multivariate KDE is the product kernel 

𝑝𝑃𝐾𝐷𝐸 𝑥 =
1

𝑁
∑𝑖=1
𝑁 𝐾 𝑥, 𝑥(𝑛, ℎ1, … ℎ𝐷   

𝑤ℎ𝑒𝑟𝑒  𝐾 𝑥, 𝑥(𝑛, ℎ1, … ℎ𝐷 =
1

ℎ1…ℎ𝐷
 𝐾𝑑

𝑥𝑑−𝑥𝑑
(𝑛

ℎ𝑑

𝐷
𝑑=1   

– The product kernel consists of the product of one-dimensional kernels 
• Typically the same kernel function is used in each dimension (𝐾𝑑(𝑥) =
𝐾(𝑥)), and only the bandwidths are allowed to differ 

• Bandwidth selection can then be performed with any of the methods 
presented for univariate density estimation 

– Note that although 𝐾 𝑥, 𝑥(𝑛, ℎ1, … ℎ𝐷  uses kernel independence, this 
does not imply we assume the features are independent 
• If we assumed feature independence, the DE would have the expression 

𝑝𝐹𝐸𝐴𝑇−𝐼𝑁𝐷 𝑥 =  
1

𝑁ℎ𝐷
𝐷
𝑑=1 ∑𝑖=1

𝑁 𝐾𝑑
𝑥𝑑−𝑥𝑑

(𝑛

ℎ𝑑
  

• Notice how the order of the summation and product are reversed 
compared to the product kernel 
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Example I 
– This example shows the product KDE of a bivariate unimodal Gaussian 

• 100 data points were drawn from the distribution  

• The figures show the true density (left) and the estimates using 

ℎ = 1.06𝜎𝑁−1/5 (middle) and ℎ = 0.9𝐴𝑁−1/5 (right) 
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Example II 
– This example shows the product KDE of a bivariate bimodal Gaussian 

• 100 data points were drawn from the distribution  

• The figures show the true density (left) and the estimates using 

ℎ = 1.06𝜎𝑁−1/5 (middle) and ℎ = 0.9𝐴𝑁−1/5 (right) 
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Naïve Bayes classifier 
• Recall that the Bayes classifier is given by the following family of DFs 

𝑐ℎ𝑜𝑠𝑒 𝜔𝑖  𝑖𝑓 𝑔𝑖 𝑥 > 𝑔𝑗 𝑥 ∀𝑗 ≠ 𝑖 𝑤ℎ𝑒𝑟𝑒 𝑔𝑖 𝑥 = 𝑃 𝜔𝑖|𝑥  

– Using Bayes rule, these discriminant functions can be expressed as 
𝑔𝑖 𝑥 = 𝑃 𝜔𝑖|𝑥 ∝ 𝑝 𝑥 𝜔𝑖 𝑃 𝜔𝑖  

• where 𝑃(𝜔𝑖) is our prior knowledge and p(𝑥|𝜔𝑖) is obtained through DE 

– Although the DE methods presented in this lecture allow us to estimate the multivariate 
likelihood 𝑝(𝑥|𝜔𝑖), the curse of dimensionality makes it a very tough problem! 

• One highly practical simplification is the Naïve Bayes classifier 

– The Naïve Bayes classifier assumes that features are class-conditionally independent 

𝑝 𝑥|𝜔𝑖 =  𝑝 𝑥𝑑|𝜔𝑖
𝐷
𝑑=1   

• This assumption is not as rigid as assuming independent features 𝑝 𝑥 =  𝑝(𝑥𝑑
𝐷
𝑑=1 ) 

– Merging this expression into the DF yields the decision rule for the Naïve Bayes classifier 

𝑔𝑖,𝑁𝐵 𝑥 = 𝑃 𝜔𝑖  𝑝(𝑥𝑑|𝜔𝑖
𝐷
𝑑=1 )  

– The main advantage of the NB classifier is that we only need to compute the univariate 
𝑝 𝑥𝑑|𝜔𝑖 , which is much easier than estimating the multivariate 𝑝 𝑥 𝜔𝑖  

– Despite its simplicity, the Naïve Bayes has been shown to have comparable performance 
to artificial neural networks and decision tree learning in some domains 
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• Class-conditional independence vs. independence 
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𝐷
𝑑=1   𝑝 𝑥|𝜔𝑖 =  𝑝 𝑥𝑑|𝜔𝑖

𝐷
𝑑=1   

𝑝 𝑥 ≠  𝑝 𝑥𝑑
𝐷
𝑑=1   

𝑝 𝑥|𝜔𝑖 =  𝑝 𝑥𝑑|𝜔𝑖
𝐷
𝑑=1   

𝑝 𝑥 ≅  𝑝 𝑥𝑑
𝐷
𝑑=1   




