L7: Kernel density estimation

Non-parametric density estimation
Histograms
Parzen windows
Smooth kernels
Product kernel density estimation
The naïve Bayes classifier

Non-parametric density estimation

In the previous two lectures we have assumed that either

- The likelihoods $p\left(x \mid \omega_{i}\right)$ were known (LRT), or
- At least their parametric form was known (parameter estimation)

The methods that will be presented in the next two lectures do not afford such luxuries

- Instead, they attempt to estimate the density directly from the data without assuming a particular form for the underlying distribution
- Sounds challenging? You bet!
 density estimation

The histogram

The simplest form of non-parametric DE is the histogram

- Divide the sample space into a number of bins and approximate the density at the center of each bin by the fraction of points in the training data that fall into the corresponding bin

$$
p_{H}(x)=\frac{1}{N} \frac{\left[\# \text { of } x^{(k} \text { in same bin as } x\right]}{[\text { width of bin }]}
$$

- The histogram requires two "parameters" to be defined: bin width and starting position of the first bin

The histogram is a very simple form of density estimation, but has several drawbacks

- The density estimate depends on the starting position of the bins
- For multivariate data, the density estimate is also affected by the orientation of the bins
- The discontinuities of the estimate are not due to the underlying density; they are only an artifact of the chosen bin locations
- These discontinuities make it very difficult (to the naïve analyst) to grasp the structure of the data
- A much more serious problem is the curse of dimensionality, since the number of bins grows exponentially with the number of dimensions
- In high dimensions we would require a very large number of examples or else most of the bins would be empty
- These issues make the histogram unsuitable for most practical applications except for quick visualizations in one or two dimensions
- Therefore, we will not spend more time looking at the histogram

Non-parametric DE, general formulation

Let us return to the basic definition of probability to get a solid idea of what we are trying to accomplish

- The probability that a vector x, drawn from a distribution $p(x)$, will fall in a given region \mathfrak{R} of the sample space is

$$
P=\int_{\mathfrak{R}} p\left(x^{\prime}\right) d x^{\prime}
$$

- Suppose now that N vectors $\left\{x^{(1}, x^{(2}, \ldots x^{(N}\right\}$ are drawn from the distribution; the probability that k of these N vectors fall in \Re is given by the binomial distribution

$$
P(k)=\binom{N}{k} P^{k}(1-P)^{N-k}
$$

- It can be shown (from the properties of the binomial p.m.f.) that the mean and variance of the ratio k / N are

$$
E\left[\frac{k}{N}\right]=P \quad \text { and } \quad \operatorname{var}\left[\frac{k}{N}\right]=E\left[\left(\frac{k}{N}-P\right)^{2}\right]=\frac{P(1-P)}{N}
$$

- Therefore, as $N \rightarrow \infty$ the distribution becomes sharper (the variance gets smaller), so we can expect that a good estimate of the probability P can be obtained from the mean fraction of the points that fall within \Re

$$
\begin{equation*}
P \cong \frac{k}{N} \tag{Bishop,1995}
\end{equation*}
$$

- On the other hand, if we assume that \Re is so small that $p(x)$ does not vary appreciably within it, then

$$
\int_{\mathfrak{R}} p\left(x^{\prime}\right) d x^{\prime} \cong p(x) V
$$

- where V is the volume enclosed by region \Re
- Merging with the previous result we obtain

$$
\left.\begin{array}{l}
P=\int_{\mathfrak{R}} p\left(x^{\prime}\right) d x^{\prime} \cong p(x) V \\
P \cong \frac{k}{N}
\end{array}\right\} \Rightarrow p(x) \cong \frac{k}{N V}
$$

- This estimate becomes more accurate as we increase the number of sample points N and shrink the volume V
In practice the total number of examples is fixed
- To improve the accuracy of the estimate $p(x)$ we could let V approach zero but then \Re would become so small that it would enclose no examples
- This means that, in practice, we will have to find a compromise for V
- Large enough to include enough examples within \Re
- Small enough to support the assumption that $p(x)$ is constant within \Re
- In conclusion, the general expression for non-parametric density estimation becomes

$$
p(x) \cong \frac{k}{N V} \text { where } \begin{cases}V & \text { volume surrounding } x \\ N & \text { total \#examples } \\ k & \text { \#examples inside } V\end{cases}
$$

- When applying this result to practical density estimation problems, two basic approaches can be adopted
- We can fix V and determine k from the data. This leads to kernel density estimation (KDE), the subject of this lecture
- We can fix k and determine V from the data. This gives rise to the \mathbf{k} -nearest-neighbor (kNN) approach, which we cover in the next lecture
- It can be shown that both kNN and KDE converge to the true probability density as $N \rightarrow \infty$, provided that V shrinks with N, and that k grows with N appropriately

Parzen windows

Problem formulation

- Assume that the region \mathfrak{R} that encloses the k examples is a hypercube with sides of length h centered at x
- Then its volume is given by $V=h^{D}$, where D is the number of dimensions

- To find the number of examples that fall within this region we define a kernel function $K(u)$

$$
K(u)= \begin{cases}1 & \left|u_{j}\right|<1 / 2 \quad \forall j=1 \ldots D \\ 0 & \text { otherwise }\end{cases}
$$

- This kernel, which corresponds to a unit hypercube centered at the origin, is known as a Parzen window or the naïve estimator
- The quantity $K\left(\left(x-x^{(n}\right) / h\right)$ is then equal to unity if $x^{(n}$ is inside a hypercube of side h centered on x, and zero otherwise
- The total number of points inside the hypercube is then

$$
k=\sum_{n=1}^{N} K\left(\frac{x-x^{(n}}{h}\right)
$$

Substituting back into the expression for the density estimate

$$
p_{K D E}(x)=\frac{1}{N h^{D}} \sum_{n=1}^{N} K\left(\frac{x-x^{(n}}{h}\right)
$$

- Notice how the Parzen window estimate resembles the histogram, with the exception that the bin locations are determined by the data

- To understand the role of the kernel function we compute the expectation of the estimate $p_{K D E}(x)$

$$
\begin{aligned}
& E\left[p_{K D E}(x)\right]=\frac{1}{N h^{D}} \sum_{n=1}^{N} E\left[K\left(\frac{x-x^{(n}}{h}\right)\right] \\
& \quad=\frac{1}{h^{D}} E\left[K\left(\frac{x-x^{(n}}{h}\right)\right]=\frac{1}{h^{D}} \int^{n} K\left(\frac{x-x^{(n}}{h}\right) p\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

- where we have assumed that vectors $x^{(n}$ are drawn independently from the true density $p(x)$
- We can see that the expectation of $p_{K D E}(x)$ is a convolution of the true density $p(x)$ with the kernel function
- Thus, the kernel width h plays the role of a smoothing parameter: the wider h is, the smoother the estimate $p_{K D E}(x)$
- For $h \rightarrow 0$, the kernel approaches a Dirac delta function and $p_{K D E}(x)$ approaches the true density
- However, in practice we have a finite number of points, so h cannot be made arbitrarily small, since the density estimate $p_{K D E}(x)$ would then degenerate to a set of impulses located at the training data points

Exercise

- Given dataset $X=\{4,5,5,6,12,14,15,15,16,17\}$, use Parzen windows to estimate the density $p(x)$ at $y=3,10,15$; use $h=4$
- Solution
- Let's first draw the dataset to get an idea of the data

- Let's now estimate $p(y=3)$
$p(y=3)=\frac{1}{N h^{D}} \sum_{n=1}^{N} K\left(\frac{x-x^{(n}}{h}\right)=\frac{1}{10 \times 4^{1}}\left[K\left(\frac{3-4}{4}\right)+K\left(\frac{3-5}{4}\right)+\cdots K\left(\frac{3-17}{4}\right)\right]=0.0025$
- Similarly

$$
\begin{aligned}
& p(y=10)=\frac{1}{10 \times 4^{1}}[0+0+0+0+0+0+0+0+0+0]=0 \\
& p(y=15)=\frac{1}{10 \times 4^{1}}[0+0+0+0+0+1+1+1+1+0]=0.1
\end{aligned}
$$

Smooth kernels

The Parzen window has several drawbacks

- It yields density estimates that have discontinuities
- It weights equally all points x_{i}, regardless of their distance to the estimation point x
For these reasons, the Parzen window is commonly replaced with a smooth kernel function $K(u)$

$$
\int_{R^{D}} K(x) d x=1
$$

- Usually, but not always, $K(u)$ will be a radially symmetric and unimodal pdf, such as the Gaussian $K(x)=(2 \pi)^{-D / 2} e^{-\frac{1}{2} x^{T} x}$
- Which leads to the density estimate

$$
p_{K D E}(x)=\frac{1}{N h^{D}} \sum_{n=1}^{N} K\left(\frac{x-x^{(k}}{h}\right)
$$

Interpretation

- Just as the Parzen window estimate can be seen as a sum of boxes centered at the data, the smooth kernel estimate is a sum of "bumps"
- The kernel function determines the shape of the bumps
- The parameter h, also called the smoothing parameter or bandwidth, determines their width

Bandwidth selection

The problem of choosing \boldsymbol{h} is crucial in density estimation

- A large h will over-smooth the DE and mask the structure of the data
- A small h will yield a DE that is spiky and very hard to interpret

- We would like to find a value of h that minimizes the error between the estimated density and the true density
- A natural measure is the MSE at the estimation point x, defined by

$$
E\left[\left(p_{K D E}(x)-p(x)\right)^{2}\right]=\underbrace{E\left[p_{K D E}(x)-p(x)\right]^{2}}_{\text {bias }}+\underbrace{\operatorname{var}\left(p_{K D E}(x)\right)}_{\text {variance }}
$$

- This expression is an example of the bias-variance tradeoff that we saw in an earlier lecture: the bias can be reduced at the expense of the variance, and vice versa
- The bias of an estimate is the systematic error incurred in the estimation
- The variance of an estimate is the random error incurred in the estimation
- The bias-variance dilemma applied to bandwidth selection simply means that
- A large bandwidth will reduce the differences among the estimates of $p_{K D E}(x)$ for different data sets (the variance), but it will increase the bias of $p_{K D E}(x)$ with respect to the true density $p(x)$
- A small bandwidth will reduce the bias of $p_{K D E}(x)$, at the expense of a larger variance in the estimates $p_{K D E}(x)$

BIAS

VARIANCE

Bandwidth selection methods, univariate case

Subjective choice

- The natural way for choosing h is to plot out several curves and choose the estimate that best matches one's prior (subjective) ideas
- However, this method is not practical in pattern recognition since we typically have high-dimensional data

Reference to a standard distribution

- Assume a standard density function and find the value of the bandwidth that minimizes the integral of the square error (MISE)

$$
h_{M I S E}=\arg \min \left\{E\left[\int\left(p_{K D E}(x)-p(x)\right)^{2} d x\right]\right\}
$$

- If we assume that the true distribution is Gaussian and we use a Gaussian kernel, it can be shown that the optimal value of h is

$$
h^{*}=1.06 \sigma N^{-1 / 5}
$$

- where σ is the sample standard deviation and N is the number of training examples
- Better results can be obtained by
- Using a robust measure of the spread instead of the sample variance, and
- Reducing the coefficient 1.06 to better cope with multimodal densities
- The optimal bandwidth then becomes

$$
h^{*}=0.9 A N^{-1 / 5} \text { where } A=\min \left(\sigma, \frac{I Q R}{1.34}\right)
$$

- IQR is the interquartile range, a robust estimate of the spread
- IQR is the difference between the 75th percentile $(Q 3)$ and the 25th percentile (Q1): $I Q R=Q 3-Q 1$
- A percentile rank is the proportion of examples in a distribution that a specific example is greater than or equal to

Maximum likelihood cross-validation

- The ML estimate of h is degenerate since it yields $h_{M L}=0$, a density estimate with Dirac delta functions at each training data point
- A practical alternative is to maximize the "pseudo-likelihood" computed using leave-one-out cross-validation

$$
\begin{gathered}
h^{*}=\arg \max \left\{\frac{1}{N} \sum_{n=1}^{N} \log p_{-n}\left(x^{(n}\right)\right\} \\
\text { where } p_{-n}\left(x^{(n}\right)=\frac{1}{(N-1) h} \sum_{\substack{m=1 \\
m \neq \mathrm{n}}}^{N} K\left(\frac{x^{(n}-x^{(m}}{h}\right)
\end{gathered}
$$

Multivariate density estimation

For the multivariate case, the KDE is

$$
p_{K D E}(x)=\frac{1}{N h^{D}} \sum_{n=1}^{N} K\left(\frac{x-x^{(n}}{h}\right)
$$

- Notice that the bandwidth h is the same for all the axes, so this density estimate will be weight all the axis equally
- If one or several of the features has larger spread than the others, we should use a vector of smoothing parameters or even a full covariance matrix, which complicates the procedure
There are two basic alternatives to solve the scaling problem without having to use a more general KDE
- Pre-scaling each axis (normalize to unit variance, for instance)
- Pre-whitening the data (linearly transform so $\Sigma=I$), estimate the density, and then transform back [Fukunaga]
- The whitening transform is $y=\Lambda^{-1 / 2} M^{T} x$, where Λ and M are the eigenvalue and eigenvector matrices of Σ
- Fukunaga's method is equivalent to using a hyper-ellipsoidal kernel

Product kernels

A good alternative for multivariate KDE is the product kernel

$$
\begin{gathered}
p_{\text {PKDE }}(x)=\frac{1}{N} \sum_{i=1}^{N} K\left(x, x^{(n}, h_{1}, \ldots h_{D}\right) \\
\text { where } K\left(x, x^{(n}, h_{1}, \ldots h_{D}\right)=\frac{1}{h_{1} \ldots h_{D}} \prod_{d=1}^{D} K_{d}\left(\frac{x_{d}-x_{d}^{(n)}}{h_{d}}\right)
\end{gathered}
$$

- The product kernel consists of the product of one-dimensional kernels
- Typically the same kernel function is used in each dimension $\left(K_{d}(x)=\right.$ $K(x)$), and only the bandwidths are allowed to differ
- Bandwidth selection can then be performed with any of the methods presented for univariate density estimation
- Note that although $K\left(x, x^{(n}, h_{1}, \ldots h_{D}\right)$ uses kernel independence, this does not imply we assume the features are independent
- If we assumed feature independence, the DE would have the expression

$$
p_{F E A T-I N D}(x)=\prod_{d=1}^{D} \frac{1}{N h^{D}} \sum_{i=1}^{N} K_{d}\left(\frac{x_{d}-x_{d}^{(n}}{h_{d}}\right)
$$

- Notice how the order of the summation and product are reversed compared to the product kernel

Example I

- This example shows the product KDE of a bivariate unimodal Gaussian
- 100 data points were drawn from the distribution
- The figures show the true density (left) and the estimates using $h=1.06 \sigma N^{-1 / 5}$ (middle) and $h=0.9 A N^{-1 / 5}$ (right)

Example II

- This example shows the product KDE of a bivariate bimodal Gaussian
- 100 data points were drawn from the distribution
- The figures show the true density (left) and the estimates using $h=1.06 \sigma N^{-1 / 5}$ (middle) and $h=0.9 A N^{-1 / 5}$ (right)

Naïve Bayes classifier

Recall that the Bayes classifier is given by the following family of DFs

$$
\text { chose } \omega_{i} \text { if } g_{i}(x)>g_{j}(x) \forall j \neq i \text { where } g_{i}(x)=P\left(\omega_{i} \mid x\right)
$$

- Using Bayes rule, these discriminant functions can be expressed as

$$
g_{i}(x)=P\left(\omega_{i} \mid x\right) \propto p\left(x \mid \omega_{i}\right) P\left(\omega_{i}\right)
$$

- where $P\left(\omega_{i}\right)$ is our prior knowledge and $\mathrm{p}\left(x \mid \omega_{i}\right)$ is obtained through DE
- Although the DE methods presented in this lecture allow us to estimate the multivariate likelihood $p\left(x \mid \omega_{i}\right)$, the curse of dimensionality makes it a very tough problem!

One highly practical simplification is the Naïve Bayes classifier

- The Naïve Bayes classifier assumes that features are class-conditionally independent

$$
p\left(x \mid \omega_{i}\right)=\prod_{d=1}^{D} p\left(x_{d} \mid \omega_{i}\right)
$$

- This assumption is not as rigid as assuming independent features $p(x)=\prod_{d=1}^{D} p\left(x_{d}\right)$
- Merging this expression into the DF yields the decision rule for the Naïve Bayes classifier

$$
g_{i, N B}(x)=P\left(\omega_{i}\right) \prod_{d=1}^{D} p\left(x_{d} \mid \omega_{i}\right)
$$

- The main advantage of the NB classifier is that we only need to compute the univariate $p\left(x_{d} \mid \omega_{i}\right)$, which is much easier than estimating the multivariate $p\left(x \mid \omega_{i}\right)$
- Despite its simplicity, the Naïve Bayes has been shown to have comparable performance to artificial neural networks and decision tree learning in some domains

Class-conditional independence vs. independence

